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A B S T R A C T   

Phosphotungstic acid (HPA)/α-Fe2O3-loaded Perlite has been prepared as a recyclable heterogeneous catalyst for 
the synthesis of xanthenes. The prepared catalyst has been characterized by Fourier-transform infrared (FTIR) 
spectroscopy, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) with energy-dispersive X-ray 
(EDX) spectroscopy, transmission electron microscopy (TEM) with selected-area electron diffraction (SAED) 
pattern analysis, thermogravimetric analysis (TGA), and Brunauer–Emmett–Teller (BET) measurements. XRD 
peaks at 2θ = 9.08◦ and 26.73◦ (HPA) and 36.03◦, 39.72◦, and 62.6◦ (α-Fe2O3) showed efficient loading of HPA/ 
α-Fe2O3 on the Perlite surface. TEM images of the prepared HPA/α-Fe2O3/Perlite corroborated the successful 
loading of α-Fe2O3 on the Perlite. Advantages of this new protocol include facile handling, low cost, easy work-up 
procedure, and remarkable reusability over several cycles without loss of the catalytic activity.   

1. Introduction 

Currently used heterogeneous catalysts have proven to be superior to 
their homogeneous predecessors. They have enabled synthetic routes to 
novel compounds in a cost-effective and benign manner. They are also 
well known for their ease of handling, low toxicity, and high-yielding 
transformations of organic compounds. Impregnated solid supports 
can act as facile and improved heterogeneous catalysts for synthetic 
organic transformations. They can retain their characteristics and pro-
vide excellent reaction enhancement [1–3]. Nanomaterials show 
outstanding properties, opening new possibilities for various applica-
tions [4–8]. Nano-sized and suitably blended solid-acid catalysts have 
proven to be suitable scavengers for biologically recalcitrant ions such as 
Cu(II), Cr(VI), and Cr(II), as well as noxious organic waste, as a result of 
their inherent characteristics of high porosity and large surface area. The 
most attractive feature of heterogeneous solid-acid catalysts is their safe 
and facile removal and handling [9–19]. 

Superior alternatives to homogeneous catalysts are solid supports 
incorporating immobilized magnetic nanoparticles, such as Fe2O3 [20, 
21], Fe2O5, Fe2O4, or Fe3O4 [22], which are known for their ease of 
separation using a simple permanent magnet without any tedious steps, 
extended reactivity, and increased number of active sites. Among the 
various iron oxides, Fe2O3 is highly versatile, of low toxicity, easily 
recoverable, and has been widely applied in various fields, such as 
nucleophilic substitution reactions [23], heterocycle synthesis [24], 
coupling reactions [25], catalysis [26], and sensors [27]. Owing to its 
conductivity, it is notably used in supercapacitors [28] and in 
conjunction with surfactants [29]. Solid supports incorporating 
magnetically separable materials are used in synthesis, as well as 
biomedical fields, such as bio-imaging, drug delivery, and so on [30,31]. 
Of these, those incorporating α-Fe2O3 nanoparticles can be obtained by a 
range of techniques, such as sol–gel, microemulsion, dispersion, etc. The 
co-precipitation methodology has proved to be favorable for the prep-
aration of stable composites that can be magnetically separated [32,33]. 
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Heteropoly acids (HPA) have been reported as better alternatives to 
conventional catalysts, owing to their protonating ability with superior 
active sites, possess advantages of high stability, non-toxicity, and 
non-corrosivity, and as such are exploited as benign systems for organic 
processes [34–36]. HPA-catalyzed transformations are usually free from 
side reactions and provide good yields. Developing a solid-acid catalyst 
with Keggin-type structured HPA supported on an inert material has 
proven to be a good choice for obtaining various heterocycles, due to the 
increased catalytic activity of such systems. A catalyst with a higher 
surface area will clearly show enhanced activity, and thus impregnating 
a solid inert silica-like material with HPA ensures excellent surface area 
and available active sites [37–39]. 

Catalyst systems based on the naturally occurring mineral Perlite 
have acquired significance lately due to characteristic features of ease of 
access, economy, reaction-enhancing ability at minimal loading, 
reduced time consumption, and high yield. The synthesis of heterocyclic 
compounds using Perlite-supported solid-acid catalysts has been widely 
investigated. Researchers have paid more attention to heterocycles due 
to their unique properties that underpin their numerous biological and 
pharmaceutical applications. Among these heterocycles, the synthesis of 
xanthenes is of substantial interest owing to their pharmacological ac-
tivities, such as anti-oxidant, anti-microbial, anti-cancer, analgesic, and 
anti-inflammatory effects [40–43]. Hence, in continuation of our work 
on heterogeneous catalysis [44], we set out to prepare a solid-acid 
heterogeneous catalyst of phosphotungstic acid (HPA)/α-Fe2O3/Perlite 
by a co-precipitation method. The activity of HPA/α-Fe2O3/Perlite has 
been investigated in the synthesis of xanthenes. 

2. Experimental 

2.1. Synthesis of α-ferric oxide [45,46] 

α-Fe2O3 was prepared by a co-precipitation method. FeCl2⋅4H2O 
(0.6 g) and FeCl3⋅6H2O (1.5 g) were dissolved in 2 M HCl solution (30 
mL). This mixture was then added dropwise with stirring to 25% NH4OH 
solution (75 mL), resulting in a solution of pH 11. Further 2 M HCl was 
added dropwise until pH 2 was attained, and the resulting mixture was 
stirred for 2 h. It was then centrifuged, and the collected solid was 
washed with water to remove excess NH4OH. The obtained product was 
dried at 80 ◦C for 8 h. 

2.2. Synthesis of α-Fe2O3-loaded perlite 

Perlite and ferric oxide in a 2:1 ratio were suspended in water/ 
ethanol (1:1; 25 mL) and the mixture was stirred for 8 h. The solvents 
were then evaporated and the residue was dried at 80 ◦C for 8 h. 

2.3. Synthesis of HPA/α-Fe2O3/Perlite 

α-Ferric oxide/Perlite and phosphotungstic acid (H3 [P(W3O10)4]⋅ 
xH2O) (1:1.2) were suspended in acetonitrile, and the mixture was 
heated under reflux at 60 ◦C for 24 h. The solvent was then evaporated, 
and the residue was dried at 80 ◦C for 8 h and calcined at 300 ◦C for 3 h. 

2.4. General procedure for the synthesis of 3,3,6,6-tetramethyl-9- 
substituted-tetrahydro-2H-xanthene-1,8-(5H,9H)-diones (1a–i) 

A mixture of a diketone (2 mmol) and the requisite aromatic alde-
hyde (1 mmol) in acetonitrile was added to a dispersion of catalyst (0.1 
g) in acetonitrile, and the resulting mixture was heated under reflux at 
80 ◦C for the stipulated duration. Progress of the reaction was monitored 
by thin-layer chromatography (TLC), and on completion, the mixture 
was cooled and the catalyst was separated by means of an external 
magnet. The solvent was evaporated and the resulting crude product 
was recrystallized from ethanol. The structures of the xanthenes [47] 
obtained were confirmed by physical data and IR and NMR spectral 

methods. The corresponding 1H and 13C NMR spectra are given as 
Figs. S1–S18 (see the Supporting Information). 

3,3,6,6-Tetramethyl-9-phenyl-3,4,6,7-tetrahydro-2H-xanthene-1,8- 
(5H,9H)-dione (1a): White solid; IR (KBr, cm− 1): ν 2954.95, 1658.78, 
1626.75, 1463.57, 1357.89, 1134.14, 1002.98, 694.37; 1H NMR (500 
MHz, CDCl3, ppm): δ 7.30–7.08 (m, 5H, Ar–H), 4.75 (s, 1H, H-9), 2.46 (s, 
4H, H-2, H-7), 2.25–2.22 (d, 2H, H-4), 2.18–2.15 (d, 2H, H-5), 1.10 (s, 
6H, (CH3)2), 0.99 (s, 6H, (CH3)2); 13C NMR (125 MHz, CDCl3, ppm): δ 
196.39 (carbonyl C––O), 162.24 (C-12, C-13), 115.69 (C-11, C-14), 
144.08–126.38 (Ar–C), 50.75 (C-2, C-7), 40.89 (C-9), 32.21 (C-4, C-5), 
31.84 (C-3, C-6), 29.27 (C–CH3), 27.34 (C–CH3). 

9-(2-Chlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7-tetrahydro-2H-xan-
thene-1,8-(5H,9H)-dione (1b): Yellow solid; IR (KBr, cm− 1): ν 2926.05, 
1639.38, 1342.73, 1169.27, 738.74, 450.27; 1H NMR (500 MHz, CDCl3, 
ppm): δ 7.45–7.06 (m, 4H, Ar–H), 5.02 (s, 1H, H-9), 2.47 (s, 4H, H-2, H- 
7), 2.26–2.22 (d, 2H, H-4), 2.19–2.16 (d, 2H, H-5), 1.12 (s, 6H, (CH3)2), 
1.03 (s, 6H, (CH3)2); 13C NMR (125 MHz, CDCl3, ppm): δ 196.46 
(carbonyl C––O), 162.95 (C-12, C-13), 139.82–126.28 (Ar–C), 113.64 
(C-11, C-14), 50.65 (C-2, C-7), 40.76 (C-9), 31.97 (C-4, C-5), 31.82 (C-3, 
C-6), 29.23 (C–CH3), 27.32 (C–CH3). 

9-(4-Chlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7-tetrahydro-2H-xan-
thene-1,8-(5H,9H)-dione (1c): Yellow solid; IR (KBr, cm− 1): ν 2924.09, 
1631.78, 1520.91, 1327.03, 1168.86, 742.59; 1H NMR (500 MHz, 
CDCl3, ppm): δ 7.27–7.17 (m, 4H, Ar–H), 4.71 (s, 1H, H-9), 2.46 (s, 4H, 
H-2, H-7), 2.25–2.22 (d, 2H, H-4), 2.18–2.15 (d, 2H, H-5), 1.10 (s, 6H, 
(CH3)2), 0.99 (s, 6H, (CH3)2); 13C NMR (125 MHz, CDCl3, ppm): δ 
196.38 (carbonyl C––O), 162.45 (C-12, C-13), 142.70–128.22 (Ar–C), 
115.27 (C-11, C-14), 50.69 (C-2, C-7), 40.85 (C-9), 32.21 (C-4, C-5), 
31.47 (C-3, C-6), 29.28 (C–CH3), 27.29 (C–CH3). 

9-(4-Bromophenyl)-3,3,6,6-tetramethyl-3,4,6,7-tetrahydro-2H-xan-
thene-1,8-(5H,9H)-dione (1d): Light-yellow solid; IR (KBr, cm− 1): ν 
2926.01, 1654.92, 1363.67, 1157.29, 1145.39, 1001.02, 846.25, 
697.53; 1H NMR (500 MHz, CDCl3, ppm): δ 7.34–7.16 (m, 4H, Ar–H), 
4.70 (s, 1H, H-9), 2.46 (s, 4H, H-2, H-7), 2.25–2.22 (d, 2H, H-4), 
2.18–2.15 (d, 2H, H-5), 1.10 (s, 6H, (CH3)2), 0.99 (s, 6H, (CH3)2); 13C 
NMR (125 MHz, CDCl3, ppm): δ 196.37 (carbonyl C––O), 162.47 (C-12, 
C-13), 143.23–120.24 (Ar–C), 115.19 (C-11, C-14), 50.69 (C-2, C-7), 
40.84 (C-9), 32.21 (C-4, C-5), 31.56 (C-3, C-6), 29.28 (C–CH3), 27.30 
(C–CH3). 

9-(4-Fluorophenyl)-3,3,6,6-tetramethyl-3,4,6,7-tetrahydro-2H-xan-
thene-1,8-(5H,9H)-dione (1e): White solid; IR (KBr, cm− 1): ν 2951.67, 
1654.46, 1602.92, 1503.63, 1364.10, 1196.92, 1145.39, 1005.86, 
814.80; 1H NMR (500 MHz, CDCl3, ppm): δ 7.27–6.88 (m, 4H, Ar–H), 
4.72 (s, 1H, H-9), 2.47 (s, 4H, H-2, H-7), 2.25–2.22 (d, 2H, H-4), 
2.19–2.15 (d, 2H, H-5), 1.10 (s, 6H, (CH3)2), 0.99 (s, 6H, (CH3)2); 13C 
NMR (125 MHz, CDCl3, ppm): δ 196.53 (carbonyl C––O), 162.41 (C-12, 
C-13), 139.95–129.81 (Ar–C), 115.50 (C-11, C-14), 50.70 (C-2, C-7), 
40.84 (C-9), 32.21 (C-4, C-5), 31.20 (C-3, C-6), 29.26 (C–CH3), 27.28 
(C–CH3). 

3,3,6,6-Tetramethyl-9-(3,4,5-trimethoxyphenyl)-3,4,6,7-tetrahydro- 
2H-xanthene-1,8-(5H,9H)-dione (1f): Yellow solid; IR (KBr, cm− 1): ν 
2943.92, 1661.01, 1590.36, 1454.01, 1185.03, 1120.58, 1006.54, 
830.53, 671.87; 1H NMR (500 MHz, CDCl3, ppm): δ 6.51 (s, 2H, Ar–H), 
4.71 (s, 1H, H-9), 3.79 (s, 6H, Ar-CH3), 3.77 (s, 6H, m-OCH3), 3.69 (s, 
3H, o-OCH3), 2.48 (s, 2H, H-2), 2.47 (s, 2H, H-7), 2.24–2.23 (m, 4H, H-4, 
H-5), 1.12 (s, 6H, (CH3)2), 1.03 (s, 6H, (CH3)2); 13C NMR (125 MHz, 
CDCl3, ppm): δ 196.51 (carbonyl C––O), 162.35 (C-12, C-13), 
152.80–136.57 (Ar–C), 115.50 (C-11, C-14), 60.71–56.10 (Ar-CH3), 
50.75 (C-2, C-7), 40.91 (C-9), 32.19 (C-4, C-5), 31.81 (C-3, C-6), 29.38 
(C–CH3), 27.20 (C–CH3). 

3,3,6,6-Tetramethyl-9-(3,4-dimethylphenyl)-3,4,6,7-tetrahydro-2H- 
xanthene-1,8-(5H,9H)-dione (1g): Light-yellow solid; IR (KBr, cm− 1): ν 
2958.79, 1752.73, 1656.07, 1604.74, 1456.87, 1196.57, 1134.25, 
987.60, 892.28, 818.95; 1H NMR (500 MHz, CDCl3, ppm): δ 7.08 (s, 1H, 
Ar–H), 6.95 (d, 2H, Ar–H), 4.68 (s, 1H, H-9), 2.46 (s, 4H, H-2, H-7), 
2.24–2.14 (m, 10H, H-4, H-5, Ar-(CH3)2), 1.09 (s, 6H, (CH3)2), 1.00 (s, 
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6H, (CH3)2); 13C NMR (125 MHz, CDCl3, ppm): δ 196.51 (carbonyl 
C––O), 162.08 (C-12, C-13), 141.56–125.50 (Ar–C), 115.84 (C-11, C- 
14), 50.79 (C-2, C-7), 40.90 (C-9), 32.23 (C-4, C-5), 31.35 (C-3, C-6), 
29.24 (C-(CH3)2), 27.43 (C-(CH3)2), 19.86–19.39 (Ar-CH3). 

3,3,6,6-Tetramethyl-9-(4-methylphenyl)-3,4,6,7-tetrahydro-2H- 
xanthene-1,8-(5H,9H)-dione (1h): White solid; IR (KBr, cm− 1): ν 
2941.14, 1659.44, 1448.63, 1173.98, 1133.03, 1001.72, 830.67, 
687.32; 1H NMR (500 MHz, CDCl3, ppm): δ 7.18–7.01 (m, 4H, Ar–H), 
4.71 (s, 1H, H-9), 2.45 (s, 3H, Ar-CH3), 2.24–2.14 (m, 7H, H-4, H-5, Ar- 
CH3), 1.09 (s, 6H, (CH3)2), 0.99 (s, 6H, (CH3)2); 13C NMR (125 MHz, 
CDCl3, ppm): δ 196.45 (carbonyl C––O), 162.11 (C-12, C-13), 
141.20–128.25 (Ar–C), 115.77 (C-11, C-14), 50.77 (C-2, C-7), 40.88 (C- 
9), 32.20 (C-4, C-5), 31.44 (C-3, C-6), 29.27 (C–CH3), 27.38 (C–CH3), 
21.06 (Ar-CH3). 

9-(4-Isopropylphenyl)-3,3,6,6-tetramethyl-3,4,6,7-tetrahydro-2H- 
xanthene-1,8-(5H,9H)-dione (1i): Light-yellow solid; IR (KBr, cm− 1): ν 
2958.79, 1658.53, 1608.95, 1460.21, 1357.33, 1191.23, 1046.21, 
828.05, 711.53; 1H NMR (500 MHz, CDCl3, ppm): δ 7.18–7.04 (m, 4H, 
Ar–H), 4.73 (s, 1H, H-9), 2.99–2.96 (m, 1H, methine H), 2.46 (s, 4H, H- 
2, H-7), 2.25–2.22 (d, 2H, H-4), 2.20–2.16 (d, 2H, H-5), 1.29–1.27 (d, 
6H, isopropyl CH3), 1.09 (s, 6H, (CH3)2), 1.00 (s, 6H, (CH3)2); 13C NMR 
(125 MHz, CDCl3, ppm): δ 196.84 (carbonyl C––O), 177.41–155.28 (C- 
12, C-13), 130.38–126.14 (Ar–C), 115.84 (C-11, C-14), 50.73 (C-2, C-7), 
44.88, 40.88 (C-4, C-5), 32.21 (C-9), 34.48–33.60 (aliphatic C), 
29.70–27.46 (C–CH3), 23.91–23.63 (aliphatic CH3). 

3. Results and discussion 

3.1. Characterization of HPA/α-Fe2O3/Perlite 

The immobilization of the solid-acid catalyst by loading HPA and 
α-Fe2O3 on the surface of Perlite was studied by FTIR measurements. 
The IR spectrum of pure Perlite is depicted in Fig. 1a. The vibrations at 
677.01, 985.62, 1066.64, 1527.62, and 3578.60 cm− 1 correspond to 
Si–O–Si bending, Si–O–Al bending, Si–O stretching, Si–OH stretching, 
and O–H stretching, respectively [48]. 

The IR spectra of α-Fe2O3, HPA, and HPA/α-Fe2O3/Perlite are dis-
played in Fig. 1b, c, and 1d, respectively. In Fig. 1b, the vibrations at 
1041.56, 810.10, 594.08, and 439.77 cm− 1 can be ascribed to Fe–O 
stretchings and bendings, and are characteristic of α-Fe2O3 [49]. The 
stretching frequencies at 1074.35, 964.41, and 900.76 cm− 1 in Fig. 1c 
correspond to P–O, W––O, and W–O–W vibrations, respectively. Fig. 1d 
indicates characteristic vibrations at 3348.42, 1656.02, 1527.89, and 
1066.20/1049.28 cm− 1, corresponding to O–H stretching, Si–OH 
stretching, Si–O–Si stretching, and Si–O–Al bending vibrations, respec-
tively. Further peaks at 810.10, 601.79, 547.78, and 439.77 cm− 1 can be 
ascribed to Fe–O stretchings of α-Fe2O3. The vibrations at 897.42 and 
982.36 cm− 1 can be attributed to W–O–W and W––O, and correspond to 
Keggin-type HPA in HPA/α-Fe2O3/Perlite [50]. 

Fig. 1. FTIR spectra of a) pure Perlite, b) α-Fe2O3, c) HPA, and d) HPA/ 
α-Fe2O3/Perlite. 

Fig. 2. XRD patterns of a) pure Perlite, b) α-Fe2O3, c) HPA, and d) HPA/ 
α-Fe2O3/Perlite. 
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Fig. 3. SEM images of a) α-Fe2O3 and b) HPA/α-Fe2O3/Perlite.  
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The synthesized catalysts were analyzed by the powder XRD tech-
nique. The XRD patterns of pure Perlite, α-Fe2O3, HPA, and HPA/ 
α-Fe2O3/Perlite are shown in Fig. 2. The XRD patterns corroborate the 
crystalline nature of the product and the effective loading of α-Fe2O3 and 
HPA on Perlite. The XRD pattern of Perlite shows a strong band at 
24.74◦, evidencing its amorphous nature (Fig. 2a). The 2θ and hkl 
indices in Fig. 2b conform well with JCPDS no. 87–1164, confirming the 
formation of α-Fe2O3 [49]. In Fig. 2c, the peaks at 2θ = 10.38◦, 20.58◦, 
26.24◦, 28.51◦, 31.86◦, and 38.18◦ can be attributed to Keggin-type 
HPA. The XRD pattern of HPA/α-Fe2O3/Perlite is displayed in Fig. 2d. 
It features the peaks of both HPA and α-Fe2O3, consistent with efficient 
loading of HPA/α-Fe2O3 on the Perlite surface. 

The surface morphology of the prepared catalyst was examined by 
SEM. The SEM image (Fig. 3a) shows the prepared α-Fe2O3 to be 
spherical in nature, and the clusters formed are due to magnetic dipole 
interactions, evidencing the magnetic nature of the prepared compound 
[49]. Fig. 3b depicts the SEM image of HPA/α-Fe2O3/Perlite, which 
reveals the effective and uniform loading of α-Fe2O3 on the Perlite (see 
arrow marks) as well as the layer structure of the latter [44]. 

Fig. 4 depicts the percentage compositions of the elements in α-Fe2O3 
and HPA/α-Fe2Os/Perlite. As is evident from Table 1, the additional 
peak for W (23%) and the increase in Fe content corroborate the loading 
of HPA and α-Fe2O3 on Perlite. 

TEM images and SAED patterns of the prepared materials (α-Fe2O3 
and HPA/α-Fe2O3/Perlite), along with particle size distributions of 
α-Fe2O3, are given in Figs. 5 and 6. From the TEM images, the 
morphology of α-Fe2O3 was seen to be spherical and of nanometer di-
mensions (Fig. 5a and b). The diffraction pattern (Fig. 5c) of the 

compound is consistent with the nano- and polycrystalline nature of 
α-Fe2O3. TEM images of the prepared HPA/α-Fe2O3/Perlite indicate the 
successful loading of α-Fe2O3 (see arrow marks) (Fig. 5d and e). The 
layered structure of Perlite can clearly be seen, and the spherical par-
ticles of α-Fe2O3 are embedded on the surface of layered Perlite sheets 
(Fig. 5d and e). The diffraction pattern of HPA/α-Fe2O3/Perlite (Fig. 5f) 
with irregular spots showed the catalyst to be semicrystalline and 
polycrystalline in nature. The particle size distribution curve from the 
TEM results showed that the prepared α-Fe2O3 consisted of 70% of 
20–30 nm particles, with an average particle size of 24.65 nm (Fig. 6). 

The thermal stability of the HPA/α-Fe2O3/Perlite catalyst was 
examined by TGA. Fig. 7 shows a gradual thermal decomposition up to 
180 ◦C, corresponding to the loss of water. Thereafter, the decrease from 
200 to 400 ◦C indicates a 4% loss of Keggin-type HPA, and this is fol-
lowed by a sudden loss at around 500 ◦C, corresponding to complete loss 
of HPA. A steady loss after 600 ◦C reflects the removal of hydroxyl 
groups from the surface of Perlite [51,52]. 

Surface area analysis of the Perlite and HPA/α-Fe2O3/Perlite was 
performed by the BET method. The pore volumes, pore diameters, and 
surface areas are tabulated in Table 2, from which it can be seen that 
there was an increase in surface area and pore volume of Perlite after 
HPA/α-Fe2O3 loading. 

3.2. Catalytic activity of HPA/α-Fe2O3/Perlite 

In order to test the effectiveness of the HPA/α-Fe2O3/Perlite catalyst, 
9-substituted xanthenes were prepared by reactions of a diketone with 
aromatic aldehydes in its presence (Scheme 1). 

Fig. 4. EDX of a) α-Fe2O3 and b) HPA/α-Fe2O3/Perlite.  
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The reaction conditions were initially optimized for the reaction of 
dimedone with benzaldehyde to afford 3,3,6,6-tetramethyl-9-phenyl- 
3,4,6,7-tetrahydro-2H-xanthene-1,8-(5H,9H)-dione. The synthesis of 
xanthenes was first evaluated using bare Perlite and Perlite/Fe2O3. Only 
a trace amount of product was obtained with Perlite, whereas utilization 
of 0.1 g of Perlite/Fe2O3 produced an appreciable yield of 89%. 
Accordingly, the efficiency of HPA/α-Fe2O3/Perlite was evaluated 
further. The amount of catalyst was varied from 0.01 to 0.20 g (Table 3). 
The zero yield from the uncatalyzed reaction proved the need for a 
catalyst. The reaction with 0.1 g of catalyst was found to proceed with 
significant yield. An increase in the amount of the catalyst raised the 
yield from 89 to 95% (Table 3), but a further increment in the catalyst 
loading beyond 0.1 g decreased the yield. Thus, the catalyst amount was 
optimized at 0.1 g for this reaction. 

Temperature and solvent effects were also examined to optimize the 
protocol. The reaction was carried out at various temperatures 
(60–110 ◦C) with the optimized catalyst loading. At 80 ◦C, the yield of 
the product was satisfactory. Increasing the temperature beyond 80 ◦C 
did not produce a beneficial effect on the yield (Table 4). Thus, further 
reactions were controlled at 80 ◦C. 

Furthermore, the reaction was attempted in different solvents, 
namely ethanol, water, and acetonitrile, at 80 ◦C using 0.1 g of catalyst 

in each case (Table 5). Of the solvents used, acetonitrile showed good 
reaction progress, giving a 95% yield within 1 h (Table 5). The rapid 
attainment of high yield made acetonitrile the preferred solvent for 
further reactions. Hence, the preparation of xanthene in the presence of 
0.1 g of catalyst at 80 ◦C using acetonitrile as solvent was identified as 

Fig. 5. TEM images and SAED patterns of a–c) α-Fe2O3 and d–f) HPA/α-Fe2O3/Perlite.  

Table 1 
Composition of the prepared HPA/α-Fe2O3/Perlite catalyst.  

Sample O Fe Na Al Si K Ca W 

Perlite 20.28 1.04 3.09 11.05 60.24 4.33 0.82 – 
HPA/α-Fe2O3/Perlite 30.69 4.12 1.20 3.91 33.76 1.95 0.01 23.77  

Fig. 6. Particle size distribution of α-Fe2O3.  
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optimal. 
Having identified the optimal conditions, this protocol was extended 

to various substituted xanthenes. Besides the appreciable results ob-
tained, application of the reaction was studied for several aromatic al-
dehydes (Table 6). As is evident from Table 6, the proposed protocol 
proved to be applicable to a variety of substituted aldehydes. Neither 
electron-withdrawing nor electron-releasing groups had any appreciable 
influence on the reaction outcome. To study the effectiveness of this 
protocol, the results were correlated with previously published results 
(Table 7). Although previous reports of the use of heteropoly acids for 
the synthesis of xanthenes quoted comparable yields, reaction times 
were longer and reusability of the catalyst was difficult. The use of iron 
oxide and composites thereof has produced satisfactory yields, but the 
reaction temperature was relatively high. Hence, to reconcile these 
differences, we set out to combine the properties of HPA and Fe2O3 by 
preparing a composite on Perlite. The strong adsorbability, chemical and 
thermal stability, low toxicity, and natural occurrence of Perlite, mainly 
comprising silica and alumina, make it a good support for the assembly 
of heterogeneous catalysts. These remarkable properties prompted us to 
prepare HPA/α-Fe2O3/Perlite. The proposed strategy is promisingly 
superior to preceding methods. 

The reusability of the catalyst for the synthesis of xanthene from 

Scheme 1. Synthesis of xanthenes.  

Fig. 7. TGA for HPA/α-Fe2O3/Perlite.  

Table 2 
Pore analysis of Perlite and HPA/α-Fe2O3/Perlite.  

Catalyst Surface area (m2/ 
g) 

Pore volume (cc/ 
g) 

Pore diameter 
(Å) 

Perlite 1.874 2.899 × 10− 3 3.910 
HPA/α-Fe2O3/ 

Perlite 
2.084 3.661 × 10− 3 3.485  

Table 3 
Effect of catalyst loading in the synthesis of 3,3,6,6-tetramethyl-9-phenyl- 
3,4,6,7-tetrahydro-2H-xanthene-1,8-(5H,9H)-dione.  

Catalyst Catalyst amount (g)a Yield (%)b 

– – none 
Perlite 0.1 trace 
α-Fe2O3/Perlite 0.1 89 
HPA/α-Fe2O3/Perlite 0.01 84 
HPA/α-Fe2O3/Perlite 0.05 89 
HPA/α-Fe2O3/Perlite 0.1 95 
HPA/α-Fe2O3/Perlite 0.15 93 
HPA/α-Fe2O3/Perlite 0.2 90  

a Reaction conditions: benzaldehyde (1 mmol), dimedone (2 mmol), solvent 
= acetonitrile, time = 60 min at 80 ◦C. 

b Isolated yield. 

Table 4 
Effect of temperature in the synthesis of 3,3,6,6-tetra-
methyl-9-phenyl-3,4,6,7-tetrahydro-2H-xanthene-1,8- 
(5H,9H)-dione.  

Temperature (◦C)a Yield (%)b 

60 72 
70 86 
80 95 
90 95 
100 95 
110 95  

a Reaction conditions: benzaldehyde (1 mmol), dime-
done (2 mmol), solvent = acetonitrile, time = 60 min. 

b Isolated yield. 

Table 5 
Effect of solvent in the synthesis of 3,3,6,6-tetramethyl-9-phenyl-3,4,6,7-tetra-
hydro-2H-xanthene-1,8-(5H,9H)-dione.  

Solventa Yield (%)b Time (h) 

water 87 12 
ethanol 91 8 
CH3CN 95 1  

a Reaction conditions: benzaldehyde (1 mmol), dimedone (2 mmol). 
b Isolated yield. 
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benzaldehyde was evaluated. The catalyst used in the reaction could be 
easily removed by means of a permanent magnet (Fig. 8). 

The catalyst was separated from the product after the reaction by 
simple filtration. It was washed with hot ethanol, dried, and reused for 
further reaction. The results revealed that the prepared catalyst could be 
reused up to five times without incurring a significant loss of activity 
(Table 8). 

4. Conclusion 

The heterogeneous solid-acid catalyst HPA/α-Fe2O3/Perlite has been 
prepared and used for the synthesis of substituted xanthenes. After 
optimizing the protocol, the optimal conditions were applied to the 
synthesis of various substituted xanthenes. The favorable immobiliza-
tion of the HPA/α-Fe2O3 on the Perlite was evident from FTIR, XRD, 
SEM-EDX, TEM, TGA, and BET studies. The efficiency of HPA/α-Fe2O3/ 

Table 6 
Preparation of 3,3,6,6-tetramethyl-9-substituted-3,4,6,7-tetrahydro-2H-xanthene-1,8-(5H,9H)-diones using HPA/α-Fe2O3/Perlite.  

Product R Product structurea Yield (%)b Time (min) m.p. (◦C) Ref. m.p. (◦C) 

1a H 95 60 203–205 203–204 [53] 

1b 2-Cl 91 45 229–231 228–230 [54] 

1c 4-Cl 93 48 228–229 230–231 [53] 

1d 4-Br 94 50 231–232 230–231 [55] 

1e 4-F 92 55 222–223 224–225 [54] 

1f 3,4,5-(OCH3)3 91 50 184–185 186–188 [56] 

1g 3,4-(CH3)2 89 55 220–221 – 

1h 4-(CH3) 85 70 211–212 211–214 [57] 

1i 4-isopropyl 80 75 213–214 –  

a Reaction conditions: aldehyde (1 mmol), dimedone (2 mmol), catalyst (0.1 g) under reflux in CH3CN. 
b Isolated yield. 
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Perlite in organic transformations has been analyzed by synthesizing 
xanthenes in high yields in short reaction times. The benign nature of the 
catalyst has been exemplified by reusability tests. The HPA/α-Fe2O3/ 
Perlite catalyst has been shown to be effective for preparing xanthene 
and its derivatives. Further, the versatility of this catalyst holds promise 
for its application to various other reactions. 
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