organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Proton-transfer compounds with 4-amino-*N*-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide (sulfamethazine): the structures and hydrogen bonding in the salts with 5-nitrosalicylic acid and picric acid

Graham Smith* and Urs D. Wermuth

Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia Correspondence e-mail: g.smith@qut.edu.au

Received 26 February 2013 Accepted 7 April 2013

The structures of the anhydrous proton-transfer compounds of the sulfa drug sulfamethazine with 5-nitrosalicylic acid and picric acid, namely 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2-hydroxy-5-nitrobenzoate, C12H15N4- $O_2S^+ \cdot C_7H_4NO_4^-$, (I), and 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2,4,6-trinitrophenolate, C₁₂H₁₅N₄- $O_2S^+ \cdot C_6H_2N_3O_7^-$, (II), respectively, have been determined. In the asymmetric unit of (I), there are two independent but conformationally similar cation-anion heterodimer pairs which are formed through duplex intermolecular N⁺-H···Ocarboxylate and N-H···Ocarboxylate hydrogen-bond pairs, giving a cyclic motif [graph set $R_2^2(8)$]. These heterodimers form separate and different non-associated substructures through aniline N-H···O hydrogen bonds, one one-dimensional, involving carboxylate O-atom acceptors, the other twodimensional, involving both carboxylate and hydroxy O-atom acceptors. The overall two-dimensional structure is stabilized by $\pi - \pi$ interactions between the pyrimidinium ring and the 5-nitrosalicylate ring in both heterodimers [minimum ringcentroid separation = 3.4580 (8) Å]. For picrate (II), the cation-anion interaction involves a slightly asymmetric chelating N-H···O $R_2^1(6)$ hydrogen-bonding association with the phenolate O atom, together with peripheral conjoint $R_1^2(6)$ interactions between the same N-H groups and O atoms of the ortho-related nitro groups. An inter-unit amine N-H...O_{sulfone} hydrogen bond gives one-dimensional chains which extend along a and inter-associate through $\pi - \pi$ interactions between the pyrimidinium rings [centroidcentroid separation = 3.4752(9) Å]. The two structures reported here now bring to a total of four the crystallographically characterized examples of proton-transfer salts of sulfamethazine with strong organic acids.

Comment

The drug sulfamethazine [or sulfadimidine; systematic name: 4-amino-*N*-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide] (O'Neil, 2001) has been used as a model for cocrystal formation (Caira, 2007; Ghosh et al., 2011), commonly forming 1:1 adducts with carboxylic acids, predominantly the benzoic acid analogues. The structures of a significant number of these have been reported, e.g. with benzoic acid (Arman et al., 2010), salicylic acid (Patel et al., 1988), anthranilic and 4-aminobenzoic acids (Caira, 1991), 4-aminosalicylic and acetylsalicylic acids (Caira, 1992), 2-nitrobenzoic acid (Smith & Wermuth, 2013a), 4-nitrobenzoic acid (Smith & Wermuth, 2012), 2,4-dinitrobenzoic and indole-2-carboxylic acids (Lynch et al., 2000), 4-chlorobenzoic acid (Lucaciu et al., 2008), and 4-hydroxybenzoic, 2,4-dihydroxybenzoic, 3,4-dichlorobenzoic, 1-hydroxy-2-naphthoic and 3-hydroxy-2-naphthoic acids (Ghosh et al., 2011). Only two aliphatic examples are known, viz. with fumaric and sorbic acids. The structures of the cocrystals with the amides benzamide, 4-hydroxybenzamide and picolinamide (Ghosh et al., 2011) are also known. The structures of the adducts with trimethoprim, viz. a 1:1 methanol monosolvate (Bettinetti & Sardone, 1997) and a 2:1 monohydrate (Sardone et al., 1997), represent a small number of solvated examples.

In the previously mentioned cocrystals of sulfamethazine, heterodimers are usually formed through a cyclic hydrogenbonding motif [graph set $R_2^2(8)$; Etter *et al.*, 1990], involving amide N-H···O_{carboxy} and carboxylic acid O-H···N_{pyrimidine} pairs. Other structures not involving carboxylic acids are the 1:1 complex with saccharin (Lu *et al.*, 2008), where a protonated sulfamethazine cation is present, and the 2:1 complex with theophylline (Lu *et al.*, 2011), in which two tautomeric forms of sulfamethazine are found, *viz*. the amidine and the imidine forms, similar to those found in the benzamide cocrystal (Ghosh *et al.*, 2011). The structures of the parent compound sulfamethazine (Tiwari *et al.*, 1984) and its methanol monosolvate (Rambaud *et al.*, 1985) are also known.

However, no examples of proton-transfer salts of sulfamethazine with strong 'conventional' organic acids were present in the crystallographic literature before that of the

Figure 1

The molecular conformation and atom-numbering scheme for the two independent hydrogen-bonded heteromolecular pairs (A-D and B-C) in the asymmetric unit of (I), with inter-species hydrogen bonds shown as dashed lines. Displacement ellipsoids are drawn at the 40% probability level.

structure of the anhydrous picrate salt with 3,5-dinitrosalicylic acid (DNSA) (Smith & Wermuth, 2013b). In this salt, a hydrogen-bonded heterodimer analogous to those in the nonproton-transfer cocrystals is present, the subtle variation being that, with proton transfer, one $N^{\scriptscriptstyle +}{-}H{\cdots}O_{carboxy}$ and one $N{-}$ $H \cdots O_{carboxy}$ interaction are involved in the $R_2^2(8)$ motif. The phenolate group is only involved in the intramolecular cyclic carboxylic acid $O-H \cdots O$ hydrogen bond, similar to that found in the majority of the proton-transfer salts of DNSA (Smith et al., 2007). We therefore carried out the reaction of sulfamethazine with other strong organic acids under similar conditions to those used in the DNSA preparation (1:1 stoichiomety in 50% ethanol-water). Suitable crystalline products were obtained with 5-nitrosalicylic acid (5-NSA) and picric acid, namely the title salts 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2-hydroxy-5-nitrobenzoate, (I) (Fig. 1), and 2-(4-aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2,4,6-trinitrophenolate, (II) (Fig. 2), and the structures are reported herein. Although not as effective as picric acid for producing crystalline proton-transfer salts with amines, 5-NSA (p $K_a \simeq 2.2$) has proved relatively useful in this respect, particularly with the aromatic amines (Smith et al., 1996, 2005, 2006; Kumar et al., 2003).

In the 5-NSA salt of sulfamethazine, (I), the asymmetric unit (Fig. 1) contains two independent cation-anion pairs (cations labelled A and B, and anions labelled C and D, respectively), which interact through $N-H\cdots O_{carboxylate}$ hydrogen-bonding pairs (Table 1), giving cyclic $R_2^2(8)$ heterodimers (A-D and B-C). These differ from the heterodimer adduct only in the presence in (I) of the transferred H atom on the pyrimidine N atom of the sulfamethazine cation. Asymmetry is found in the N⁺-H···O [N⁺···O = 2.5847 (17) (A) and 2.6162 (18) Å (B)] and N-H···O distances [N···O = 2.7810 (18) (A) and 2.7221 (18) Å (B)] within the cyclic association. This asymmetry is comparable with that found in the cocrystal examples [O-H···N and N-H···O ranges for eight examples (Lynch *et al.*, 2000) are O···N = 2.526 (4)- 2.724 (4) Å and N···O = 2.719 (4)–2.840 (4) Å]. The corresponding values in the DNSA proton-transfer salt (Smith & Wermuth, 2013*b*) are 2.617 (4) and 2.729 (4) Å.

In (I), the cyclic motifs result in near-coplanarity of the pyrimidinium and 5-NSA ring systems, with inter-ring dihedral angles of 3.74 (7) and 7.84 (7)° for dimers A-D and B-C, respectively. The heterodimers form separate and different non-associated substructures through aniline N-H···O hydrogen bonds (Table 1), the first system being one-dimensional (A-D), involving carboxylate O-atom acceptors (O11D) and extending parallel to [010] (Fig. 3a). The second system (B-C) is two-dimensional, involving both carboxylate and hydroxy O-atom acceptors (O12B and O2C, respectively), and extends parallel to the (011) plane (Fig. 3b). The composite structure of (I) is two-dimensional (Fig. 3c), lying in the $(10\overline{1})$ plane. Unlike the structure of the sulfamethazine salt with 3,5-dinitrosalicylic acid, no intermolecular aniline N-H...O_{sulfone} hydrogen-bonding interactions are present. However, π - π interactions are present between the pyrimi-

Figure 2

The molecular conformation and atom-numbering scheme for (II), with inter-species hydrogen bonds shown as dashed lines. Displacement ellipsoids are drawn at the 40% probability level.

Figure 3

(a) The one-dimensional hydrogen-bonded chain structure formed by the A-D heterodimer units in (I), extending down b. Hydrogen-bonding associations are shown as dashed lines and non-associative H atoms have been omitted. (b) The two-dimensional hydrogen-bonded structure formed by the B-C heterodimer units in (I). (c) The composite two-dimensional hydrogen-bonded structure of (I), viewed down a. Symmetry codes are as in Table 1.

dine rings of both cations and both anions $[A \cdots C(x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2})$ and $B \cdots D(x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2})$; ring-centroid separations $(Cg \cdots Cg) = 3.4580$ (8) and 3.6815 (9) Å, respectively].

For picrate salt (II) (Fig. 2), the pyrimidine ring of the sulfamethazine molecule (A) is protonated at N1A and this group, together with the adjacent amide N2A - H group, gives a slighly asymmetric chelating hydrogen-bonding association with the picrate anion through a cyclic $R_2^1(6)$ motif. Conjoint lateral $R_1^2(6)$ cyclic associations are also formed between the N1A-H donor group and the O-atom acceptors of adjacent ortho-related picrate nitro groups (Table 2). A single intermolecular amine $N41A - H \cdots O_{sulfone}$ hydrogen-bonding interaction between the cation-anion units gives one-dimensional chains which extend along the [100] direction (Fig. 4). Also present in the structure are $\pi - \pi$ interactions between the pyrimidine rings of centosymmetrically related sulfamethazine cations $[Cg \cdots Cg^{ii} = 3.4752 (9) \text{ Å}; \text{ symmetry code: (ii) } -x + 2,$ -y + 1, -z + 1] (Fig. 5). As found in the two structures reported here and in many of the sulfamethazine adduct structures, the 4-amino substituent is often only weakly or partially involved in hydrogen-bonding associations in the crystal structures. The planes of the nitro groups of the picrate anion are variously rotated out of the plane of the benzene ring [torsion angles C1-C2-N2-O22, C3-C4-N4-O42 and C5-C6-N6-O62 of -137.67(15), 170.19(15) and 146.91 (16)°, respectively].

In the sulfamethazine cations, the conformation differs significantly between carboxylate (I) and picrate (II). For (I), the dihedral angles between the planes of the pyrimidinium and benzene rings of the sulfamethazine cations are 70.60(7)(A) and 84.78 (7)° (B), compared with 78.77 (8) and 82.33 (9)° for those in the two independent heterodimers in the 4nitrobenzoic acid adduct (Smith & Wermuth, 2012). The value for the equivalent pyrimidinium-benzene dihedral angle in the cation of (II) $[58.18 (7)^{\circ}]$ is similar to that in the picrate salt with DNSA [59.70 $(17)^{\circ}$], but is significantly smaller than commonly found in the other adduct structures and in (I), and probably in the case of (II) is attributable to the markedly different hydrogen-bonding pattern present in that structure. In (I), the two interacting pyrimidine-5-NSA dimers are essentially planar, with inter-ring dihedral angles of 3.74 (7) and 7.84 (7)°, compared with a value of $12.2 (2)^{\circ}$ in the structure of the DNSA salt (Smith & Wermuth, 2013b).

The two structures presented here now give a small total of four crystallographically characterized examples of protontransfer salts of sulfamethazine with strong organic acids.

Experimental

The title salts, (I) and (II), were prepared by the reaction of 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide (sulfamethazine; 1 mmol, 280 mg) with, respectively, 5-nitrosalicylic acid (1 mmol, 180 mg) or picric acid (1 mmol, 230 mg) in 50% ethanol–water (50 ml) under reflux for 10 min. Partial evaporation of the solvent gave colourless plates of (I) (m.p. 478–479 K) or yellow blocks of (II) (m.p. 469–471 K), from which specimens were cleaved for the X-ray analyses.

Figure 4

A perspective view of the two-dimensional chain structure of (II), which extends along a, showing the hydrogen-bonding associations as dashed lines. [Symmetry code: (i) x + 1, y, z.]

Figure 5

A view of (II) down the *a* axis of the unit cell, showing the π - π interactions of the centrosymmetrically related pyrimidinium rings of the sulfamethazine cations as dotted lines. Hydrogen bonds are shown as dashed lines.

Table 1

Hydrogen-bond geometry (Å, °) for (I).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1A - H1A \cdots O12D$	0.939 (18)	1.647 (18)	2.5847 (17)	176 (2)
$N1B - H1B \cdots O12C$	0.91 (2)	1.71 (2)	2.6162 (18)	176.4 (18)
$N2A - H2A \cdots O11D$	0.85 (2)	1.94 (2)	2.7810 (18)	177 (2)
$N2B - H2B \cdot \cdot \cdot O11C$	0.889 (19)	1.836 (19)	2.7221 (18)	174.3 (18)
$N41A - H41A \cdots O11D^{i}$	0.82 (3)	2.57 (2)	3.217 (2)	138 (2)
$N41B - H41B \cdot \cdot \cdot O2C^{ii}$	0.89 (2)	2.49 (2)	3.269 (2)	147 (2)
$N41B - H42B \cdot \cdot \cdot O12B^{iii}$	0.83 (2)	2.45 (2)	3.106 (2)	136.6 (18)
$O2C - H2C \cdots O12C$	0.89 (3)	1.70 (3)	2.5223 (17)	152 (2)
$O2D - H2D \cdots O12D$	0.90 (2)	1.70 (2)	2.5215 (17)	151 (2)

Symmetry codes: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.

 $V = 4104.52 (10) \text{ Å}^3$

 $0.35 \times 0.35 \times 0.15~\text{mm}$

30179 measured reflections

8057 independent reflections

5991 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Mo $K\alpha$ radiation

 $\mu = 0.21 \text{ mm}^{-1}$

T = 200 K

 $R_{\rm int} = 0.025$

refinement $\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$

Z = 8

Compound (I)

Crystal data

 $\begin{array}{l} C_{12}H_{15}N_4O_2S^+ \cdot C_7H_4NO_5^-\\ M_r = 461.46\\ Monoclinic, P2_1/n\\ a = 13.1611 \ (2) \ \AA\\ b = 14.0977 \ (2) \ \AA\\ c = 22.1219 \ (3) \ \AA\\ \beta = 90.094 \ (2)^\circ \end{array}$

Data collection

Oxford Gemini-S Ultra CCD areadetector diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2010) $T_{\rm min} = 0.960, T_{\rm max} = 0.980$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.090$ S = 0.958057 reflections 621 parameters 1 restraint

Compound (II)

Crystal data

 $\begin{array}{l} C_{12}H_{15}N_4O_2S^+ \cdot C_6H_2N_3O_7^-\\ M_r = 507.45\\ Monoclinic, \ P2_1/c\\ a = 8.3131 \ (2) \ \text{\AA}\\ b = 19.2779 \ (5) \ \text{\AA}\\ c = 13.4483 \ (4) \ \text{\AA}\\ \beta = 99.158 \ (3)^\circ \end{array}$

Data collection

Oxford Gemini-S CCD areadetector diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2010) $T_{\rm min} = 0.970, T_{\rm max} = 0.981$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.091$ S = 1.044171 reflections 334 parameters $V = 2127.74 (10) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.22 \text{ mm}^{-1}$ T = 200 K $0.35 \times 0.35 \times 0.26 \text{ mm}$

14211 measured reflections 4171 independent reflections 3318 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.27\ e\ {\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.42\ e\ {\rm \AA}^{-3} \end{split}$$

Table 2	
Hydrogen-bond geometry (Å, °) for (II).	

		TT 4	D 4	
$D - H \cdot \cdot \cdot A$	D-H	$\mathbf{H} \cdots \mathbf{A}$	$D \cdots A$	$D - H \cdots A$
$N1A - H1A \cdots O1$	0.91 (2)	1.70 (2)	2.5545 (19)	154 (2)
$N1A - H1A \cdots O21$	0.91 (2)	2.46 (2)	2.974 (2)	116.2 (18)
$N2A - H2A \cdots O1$	0.85 (2)	2.07 (2)	2.7661 (19)	139.2 (17)
$N2A - H2A \cdots O62$	0.85 (2)	2.59 (2)	3.319 (2)	145.0 (15)
$N41A - H41A \cdots O12A^{i}$	0.90 (2)	2.16 (2)	3.035 (2)	163 (2)

Symmetry code: (i) x + 1, y, z.

H atoms potentially involved in hydrogen-bonding interactions were located by difference methods, and their positional and isotropic displacement parameters were refined. In (I), the N1A-H1A distance was restrained to 0.88 (2) Å. All other H atoms were included at calculated positions (aromatic C-H = 0.95 Å or methyl C-H = 0.98 Å) and treated as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic or $1.5U_{eq}(C)$ for methyl H atoms. For (I), in the absence of any indication of twinning ['no twin law detected', TwinRotMat (*PLATON*, Spek, 2009)], the pseudo-orthorhombic $P2_1/n$ unit cell was accepted. For (II), the H atoms of one of the methyl groups (C42A) were rotationally disordered over six half-occupancy sites and were treated accordingly in the refinement.

For both compounds, data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) within *WinGX* (Farrugia, 2012); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON* (Spek, 2009).

The authors acknowledge financial support from the Australian Reseach Council and the Science and Engineering Faculty, Queensland University of Technology.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KY3031). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

- Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2430. Bettinetti, G. & Sardone, N. (1997). Acta Cryst. C53, 594–597.
- Caira, M. R. (1991). J. Crystallogr. Spectrosc. Res. 21, 641-648.
- Caira, M. R. (1992). J. Crystallogr. Spectrosc. Res. 22, 193-200.
- Caira, M. R. (2007). Mol. Pharm. 4, 310-316.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Ghosh, S., Bag, P. P. & Reddy, C. M. (2011). Cryst. Growth Des. 11, 3489–3503.
- Kumar, V. S. S., Nangia, A., Kirchner, M. T. & Boese, R. (2003). New J. Chem. 27, 224–226.
- Lu, J., Cruz-Cabeza, A. J., Rohani, S. & Jennings, M. C. (2011). Acta Cryst. C67, 0306–0309.
- Lu, E., Rodriguez-Hornedo, N. & Suryanarayan, R. (2008). CrystEngComm, 10, 665–668.
- Lucaciu, R., Ionescu, C., Wildervanck, A. & Caira, M. R. (2008). Anal. Sci. 24, 87–88.
- Lynch, D. E., Sandhu, P. & Parsons, S. (2000). Aust. J. Chem. 53, 383-387.
- O'Neil, M. J. (2001). Editor. *The Merck Index*, 13th ed., p. 1588. Whitehouse Station, New Jersey, USA: Merck & Co. Inc.

Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.

Patel, U., Haridas, M. & Singh, T. P. (1988). Acta Cryst. C44, 1264-1267.

- Rambaud, J., Maury, L., Pauvert, B., Audran, M., Lasserre, Y., Berge, G. & Declercq, J.-P. (1985). Acta Cryst. C41, 133–134.
- Sardone, N., Bettinetti, G. & Sorrenti, M. (1997). Acta Cryst. C53, 1295–1299. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Smith, G., Hortono, A. W., Wermuth, U. D., Healy, P. C., White, J. M. & Rae, A. D. (2005). Aust. J. Chem. 58, 47–52.
- Smith, G., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1996). Acta Cryst. C52, 231–235.
- Smith, G. & Wermuth, U. D. (2012). Acta Cryst. E68, o1649-o1650.
- Smith, G. & Wermuth, U. D. (2013a). Acta Cryst. E69, o234.
- Smith, G. & Wermuth, U. D. (2013b). Acta Cryst. E69, 0472.
- Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2006). Aust. J. Chem. 59, 320–328.
- Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264–277.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tiwari, R. K., Haridas, M. & Singh, T. P. (1984). Acta Cryst. C40, 655–657.

supplementary materials

Acta Cryst. (2013). C69, 538-543 [doi:10.1107/S0108270113009487]

Proton-transfer compounds with 4-amino-*N*-(4,6-dimethylpyrimidin-2yl)benzenesulfonamide (sulfamethazine): the structures and hydrogen bonding in the salts with 5-nitrosalicylic acid and picric acid

Graham Smith and Urs D. Wermuth

(I) 2-(4-Aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2-hydroxy-5-nitrobenzoate

Crystal data

 $C_{12}H_{15}N_4O_2S^+C_7H_4NO_5^-M_r = 461.46$ Monoclinic, *P*2₁/*n* Hall symbol: -P 2yn *a* = 13.1611 (2) Å *b* = 14.0977 (2) Å *c* = 22.1219 (3) Å β = 90.094 (2)° *V* = 4104.52 (10) Å³ *Z* = 8

Data collection

Oxford Gemini-S Ultra CCD area-detector diffractometer Radiation source: Enhance (Mo) X-ray source Graphite monochromator ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2010) $T_{\min} = 0.960, T_{\max} = 0.980$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.090$ S = 0.958057 reflections 621 parameters 1 restraint Primary atom site location: structure-invariant direct methods F(000) = 1920 $D_x = 1.493 \text{ Mg m}^{-3}$ Melting point = 478–479 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 13808 reflections $\theta = 3.2-28.7^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 200 KPlate, colourless $0.35 \times 0.35 \times 0.15 \text{ mm}$

30179 measured reflections 8057 independent reflections 5991 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 3.3^{\circ}$ $h = -16 \rightarrow 16$ $k = -17 \rightarrow 17$ $l = -27 \rightarrow 27$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0571P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.007$ $\Delta\rho_{max} = 0.28 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.30 \text{ e } \text{Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1A	0.07153 (3)	0.67064 (3)	0.69347 (2)	0.0288 (1)
O11A	-0.02458 (8)	0.62533 (8)	0.70202 (5)	0.0372 (4)
O12A	0.08020 (9)	0.77122 (8)	0.70003 (5)	0.0387 (4)
N1A	0.12334 (9)	0.56980 (9)	0.53296 (6)	0.0223 (4)
N2A	0.10773 (10)	0.65526 (10)	0.62149 (6)	0.0268 (4)
N3A	0.10208 (9)	0.49098 (9)	0.62605 (6)	0.0261 (4)
N41A	0.37418 (14)	0.48612 (14)	0.85115 (8)	0.0476 (7)
C2A	0.11060 (11)	0.56942 (10)	0.59352 (7)	0.0219 (4)
C4A	0.10701 (11)	0.40782 (10)	0.59619 (7)	0.0269 (5)
C5A	0.11914 (11)	0.40380 (11)	0.53373 (7)	0.0265 (5)
C6A	0.12785 (10)	0.48715 (10)	0.50191 (7)	0.0231 (4)
C11A	0.16171 (12)	0.61476 (11)	0.73886 (7)	0.0273 (5)
C21A	0.25203 (13)	0.66125 (11)	0.75263 (7)	0.0301 (5)
C31A	0.32363 (13)	0.61707 (12)	0.78855 (7)	0.0320 (5)
C41A	0.30519 (13)	0.52674 (11)	0.81264 (7)	0.0315 (5)
C42A	0.09958 (15)	0.32077 (12)	0.63395 (8)	0.0409 (6)
C51A	0.21385 (13)	0.48115 (11)	0.79852 (7)	0.0331 (6)
C61A	0.14306 (12)	0.52406 (11)	0.76199 (7)	0.0295 (5)
C62A	0.14456 (12)	0.49267 (11)	0.43539 (7)	0.0293 (5)
S1B	0.92340 (3)	0.25241 (3)	0.79543 (2)	0.0281 (1)
O11B	1.01786 (8)	0.29519 (8)	0.77910 (5)	0.0375 (4)
O12B	0.91201 (9)	0.15187 (8)	0.78933 (5)	0.0381 (4)
N1B	0.87859 (9)	0.35527 (10)	0.95621 (6)	0.0241 (4)
N2B	0.90467 (10)	0.26742 (10)	0.86958 (6)	0.0283 (4)
N3B	0.91195 (10)	0.43170 (9)	0.86353 (6)	0.0266 (4)
N41B	0.58517 (14)	0.44107 (13)	0.66992 (9)	0.0504 (7)
C2B	0.89904 (11)	0.35379 (10)	0.89624 (7)	0.0233 (5)
C4B	0.90126 (11)	0.51537 (11)	0.89198 (7)	0.0270 (5)
C5B	0.88147 (12)	0.52088 (11)	0.95369 (7)	0.0286 (5)
C6B	0.86996 (11)	0.43832 (11)	0.98618 (7)	0.0251 (5)
C11B	0.82365 (11)	0.31070 (11)	0.75987 (7)	0.0245 (5)
C21B	0.72877 (12)	0.26729 (11)	0.75756 (7)	0.0283 (5)
C31B	0.65008 (12)	0.31123 (11)	0.72858 (7)	0.0299 (5)
C41B	0.66316 (12)	0.39982 (11)	0.70119 (7)	0.0299 (5)
C42B	0.91208 (14)	0.60161 (11)	0.85326 (8)	0.0369 (6)
C51B	0.75855 (12)	0.44401 (11)	0.70520 (7)	0.0299 (5)
C61B	0.83785 (12)	0.39970 (11)	0.73375 (7)	0.0272 (5)
C62B	0.84715 (13)	0.43421 (12)	1.05216 (8)	0.0346 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

O2C	0.86063 (10)	0.12638 (9)	1.12344 (6)	0.0409 (4)
011C	0.87460 (9)	0.10804 (8)	0.93667 (5)	0.0349 (4)
O12C	0.86850 (10)	0.19851 (8)	1.01921 (5)	0.0407 (4)
O51C	0.88240 (11)	-0.29921 (9)	1.05247 (7)	0.0568 (5)
O52C	0.88819 (14)	-0.23713 (10)	0.96357 (7)	0.0721 (7)
N5C	0.88198 (11)	-0.23014 (10)	1.01871 (8)	0.0408 (6)
C1C	0.87128 (11)	0.03235 (11)	1.03253 (7)	0.0249 (5)
C2C	0.86472 (11)	0.04133 (11)	1.09589 (7)	0.0273 (5)
C3C	0.86229 (12)	-0.03944 (12)	1.13268 (8)	0.0330 (5)
C4C	0.86768 (12)	-0.12790 (12)	1.10761 (8)	0.0321 (5)
C5C	0.87478 (11)	-0.13593 (11)	1.04502 (8)	0.0285 (5)
C6C	0.87714 (11)	-0.05767 (11)	1.00755 (7)	0.0271 (5)
C11C	0.87166 (11)	0.11811 (11)	0.99236 (7)	0.0274 (5)
O2D	0.14667 (11)	0.79122 (9)	0.36510(6)	0.0483 (5)
011D	0.11640 (9)	0.81801 (8)	0.55065 (5)	0.0357 (4)
012D	0.13518 (10)	0.72445 (8)	0.47061 (5)	0.0425 (4)
O51D	0.12968 (12)	1.22050 (9)	0.42635 (7)	0.0572 (5)
O52D	0.11007 (10)	1.16310 (8)	0.51618 (6)	0.0442 (5)
N5D	0.12073 (10)	1.15325 (10)	0.46110 (7)	0.0348 (5)
C1D	0.12832 (11)	0.88941 (11)	0.45319(7)	0.0246 (5)
C2D	0.13815 (12)	0.87685 (11)	0.39024 (7)	0.0293 (5)
C3D	0.14014 (13)	0.95564 (12)	0.35148 (8)	0.0358 (6)
C4D	0.13393 (12)	1.04569 (12)	0.37452 (8)	0.0322 (5)
C5D	0.12471 (11)	1.05756 (11)	0.43673 (7)	0.0261 (5)
C6D	0.12100 (11)	0.98103 (10)	0.47596 (7)	0.0248 (5)
C11D	0.12604 (12)	0.80620 (11)	0.49551 (7)	0.0272 (5)
H1A	0.1296 (15)	0.6270 (12)	0.5115 (9)	0.066 (7)*
H2A	0.1125 (14)	0.7051 (14)	0.6004 (9)	0.050 (6)*
H5A	0.12140	0.34440	0.51340	0.0320*
H21A	0.26440	0.72320	0.73740	0.0360*
H31A	0.38610	0.64820	0.79700	0.0380*
H41A	0.3718 (17)	0.4292 (18)	0.8578 (11)	0.076 (9)*
H42A	0.4348 (18)	0.5140 (15)	0.8518 (10)	0.066 (7)*
H43A	0.10930	0.26470	0.60840	0.0610*
H44A	0.03240	0.31800	0.65290	0.0610*
H45A	0.15210	0.32230	0.66540	0.0610*
H51A	0.20060	0.41980	0.81440	0.0400*
H61A	0.08150	0.49220	0.75240	0.0350*
H63A	0.21500	0.51120	0.42740	0.0440*
H64A	0.09840	0.53990	0.41790	0.0440*
H65A	0.13120	0.43060	0.41710	0.0440*
H1B	0.8742 (14)	0.2998 (14)	0.9766 (9)	0.050 (6)*
H2B	0.8939 (13)	0.2133 (13)	0.8892 (9)	0.041 (5)*
H5B	0.87600	0.58080	0.97310	0.0340*
H21B	0.71870	0.20720	0.77610	0.0340*
H31B	0.58550	0.28120	0.72700	0.0360*
H41B	0.5276 (18)	0.4084 (16)	0.6715 (11)	0.076 (8)*
H42B	0.5908 (15)	0.4978 (15)	0.6598 (9)	0.052 (6)*
H43B	0.86600	0.59680	0.81850	0.0550*

HAAR	0.08230	0.60640	0.83800	0.0550*
1144D	0.90230	0.00040	0.03090	0.0550*
H43B	0.89500	0.65820	0.87690	0.0550*
H51B	0.76820	0.50510	0.68800	0.0360*
H61B	0.90250	0.42960	0.73580	0.0330*
H63B	0.85550	0.49740	1.06990	0.0520*
H64B	0.89390	0.38980	1.07190	0.0520*
H65B	0.77700	0.41270	1.05810	0.0520*
H2C	0.8596 (18)	0.1687 (18)	1.0934 (12)	0.088 (9)*
H3C	0.85690	-0.03270	1.17530	0.0400*
H4C	0.86660	-0.18290	1.13240	0.0380*
H6C	0.88270	-0.06540	0.96500	0.0320*
H2D	0.1502 (17)	0.7500 (15)	0.3961 (11)	0.069 (7)*
H3D	0.14580	0.94650	0.30910	0.0430*
H4D	0.13590	1.09920	0.34840	0.0390*
H6D	0.11350	0.99110	0.51820	0.0300*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	0.0366 (2)	0.0253 (2)	0.0246 (2)	0.0057 (2)	0.0043 (2)	-0.0012 (2)
011A	0.0326 (6)	0.0433 (7)	0.0358 (7)	0.0063 (5)	0.0071 (5)	0.0024 (6)
O12A	0.0566 (8)	0.0255 (6)	0.0340 (7)	0.0101 (5)	0.0032 (6)	-0.0046 (5)
N1A	0.0231 (7)	0.0198 (7)	0.0239 (7)	0.0007 (5)	-0.0004 (5)	0.0017 (6)
N2A	0.0393 (8)	0.0188 (7)	0.0222 (7)	0.0012 (6)	0.0028 (6)	0.0017 (6)
N3A	0.0305 (7)	0.0219 (7)	0.0258 (7)	-0.0005 (5)	0.0009 (6)	0.0015 (6)
N41A	0.0518 (11)	0.0364 (11)	0.0544 (12)	-0.0002 (9)	-0.0185 (9)	0.0039 (8)
C2A	0.0210 (7)	0.0223 (8)	0.0225 (8)	0.0016 (6)	0.0000 (6)	0.0016 (6)
C4A	0.0271 (8)	0.0218 (8)	0.0318 (9)	-0.0009 (6)	-0.0002 (7)	0.0009 (7)
C5A	0.0279 (8)	0.0195 (8)	0.0322 (9)	-0.0002 (6)	-0.0006 (7)	-0.0047 (7)
C6A	0.0192 (7)	0.0243 (8)	0.0257 (8)	0.0014 (6)	-0.0023 (6)	-0.0016 (7)
C11A	0.0359 (9)	0.0255 (9)	0.0204 (8)	0.0006 (7)	0.0038 (7)	-0.0027 (7)
C21A	0.0445 (10)	0.0230 (8)	0.0227 (8)	-0.0031 (7)	0.0033 (7)	-0.0025 (7)
C31A	0.0370 (9)	0.0297 (9)	0.0293 (9)	-0.0040 (7)	-0.0007 (7)	-0.0073 (7)
C41A	0.0412 (10)	0.0273 (9)	0.0259 (9)	0.0047 (7)	-0.0015 (7)	-0.0054 (7)
C42A	0.0611 (12)	0.0245 (9)	0.0370 (10)	-0.0028 (8)	0.0039 (9)	0.0050 (8)
C51A	0.0459 (10)	0.0230 (9)	0.0304 (10)	-0.0024 (7)	0.0004 (8)	0.0026 (7)
C61A	0.0353 (9)	0.0266 (9)	0.0265 (9)	-0.0050 (7)	0.0022 (7)	-0.0009 (7)
C62A	0.0324 (9)	0.0300 (9)	0.0255 (9)	0.0030 (7)	-0.0019 (7)	-0.0026 (7)
S1B	0.0368 (2)	0.0250 (2)	0.0224 (2)	0.0059 (2)	0.0015 (2)	-0.0006 (2)
O11B	0.0336 (6)	0.0452 (7)	0.0338 (7)	0.0075 (5)	0.0063 (5)	0.0026 (6)
O12B	0.0594 (8)	0.0246 (6)	0.0304 (7)	0.0115 (5)	-0.0033 (6)	-0.0038 (5)
N1B	0.0285 (7)	0.0221 (7)	0.0218 (7)	0.0000 (5)	-0.0007 (5)	0.0017 (6)
N2B	0.0444 (8)	0.0196 (7)	0.0209 (7)	0.0023 (6)	-0.0004 (6)	0.0021 (6)
N3B	0.0318 (7)	0.0234 (7)	0.0247 (7)	0.0012 (5)	0.0000 (6)	0.0013 (6)
N41B	0.0495 (11)	0.0296 (10)	0.0719 (13)	-0.0001 (8)	-0.0258 (9)	0.0056 (9)
C2B	0.0251 (8)	0.0232 (8)	0.0215 (8)	0.0013 (6)	-0.0016 (6)	0.0013 (6)
C4B	0.0270 (8)	0.0239 (9)	0.0302 (9)	0.0001 (6)	-0.0010 (7)	0.0023 (7)
C5B	0.0335 (9)	0.0245 (9)	0.0278 (9)	-0.0005 (7)	0.0016 (7)	-0.0040 (7)
C6B	0.0228 (8)	0.0272 (9)	0.0252 (9)	-0.0010 (6)	-0.0011 (6)	-0.0016 (7)
C11B	0.0330 (9)	0.0236 (8)	0.0168 (8)	0.0008 (6)	0.0013 (6)	-0.0018 (6)

C21B	0.0412 (10)	0.0213 (8)	0.0224 (8)	-0.0014 (7)	0.0038 (7)	0.0004 (7)
C31B	0.0322 (9)	0.0254 (9)	0.0322 (9)	-0.0033 (7)	-0.0001 (7)	-0.0048 (7)
C41B	0.0374 (9)	0.0250 (9)	0.0274 (9)	0.0033 (7)	-0.0054 (7)	-0.0043 (7)
C42B	0.0520 (11)	0.0261 (9)	0.0327 (10)	0.0004 (8)	0.0047 (8)	0.0043 (8)
C51B	0.0443 (10)	0.0217 (8)	0.0236 (9)	-0.0025 (7)	-0.0012 (7)	0.0027 (7)
C61B	0.0325 (9)	0.0260 (9)	0.0232 (8)	-0.0030 (7)	0.0018 (7)	-0.0001 (7)
C62B	0.0421 (10)	0.0339 (10)	0.0279 (9)	-0.0030 (8)	0.0045 (8)	-0.0037 (8)
O2C	0.0644 (9)	0.0274 (7)	0.0310 (7)	-0.0040 (6)	0.0002 (6)	0.0009 (6)
011C	0.0451 (7)	0.0326 (7)	0.0269 (7)	-0.0026 (5)	-0.0013 (5)	0.0059 (5)
O12C	0.0668 (9)	0.0249 (7)	0.0304 (7)	-0.0046 (6)	-0.0010 (6)	0.0051 (5)
O51C	0.0772 (10)	0.0245 (7)	0.0686 (10)	0.0024 (6)	-0.0139 (8)	0.0057 (7)
O52C	0.1214 (15)	0.0410 (9)	0.0538 (10)	0.0047 (8)	0.0094 (10)	-0.0133 (8)
N5C	0.0386 (9)	0.0293 (9)	0.0545 (11)	0.0021 (7)	-0.0038 (7)	-0.0036 (8)
C1C	0.0192 (7)	0.0252 (8)	0.0303 (9)	-0.0020 (6)	-0.0025 (6)	0.0049 (7)
C2C	0.0273 (8)	0.0243 (9)	0.0303 (9)	-0.0034 (7)	-0.0013 (7)	0.0002 (7)
C3C	0.0374 (9)	0.0339 (10)	0.0277 (9)	-0.0038 (8)	-0.0007 (7)	0.0058 (8)
C4C	0.0267 (9)	0.0280 (9)	0.0415 (10)	-0.0022 (7)	-0.0015 (7)	0.0101 (8)
C5C	0.0203 (8)	0.0248 (9)	0.0404 (10)	0.0005 (6)	-0.0012 (7)	0.0011 (7)
C6C	0.0210 (8)	0.0312 (9)	0.0290 (9)	0.0002 (6)	-0.0004 (6)	-0.0013 (7)
C11C	0.0239 (8)	0.0279 (9)	0.0303 (9)	-0.0033 (7)	-0.0020 (7)	0.0051 (7)
O2D	0.0902 (11)	0.0265 (7)	0.0283 (7)	-0.0028 (7)	0.0147 (7)	-0.0059 (6)
011D	0.0570 (8)	0.0265 (6)	0.0235 (6)	0.0013 (5)	0.0009 (5)	0.0034 (5)
O12D	0.0757 (9)	0.0197 (6)	0.0320 (7)	0.0045 (6)	0.0147 (6)	0.0019 (5)
O51D	0.0918 (11)	0.0228 (7)	0.0570 (9)	-0.0029 (7)	0.0057 (8)	0.0089 (7)
O52D	0.0656 (9)	0.0297 (7)	0.0373 (8)	0.0035 (6)	-0.0029 (6)	-0.0090 (6)
N5D	0.0378 (8)	0.0219 (8)	0.0448 (10)	-0.0005 (6)	-0.0030 (7)	0.0012 (7)
C1D	0.0268 (8)	0.0224 (8)	0.0246 (8)	-0.0019 (6)	0.0023 (6)	0.0013 (7)
C2D	0.0374 (9)	0.0232 (9)	0.0272 (9)	-0.0029 (7)	0.0065 (7)	-0.0016 (7)
C3D	0.0490 (11)	0.0353 (10)	0.0230 (9)	-0.0057 (8)	0.0060 (8)	0.0024 (7)
C4D	0.0377 (9)	0.0270 (9)	0.0318 (10)	-0.0042 (7)	0.0011 (7)	0.0084 (7)
C5D	0.0261 (8)	0.0211 (8)	0.0311 (9)	-0.0018 (6)	-0.0009 (7)	0.0011 (7)
C6D	0.0260 (8)	0.0253 (8)	0.0232 (8)	0.0000 (6)	0.0013 (6)	-0.0008 (7)
C11D	0.0302 (9)	0.0237 (9)	0.0278 (9)	0.0009 (7)	0.0032 (7)	0.0019 (7)

Geometric parameters (Å, °)

S1A-011A	1.4299 (11)	C5A—H5A	0.9500
S1A—O12A	1.4299 (12)	C21A—H21A	0.9500
S1A—N2A	1.6770 (14)	C31A—H31A	0.9500
S1A—C11A	1.7417 (16)	C42A—H45A	0.9800
S1B-011B	1.4287 (11)	C42A—H43A	0.9800
S1B-012B	1.4316 (12)	C42A—H44A	0.9800
S1B—N2B	1.6726 (14)	C51A—H51A	0.9500
S1B—C11B	1.7362 (15)	C61A—H61A	0.9500
O2C—C2C	1.346 (2)	C62A—H65A	0.9800
O11C—C11C	1.2408 (19)	C62A—H63A	0.9800
O12C—C11C	1.2804 (19)	C62A—H64A	0.9800
O51C—N5C	1.227 (2)	C4B—C5B	1.392 (2)
O52C—N5C	1.227 (2)	C4B—C42B	1.494 (2)
O2C—H2C	0.89 (3)	C5B—C6B	1.376 (2)

O2D—C2D	1.334 (2)	C6B—C62B	1.492 (2)
011D—C11D	1.2378 (19)	C11B—C21B	1.392 (2)
O12D—C11D	1.2831 (19)	C11B—C61B	1.394 (2)
O51D—N5D	1.226 (2)	C21B—C31B	1.366 (2)
O52D—N5D	1.235 (2)	C31B—C41B	1.399 (2)
O2D—H2D	0.90 (2)	C41B—C51B	1.404 (2)
N1A—C2A	1.350 (2)	C51B—C61B	1.370 (2)
N1A—C6A	1.3539 (19)	C5B—H5B	0.9500
N2A—C2A	1.360 (2)	C21B—H21B	0.9500
N3A—C4A	1.3473 (19)	C31B—H31B	0.9500
N3A—C2A	1.3242 (19)	C42B—H45B	0.9800
N41A—C41A	1.370 (2)	C42B—H44B	0.9800
N1A—H1A	0.939 (18)	C42B—H43B	0.9800
N2A—H2A	0.85 (2)	C51B—H51B	0.9500
N41A—H41A	0.82 (3)	C61B—H61B	0.9500
N41A—H42A	0.89 (2)	C62B—H65B	0.9800
N1B—C6B	1.350 (2)	C62B—H63B	0.9800
N1B—C2B	1.354 (2)	C62B—H64B	0.9800
N2B—C2B	1.355 (2)	C1C—C11C	1.501 (2)
N3B—C2B	1.3264 (19)	C1C—C6C	1.386 (2)
N3B—C4B	1.344 (2)	C1C—C2C	1.410 (2)
N41B—C41B	1.367 (2)	C2C—C3C	1.400 (2)
N1B—H1B	0.91 (2)	C3C—C4C	1.367 (2)
N2B—H2B	0.889 (19)	C4C—C5C	1.393 (3)
N41B—H41B	0.89 (2)	C5C—C6C	1.380 (2)
N41B—H42B	0.83 (2)	C3C—H3C	0.9500
N5C—C5C	1.453 (2)	C4C—H4C	0.9500
N5D—C5D	1.454 (2)	C6C—H6C	0.9500
C4A—C5A	1.392 (2)	C1D—C6D	1.390 (2)
C4A—C42A	1.488 (2)	C1D—C11D	1.501 (2)
C5A—C6A	1.375 (2)	C1D—C2D	1.410 (2)
C6A—C62A	1.490 (2)	C2D—C3D	1.404 (2)
C11A—C21A	1.391 (2)	C3D—C4D	1.371 (2)
C11A—C61A	1.399 (2)	C4D—C5D	1.392 (2)
C21A—C31A	1.380 (2)	C5D—C6D	1.386 (2)
C31A—C41A	1.402 (2)	C3D—H3D	0.9500
C41A—C51A	1.398 (2)	C4D—H4D	0.9500
C51A—C61A	1.373 (2)	C6D—H6D	0.9500
011A—S1A—012A	120.00 (7)	N1B—C2B—N2B	116.83 (13)
O11A—S1A—N2A	108.70 (7)	N1B—C2B—N3B	123.20 (14)
O11A—S1A—C11A	108.90 (7)	N3B—C4B—C42B	115.81 (14)
O12A—S1A—N2A	101.64 (7)	C5B—C4B—C42B	122.33 (14)
O12A—S1A—C11A	109.63 (7)	N3B—C4B—C5B	121.86 (14)
N2A—S1A—C11A	107.13 (7)	C4B—C5B—C6B	119.06 (14)
O11B—S1B—N2B	108.92 (7)	N1B—C6B—C5B	117.86 (14)
O11B—S1B—C11B	110.08 (7)	C5B—C6B—C62B	124.49 (14)
O12B—S1B—N2B	101.66 (7)	N1B—C6B—C62B	117.64 (14)
O12B—S1B—C11B	110.30(7)	S1B-C11B-C21B	119.10 (12)

N2B—S1B—C11B	105.78 (7)	S1B—C11B—C61B	120.80 (12)
O11B—S1B—O12B	119.02 (7)	C21B—C11B—C61B	120.10 (14)
C2C—O2C—H2C	105.0 (17)	C11B—C21B—C31B	119.84 (14)
C2D—O2D—H2D	105.7 (14)	C21B—C31B—C41B	120.97 (15)
C2A—N1A—C6A	120.37 (13)	C31B—C41B—C51B	118.65 (14)
S1A—N2A—C2A	123.73 (11)	N41B—C41B—C51B	120.92 (15)
C2A—N3A—C4A	117.13 (13)	N41B—C41B—C31B	120.41 (15)
C6A—N1A—H1A	118.6 (12)	C41B—C51B—C61B	120.48 (14)
C2A—N1A—H1A	121.1 (12)	C11B—C61B—C51B	119.93 (14)
S1A—N2A—H2A	116.0 (13)	C4B—C5B—H5B	120.00
C2A—N2A—H2A	119.1 (14)	C6B—C5B—H5B	120.00
C41A—N41A—H41A	119.8 (16)	C31B—C21B—H21B	120.00
H41A—N41A—H42A	118 (2)	C11B—C21B—H21B	120.00
C41A—N41A—H42A	114.8 (14)	C21B—C31B—H31B	120.00
C2B—N1B—C6B	120.75 (14)	C41B—C31B—H31B	120.00
S1B—N2B—C2B	123.29 (11)	C4B—C42B—H43B	109.00
C2B—N3B—C4B	117.23 (13)	C4B—C42B—H44B	109.00
C6B—N1B—H1B	120.0 (13)	H43B—C42B—H44B	109.00
C2B—N1B—H1B	119.2 (13)	C4B—C42B—H45B	110.00
C2B—N2B—H2B	123.3 (13)	H44B—C42B—H45B	110.00
S1B—N2B—H2B	113.2 (13)	H43B—C42B—H45B	109.00
C41B—N41B—H42B	118.5 (14)	C61B—C51B—H51B	120.00
C41B—N41B—H41B	113.6 (15)	C41B—C51B—H51B	120.00
H41B—N41B—H42B	126 (2)	C11B—C61B—H61B	120.00
O51C—N5C—C5C	118.80 (16)	C51B—C61B—H61B	120.00
O52C—N5C—C5C	118.44 (15)	H63B—C62B—H65B	109.00
O51C—N5C—O52C	122.77 (15)	H64B—C62B—H65B	109.00
O51D—N5D—O52D	122.88 (14)	C6B—C62B—H64B	109.00
O51D—N5D—C5D	118.78 (15)	H63B—C62B—H64B	109.00
O52D—N5D—C5D	118.33 (13)	C6B—C62B—H65B	110.00
N2A—C2A—N3A	119.57 (14)	C6B—C62B—H63B	110.00
N1A—C2A—N2A	116.84 (13)	C2C—C1C—C11C	121.10 (14)
N1A—C2A—N3A	123.59 (13)	C6C—C1C—C11C	120.09 (14)
N3A—C4A—C5A	121.85 (14)	C2C—C1C—C6C	118.81 (14)
N3A—C4A—C42A	116.05 (14)	O2C—C2C—C3C	117.41 (14)
C5A—C4A—C42A	122.10 (14)	C1C—C2C—C3C	120.42 (15)
C4A—C5A—C6A	118.89 (14)	O2C—C2C—C1C	122.18 (14)
N1A—C6A—C62A	117.56 (13)	C2C—C3C—C4C	120.33 (16)
N1A—C6A—C5A	118.17 (14)	C3C—C4C—C5C	118.77 (16)
C5A—C6A—C62A	124.25 (14)	N5C—C5C—C6C	119.24 (15)
S1A-C11A-C61A	120.29 (12)	C4C—C5C—C6C	122.26 (15)
S1A-C11A-C21A	119.64 (12)	N5C—C5C—C4C	118.49 (15)
C21A—C11A—C61A	120.07 (14)	C1C—C6C—C5C	119.41 (15)
C11A—C21A—C31A	119.73 (15)	012C—C11C—C1C	116.00 (13)
C21A—C31A—C41A	120.69 (16)	011C—C11C—012C	124.26 (14)
N41A—C41A—C51A	121.05 (15)	011C—C11C—C1C	119.73 (14)
N41A—C41A—C31A	120.09 (16)	С2С—С3С—Н3С	120.00
C31A—C41A—C51A	118.82 (15)	C4C—C3C—H3C	120.00
C41A—C51A—C61A	120.76 (14)	C5C—C4C—H4C	121.00

C11A—C61A—C51A	119.92 (15)	C3C—C4C—H4C	121.00
С6А—С5А—Н5А	121.00	С1С—С6С—Н6С	120.00
С4А—С5А—Н5А	121.00	С5С—С6С—Н6С	120.00
C31A—C21A—H21A	120.00	C2D—C1D—C11D	121.32 (14)
C11A—C21A—H21A	120.00	C6D—C1D—C11D	119.92 (14)
C41A—C31A—H31A	120.00	C2D—C1D—C6D	118.77 (14)
C21A—C31A—H31A	120.00	O2D—C2D—C1D	122.23 (14)
H43A—C42A—H45A	110.00	O2D—C2D—C3D	117.38 (14)
C4A—C42A—H44A	109.00	C1D—C2D—C3D	120.39 (15)
H44A—C42A—H45A	109.00	C2D—C3D—C4D	120.31 (16)
C4A—C42A—H43A	109.00	C3D—C4D—C5D	118.98 (16)
C4A—C42A—H45A	109.00	N5D—C5D—C6D	119.27 (14)
H43A—C42A—H44A	109.00	C4D—C5D—C6D	121.93 (15)
C61A—C51A—H51A	120.00	N5D—C5D—C4D	118.78 (14)
C41A—C51A—H51A	120.00	C1D—C6D—C5D	119.61 (14)
C51A—C61A—H61A	120.00	011D—C11D—C1D	120.77 (14)
C11A—C61A—H61A	120.00	012D—C11D—C1D	115.61 (13)
C6A—C62A—H63A	109.00	011D—C11D—012D	123.62 (14)
C6A - C62A - H64A	109.00	C2D-C3D-H3D	120.00
H63A - C62A - H64A	109.00	C4D-C3D-H3D	120.00
H64A - C62A - H65A	109.00	C3D-C4D-H4D	120.00
C6A - C62A - H65A	110.00	C5D-C4D-H4D	121.00
H63A - C62A - H65A	109.00	C1D-C6D-H6D	120.00
N2B-C2B-N3B	119 97 (14)	C5D-C6D-H6D	120.00
	119.07 (11)		120.00
O11A—S1A—N2A—C2A	-51.52 (14)	C11A—C21A—C31A—C41A	-1.7(2)
012A $S1A$ $N2A$ $C2A$	-179.01(12)	C21A—C31A—C41A—C51A	1.4 (2)
C11A = S1A = N2A = C2A	66.00 (14)	C21A—C31A—C41A—N41A	-176.06(16)
011A— $S1A$ — $C11A$ — $C21A$	-160.97(12)	N41A—C41A—C51A—C61A	177.13 (16)
011A—S1A—C11A—C61A	18.27 (15)	C31A—C41A—C51A—C61A	-0.3(2)
012A S1A $-C11A$ $-C21A$	-27.88(15)	C41A—C51A—C61A—C11A	-0.5(2)
012A $S1A$ $C11A$ $C61A$	151.36 (13)	C42B— $C4B$ — $C5B$ — $C6B$	178.39 (15)
N2A—S1A—C11A—C21A	81 64 (14)	N3B - C4B - C5B - C6B	-1.7(2)
N2A— $S1A$ — $C11A$ — $C61A$	-99.12(14)	C4B-C5B-C6B-C62B	-179.08(15)
N2B $S1B$ $C11B$ $C21B$	-78.04(14)	C4B = C5B = C6B = N1B	0.0(2)
N2B— $S1B$ — $C11B$ — $C61B$	102 11 (14)	C_{21B} C_{11B} C_{61B} C_{51B}	-0.7(2)
011B = S1B = N2B = C2B	59 70 (14)	S1B— $C11B$ — $C21B$ — $C31B$	-17854(12)
012B = S1B = N2B = C2B	-173 83 (12)	C61B $C11B$ $C21B$ $C31B$	13(2)
C11B_S1B_N2B_C2B	-5859(14)	S1B = C11B = C61B = C51B	1.5(2) 179 14(12)
011B = S1B = C11B = C21B	$164\ 44\ (12)$	C11B - C21B - C31B - C41B	-0.2(2)
011B = S1B = C11B = C61B	-15.41(15)	$C_{21B} = C_{21B} = C_{41B} = C_{51B}$	-14(2)
O12B S1B C11B C21B	31.14(15)	$C_{21B} = C_{31B} = C_{41B} = C_{41B} = C_{41B}$	1.7(2)
O12B = S1B = C11B = C21B	-14871(13)	$C_{21B} = C_{21B} = C_{2$	20(2)
C_{2} N1A C_{6} C C C C C C C C C C C C C C C C C C C	0.00(19)	N41B - C41B - C51B - C61B	-176.33(16)
$C_{2A} = N_{1A} = C_{6A} = C_{5A}$	-17853(13)	CAIR C51B C61B C11B	-10(2)
C64 - N14 - C24 - N34	0.2(2)	$C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}$	178 79 (14)
C6A = N1A = C2A = N2A	17944(13)	C6C - C1C - C2C - C2C	-1.2(2)
S1A N2A C2A N3A	-12 4 (2)	$C_{2}C_{-}C_{1$	-177.96(14)
S1A = N2A = C2A = N3A	168 33 (11)	$C_2C_2C_2C_2C_2C_2C_2C_2C_2C_2C_2C_2C_2C$	18(2)
$\nabla III = I \Delta I I = \nabla \Delta I I = I \nabla I \Lambda$	100.00 (11)	020 010 - 0110 - 0120	1.0 (4)

C2A—N3A—C4A—C5A	-0.9 (2)	C6C—C1C—C11C—O11C	1.9 (2)
C4A—N3A—C2A—N1A	0.3 (2)	C6C—C1C—C11C—O12C	-178.37 (14)
C4A—N3A—C2A—N2A	-178.99 (13)	C11C—C1C—C2C—O2C	-1.4 (2)
C2A—N3A—C4A—C42A	178.67 (14)	C11C—C1C—C2C—C3C	178.65 (14)
C6B—N1B—C2B—N3B	0.2 (2)	C2C—C1C—C6C—C5C	1.0 (2)
C2B—N1B—C6B—C5B	0.7 (2)	C11C—C1C—C6C—C5C	-178.79 (13)
C6B—N1B—C2B—N2B	-178.90 (13)	O2C—C2C—C3C—C4C	-179.05 (14)
C2B—N1B—C6B—C62B	179.89 (13)	C1C—C2C—C3C—C4C	0.9 (2)
S1B—N2B—C2B—N1B	176.82 (10)	C2C—C3C—C4C—C5C	-0.5 (2)
S1B—N2B—C2B—N3B	-2.3 (2)	C3C—C4C—C5C—C6C	0.4 (2)
C2B—N3B—C4B—C5B	2.5 (2)	C3C—C4C—C5C—N5C	179.12 (14)
C2B—N3B—C4B—C42B	-177.57 (14)	N5C-C5C-C6C-C1C	-179.38 (13)
C4B—N3B—C2B—N2B	177.27 (13)	C4C—C5C—C6C—C1C	-0.7 (2)
C4B—N3B—C2B—N1B	-1.8 (2)	C6D-C1D-C2D-O2D	179.26 (15)
O51C—N5C—C5C—C6C	178.18 (15)	C6D-C1D-C2D-C3D	-0.2 (2)
O51C—N5C—C5C—C4C	-0.6 (2)	C11D—C1D—C2D—O2D	-0.5 (2)
O52C—N5C—C5C—C4C	179.97 (16)	C11D—C1D—C2D—C3D	-180.00 (15)
O52C—N5C—C5C—C6C	-1.3 (2)	C2D-C1D-C6D-C5D	-0.8 (2)
O51D—N5D—C5D—C6D	176.04 (15)	C11D—C1D—C6D—C5D	179.02 (14)
O52D—N5D—C5D—C6D	-2.8 (2)	C2D-C1D-C11D-011D	-179.30 (15)
O51D—N5D—C5D—C4D	-2.9 (2)	C2D-C1D-C11D-012D	1.1 (2)
O52D—N5D—C5D—C4D	178.27 (14)	C6D-C1D-C11D-011D	0.9 (2)
N3A—C4A—C5A—C6A	1.0 (2)	C6D-C1D-C11D-012D	-178.73 (14)
C42A—C4A—C5A—C6A	-178.48 (15)	O2D-C2D-C3D-C4D	-178.60 (15)
C4A—C5A—C6A—C62A	177.87 (14)	C1D-C2D-C3D-C4D	0.9 (2)
C4A—C5A—C6A—N1A	-0.6 (2)	C2D-C3D-C4D-C5D	-0.6 (2)
C21A—C11A—C61A—C51A	0.3 (2)	C3D—C4D—C5D—N5D	178.47 (14)
S1A—C11A—C61A—C51A	-178.96 (12)	C3D-C4D-C5D-C6D	-0.4 (2)
S1A—C11A—C21A—C31A	-179.96 (13)	N5D-C5D-C6D-C1D	-177.77 (13)
C61A—C11A—C21A—C31A	0.8 (2)	C4D-C5D-C6D-C1D	1.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D…A	D—H···A
N1 <i>A</i> —H1 <i>A</i> ···O12 <i>D</i>	0.939 (18)	1.647 (18)	2.5847 (17)	176 (2)
N1 <i>B</i> —H1 <i>B</i> ···O12 <i>C</i>	0.91 (2)	1.71 (2)	2.6162 (18)	176.4 (18)
N2A—H2A…O11D	0.85 (2)	1.94 (2)	2.7810 (18)	177 (2)
N2 <i>B</i> —H2 <i>B</i> ···O11 <i>C</i>	0.889 (19)	1.836 (19)	2.7221 (18)	174.3 (18)
N41 A —H41 A ···O11 D^{i}	0.82 (3)	2.57 (2)	3.217 (2)	138 (2)
N41 <i>B</i> —H41 <i>B</i> ····O2 <i>C</i> ⁱⁱ	0.89 (2)	2.49 (2)	3.269 (2)	147 (2)
N41 <i>B</i> —H42 <i>B</i> ···O12 <i>B</i> ⁱⁱⁱ	0.83 (2)	2.45 (2)	3.106 (2)	136.6 (18)
O2 <i>C</i> —H2 <i>C</i> ···O12 <i>C</i>	0.89 (3)	1.70 (3)	2.5223 (17)	152 (2)
O2D—H2D…O12D	0.90 (2)	1.70 (2)	2.5215 (17)	151 (2)
C5A—H5A····O52D ^{iv}	0.95	2.56	3.4175 (19)	150
C5 <i>B</i> —H5 <i>B</i> ···O51 <i>C</i> ^v	0.95	2.44	3.348 (2)	160
C5 <i>B</i> —H5 <i>B</i> ····O52 <i>C</i> ^v	0.95	2.58	3.420 (2)	147
C42 <i>A</i> —H43 <i>A</i> ···O52 <i>D</i> ^{iv}	0.98	2.49	3.428 (2)	159

C42 <i>B</i> —H45 <i>B</i> …O52 <i>C</i> [∨]	0.98	2.42	3.350 (2)	158
C61A—H61A····O11A	0.95	2.59	2.9422 (19)	102

F(000) = 1048

 $\theta = 3.2 - 28.8^{\circ}$

 $\mu = 0.22 \text{ mm}^{-1}$

Block, yellow

 $0.35 \times 0.35 \times 0.26$ mm

 $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$

14211 measured reflections

4171 independent reflections

3318 reflections with $I > 2\sigma(I)$

T = 200 K

 $R_{\rm int} = 0.024$

 $h = -8 \rightarrow 10$

 $k = -23 \rightarrow 23$

 $l = -15 \rightarrow 16$

 $D_{\rm x} = 1.584 {\rm Mg} {\rm m}^{-3}$

Melting point = 469-471 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7676 reflections

Symmetry codes: (i) -x+1/2, y-1/2, -z+3/2; (ii) x-1/2, -y+1/2, z-1/2; (iii) -x+3/2, y+1/2, -z+3/2; (iv) x, y-1, z; (v) x, y+1, z.

(II) 2-(4-Aminobenzenesulfonamido)-4,6-dimethylpyrimidinium 2,4,6-trinitrophenolate

Crystal data

C₁₂H₁₅N₄O₂S^{+.}C₆H₂N₃O₇⁻⁻ $M_r = 507.45$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.3131 (2) Å b = 19.2779 (5) Å c = 13.4483 (4) Å $\beta = 99.158$ (3)° V = 2127.74 (10) Å³ Z = 4

Data collection

Oxford Gemini-S CCD area-detector diffractometer Radiation source: Enhance (Mo) X-ray source Graphite monochromator Detector resolution: 16.077 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2010) $T_{\min} = 0.970, T_{\max} = 0.981$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.034$ Hydrogen site location: inferred from $wR(F^2) = 0.091$ neighbouring sites S = 1.04H atoms treated by a mixture of independent 4171 reflections and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0541P)^2 + 0.1041P]$ 334 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} = 0.005$ direct methods $\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
S1A	1.01736 (5)	0.72633 (2)	0.40874 (3)	0.0286(1)	
011A	1.01403 (16)	0.74900 (6)	0.30725 (10)	0.0411 (4)	
012A	0.91002 (15)	0.75680 (6)	0.46966 (11)	0.0381 (4)	
N1A	0.81196 (16)	0.54828 (6)	0.42730 (11)	0.0240 (4)	
N2A	0.96357 (18)	0.64262 (7)	0.39275 (12)	0.0289 (5)	
N3A	0.95185 (16)	0.61463 (7)	0.56049 (10)	0.0254 (4)	
N41A	1.6891 (2)	0.73736 (9)	0.62678 (16)	0.0419 (6)	
C2A	0.90857 (19)	0.60189 (8)	0.46347 (13)	0.0232 (5)	
C4A	0.89632 (19)	0.57061 (8)	0.62539 (13)	0.0247 (5)	
C5A	0.79877(19)	0.51355 (8)	0.59168 (13)	0.0267(5)	
C6A	0.75510 (18)	0 50281 (8)	0 49024 (13)	0.0244(5)	
C11A	1 2145 (2)	0.72872(8)	0.47392(13)	0.0211(5) 0.0250(5)	
C21A	1 3454 (2)	0.72072(8)	0.42106(13)	0.0300 (6)	
C31A	1.5022(2)	0.72321(9)	0.47158(14)	0.0317 (6)	
C41A	1.5022(2) 1.5335(2)	0.72321(9) 0.73431(8)	0.57572 (13)	0.0275(5)	
C42A	0.9460(2)	0.58500 (9)	0.373449(13)	0.0275(5) 0.0337(6)	
C51A	14001(2)	0.74275(8)	0.62754 (14)	0.0299 (6)	
C61A	1.4001(2) 1.2436(2)	0.73988(8)	0.52754(14) 0.57729(13)	0.0299(0)	
$C62\Delta$	0.6501(2)	0.75500(0) 0.44540(9)	0.37725(15) 0.44236(15)	0.0200 (5)	
01	0.0301(2) 0.81506(14)	0.55856 (6)	0.73824(9)	0.0320(0) 0.0327(4)	
021	0.51004(17)	0.58807 (8)	0.23024(0)	0.0327(4)	
021	0.31094(17) 0.35141(16)	0.58897(8)	0.28921(10) 0.18803(11)	0.0485(5)	
041	0.33061(17)	0.52229(7)	-0.16549(11)	0.0433(5)	
042	0.55701(17) 0.56354(17)	0.53000(7) 0.63473(7)	-0.20800(10)	0.0375(0)	
042	1.06573(16)	0.03473(7)	0.20899(10)	0.0470(5)	
062	1.06380 (16)	0.58522(8)	0.01323 (11)	0.0492(5)	
N2	0.46886(17)	0.02078(8) 0.56092(7)	0.10500(11) 0.20714(11)	0.0482(5)	
NZ NZ	0.40880(17) 0.48456(10)	0.50092(7)	-0.14630(12)	0.0301(3)	
IN 1	0.48450(19) 0.00501(17)	0.01225(8)	0.14030(12) 0.08307(12)	0.0343(3)	
NU C1	0.99301(17) 0.7282(2)	0.39913(8) 0.57407(8)	0.06397(12) 0.15227(12)	0.0333(3)	
C_{2}	0.7383(2) 0.56423(10)	0.37497(8)	0.13227(12) 0.12657(12)	0.0248(3)	
C2 C2	0.30423(19) 0.4705(2)	0.57440(8)	0.12037(12) 0.02122(12)	0.0250(5)	
C3	0.4795(2)	0.38493(8)	0.03122(13)	0.0251(5)	
C4 C5	0.3083(2) 0.7370(2)	0.00003(8) 0.60378(8)	-0.04407(13) -0.02677(13)	0.0230(3)	
C5 C6	0.7370(2) 0.81761(10)	0.00378(8) 0.50217(8)	-0.02077(13)	0.0233(3)	
	0.81701(19) 1.706(2)	0.39217(8) 0.7424(12)	0.00855(15)	0.0239(3)	
П42А 111 л	1.700(3)	0.7434(12) 0.5461(10)	0.095(2)	$0.001(8)^{\circ}$	
	0.784(3) 0.043(2)	0.3401(10) 0.6323(10)	0.3391(17) 0.3307(16)	$0.048(0)^{\circ}$	
	0.943(2)	0.0323 (10)	0.5307 (10)	$0.037(0)^{\circ}$	
нэа	0.76320	0.48200	0.03800	0.0320*	
HZIA	1.52500	0.71250	0.35040	0.0360*	
HJIA	1.39070	0.7170	0.43540	0.0380^{*}	
П41А 1149 л	1.//1(3)	0.7388 (10)	0.3900 (10)	0.039 (0)*	0.500
п48А 1142 л	1.003/0	0.57810	0.73290	0.0510*	0.500
п45А 1144 А	0.01840	0.55550	0.7780	0.0510*	0.500
п44А 1145 л	0.91840	0.03300	0.76410	0.0510*	0.500
п45А	0.83000	0.39820	0.70410	0.0510*	0.500
H46A	1.02530	0.62300	0.74320	0.0510*	0.500

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H47A	0.99530	0.54330	0.76820	0.0510*	0.500
H51A	1.41910	0.75050	0.69820	0.0360*	
H61A	1.15470	0.74550	0.61310	0.0340*	
H62A	0.61050	0.41780	0.49470	0.0490*	
H63A	0.71360	0.41570	0.40390	0.0490*	
H64A	0.55710	0.46490	0.39700	0.0490*	
H3	0.36400	0.58190	0.01800	0.0300*	
Н5	0.79580	0.61430	-0.08000	0.0300*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	0.0292 (2)	0.0220 (2)	0.0337 (3)	-0.0017 (2)	0.0023 (2)	0.0062 (2)
011A	0.0486 (8)	0.0353 (7)	0.0360 (8)	-0.0070 (6)	-0.0037 (6)	0.0162 (6)
O12A	0.0287 (7)	0.0291 (7)	0.0572 (9)	0.0035 (5)	0.0089 (6)	0.0007 (6)
N1A	0.0241 (7)	0.0244 (7)	0.0228 (8)	-0.0015 (5)	0.0016 (6)	0.0012 (6)
N2A	0.0349 (8)	0.0273 (8)	0.0241 (9)	-0.0086 (6)	0.0034 (7)	0.0022 (6)
N3A	0.0256 (7)	0.0250 (7)	0.0253 (8)	-0.0006 (6)	0.0036 (6)	-0.0002 (6)
N41A	0.0290 (9)	0.0555 (11)	0.0403 (11)	-0.0033 (7)	0.0029 (8)	0.0042 (8)
C2A	0.0207 (8)	0.0210 (8)	0.0280 (9)	0.0009 (6)	0.0045 (7)	0.0006 (6)
C4A	0.0212 (8)	0.0267 (8)	0.0265 (9)	0.0051 (6)	0.0050 (7)	0.0011 (7)
C5A	0.0256 (9)	0.0267 (9)	0.0292 (10)	0.0008 (6)	0.0089 (7)	0.0049 (7)
C6A	0.0194 (8)	0.0221 (8)	0.0323 (10)	0.0012 (6)	0.0061 (7)	0.0031 (7)
C11A	0.0264 (9)	0.0203 (8)	0.0286 (10)	-0.0028 (6)	0.0054 (7)	0.0032 (7)
C21A	0.0348 (10)	0.0327 (9)	0.0236 (10)	-0.0052 (7)	0.0084 (7)	0.0015 (7)
C31A	0.0284 (9)	0.0350 (10)	0.0347 (11)	-0.0029 (7)	0.0138 (8)	0.0017 (8)
C41A	0.0274 (9)	0.0221 (8)	0.0330 (10)	-0.0024 (6)	0.0045 (7)	0.0032 (7)
C42A	0.0379 (10)	0.0370 (10)	0.0266 (10)	-0.0003 (8)	0.0064 (8)	-0.0009 (8)
C51A	0.0354 (10)	0.0295 (9)	0.0250 (10)	0.0003 (7)	0.0051 (8)	-0.0021 (7)
C61A	0.0297 (9)	0.0255 (9)	0.0309 (10)	0.0010 (7)	0.0114 (8)	-0.0023 (7)
C62A	0.0301 (9)	0.0283 (9)	0.0390 (11)	-0.0059 (7)	0.0041 (8)	-0.0008 (8)
01	0.0325 (7)	0.0420 (7)	0.0225 (7)	-0.0006 (5)	0.0009 (5)	0.0029 (5)
O21	0.0460 (8)	0.0731 (10)	0.0279 (8)	0.0014 (7)	0.0127 (6)	-0.0108 (7)
O22	0.0446 (8)	0.0470 (8)	0.0493 (9)	-0.0146 (6)	0.0213 (7)	0.0014 (6)
O41	0.0370 (9)	0.0912 (12)	0.0393 (9)	-0.0111 (8)	-0.0076 (7)	0.0123 (8)
O42	0.0496 (8)	0.0635 (9)	0.0298 (8)	0.0009 (7)	0.0071 (7)	0.0190 (7)
O61	0.0303 (7)	0.0740 (10)	0.0462 (9)	0.0036 (6)	0.0153 (7)	0.0032 (7)
O62	0.0344 (8)	0.0657 (9)	0.0420 (9)	-0.0154 (6)	-0.0012 (6)	-0.0027 (7)
N2	0.0314 (8)	0.0318 (8)	0.0288 (9)	0.0044 (6)	0.0097 (7)	0.0029 (6)
N4	0.0355 (9)	0.0371 (8)	0.0288 (9)	0.0012 (7)	0.0008 (7)	0.0043 (7)
N6	0.0261 (8)	0.0386 (8)	0.0353 (9)	-0.0043 (6)	0.0050 (7)	0.0052 (7)
C1	0.0303 (9)	0.0217 (8)	0.0224 (9)	-0.0014 (6)	0.0042 (7)	-0.0030 (6)
C2	0.0262 (9)	0.0225 (8)	0.0232 (9)	-0.0015 (6)	0.0075 (7)	-0.0004 (6)
C3	0.0227 (8)	0.0225 (8)	0.0298 (10)	-0.0015 (6)	0.0030 (7)	-0.0005 (7)
C4	0.0317 (10)	0.0227 (8)	0.0220 (9)	-0.0001 (7)	0.0027 (7)	0.0003 (7)
C5	0.0301 (9)	0.0234 (8)	0.0240 (9)	-0.0030 (6)	0.0090 (7)	0.0010 (7)
C6	0.0239 (9)	0.0248 (8)	0.0291 (10)	-0.0034 (6)	0.0046 (7)	-0.0011 (7)

Geometric parameters (Å, °)

S1A—O11A	1.4292 (14)	C11A—C61A	1.389 (2)	
S1A—O12A	1.4301 (14)	C11A—C21A	1.401 (2)	
S1A—N2A	1.6792 (14)	C21A—C31A	1.372 (2)	
S1A—C11A	1.7318 (17)	C31A—C41A	1.400 (3)	
O1—C1	1.269 (2)	C41A—C51A	1.410 (2)	
O21—N2	1.229 (2)	C51A—C61A	1.368 (2)	
O22—N2	1.221 (2)	С5А—Н5А	0.9500	
O41—N4	1.220 (2)	C21A—H21A	0.9500	
O42—N4	1.227 (2)	C31A—H31A	0.9500	
O61—N6	1.225 (2)	C42A—H44A	0.9800	
O62—N6	1.228 (2)	C42A—H48A	0.9800	
N1A—C2A	1.351 (2)	C42A—H43A	0.9800	
N1A—C6A	1.355 (2)	C42A—H47A	0.9800	
N2A—C2A	1.367 (2)	C42A—H45A	0.9800	
N3A—C4A	1.350 (2)	C42A—H46A	0.9800	
N3A—C2A	1.320 (2)	C51A—H51A	0.9500	
N41A—C41A	1.366 (2)	C61A—H61A	0.9500	
N1A—H1A	0.91 (2)	C62A—H62A	0.9800	
N2A—H2A	0.85 (2)	C62A—H63A	0.9800	
N41A—H42A	0.89 (3)	C62A—H64A	0.9800	
N41A—H41A	0.90 (2)	C1—C2	1.433 (2)	
N2—C2	1.464 (2)	C1—C6	1.432 (2)	
N4—C4	1.451 (2)	C2—C3	1.376 (2)	
N6—C6	1.462 (2)	C3—C4	1.384 (2)	
C4A—C5A	1.399 (2)	C4—C5	1.385 (2)	
C4A—C42A	1.486 (2)	C5—C6	1.367 (2)	
C5A—C6A	1.370 (2)	С3—Н3	0.9500	
C6A—C62A	1.491 (2)	С5—Н5	0.9500	
011A—S1A—012A	120.16 (8)	C4A—C5A—H5A	120.00	
O11A—S1A—N2A	101.96 (8)	C11A—C21A—H21A	120.00	
O11A—S1A—C11A	110.38 (8)	C31A—C21A—H21A	120.00	
O12A—S1A—N2A	106.88 (7)	C41A—C31A—H31A	120.00	
O12A—S1A—C11A	109.00 (8)	C21A—C31A—H31A	120.00	
N2A—S1A—C11A	107.56 (8)	H43A—C42A—H44A	109.00	
C2A—N1A—C6A	121.10 (15)	H45A—C42A—H46A	109.00	
S1A—N2A—C2A	125.08 (13)	H45A—C42A—H47A	109.00	
C2A—N3A—C4A	117.03 (14)	H46A—C42A—H47A	110.00	
C6A—N1A—H1A	122.8 (14)	C4A—C42A—H47A	109.00	
C2A—N1A—H1A	116.1 (14)	H48A—C42A—H43A	109.00	
C2A—N2A—H2A	120.8 (13)	H48A—C42A—H44A	110.00	
S1A—N2A—H2A	111.1 (13)	C4A—C42A—H43A	109.00	
H42A—N41A—H41A	122 (2)	C4A—C42A—H44A	109.00	
C41A—N41A—H42A	119.8 (16)	C4A—C42A—H45A	109.00	
C41A—N41A—H41A	117.5 (14)	C4A—C42A—H46A	109.00	
O22—N2—C2	118.04 (14)	C4A—C42A—H48A	109.00	
O21—N2—O22	123.55 (15)	C41A—C51A—H51A	120.00	
O21—N2—C2	118.41 (14)	C61A—C51A—H51A	120.00	

O42—N4—C4	118.33 (15)	C51A—C61A—H61A	120.00
O41—N4—O42	123.30 (16)	С11А—С61А—Н61А	120.00
O41—N4—C4	118.36 (15)	C6A—C62A—H63A	110.00
O61—N6—O62	123.76 (15)	C6A—C62A—H64A	109.00
O62—N6—C6	118.33 (15)	H62A—C62A—H64A	109.00
O61—N6—C6	117.87 (15)	H63A—C62A—H64A	109.00
N2A—C2A—N3A	120.80 (15)	Н62А—С62А—Н63А	109.00
N1A—C2A—N2A	115.75 (15)	C6A—C62A—H62A	109.00
N1A—C2A—N3A	123.44 (15)	01—C1—C2	124.07 (15)
N3A—C4A—C42A	116.81 (14)	01—C1—C6	123.16 (15)
C5A—C4A—C42A	121.51 (15)	C2-C1-C6	112.68 (14)
N3A—C4A—C5A	121.67 (15)	N2—C2—C1	117.87 (14)
C4A—C5A—C6A	119.31 (15)	N2—C2—C3	117.30 (14)
N1A—C6A—C62A	116.68 (15)	C1—C2—C3	124.83 (15)
N1A—C6A—C5A	117.43 (14)	C2—C3—C4	117.63 (15)
C5A—C6A—C62A	125.89 (15)	N4—C4—C3	119.69 (15)
S1A—C11A—C21A	119.28 (13)	N4—C4—C5	118.47 (15)
S1A—C11A—C61A	120.71 (13)	C3—C4—C5	121.84 (16)
C21A—C11A—C61A	120.01 (16)	C4—C5—C6	119.07 (16)
C11A—C21A—C31A	119.83 (16)	N6—C6—C1	119.34 (15)
C_{21A} C_{31A} C_{41A}	120.84 (16)	N6—C6—C5	116.80 (15)
C31A—C41A—C51A	118.47 (16)	C1—C6—C5	123.86 (15)
N41A—C41A—C31A	121.33 (16)	С2—С3—Н3	121.00
N41A—C41A—C51A	120.20(17)	C4—C3—H3	121.00
C41A—C51A—C61A	120.80 (17)	C4—C5—H5	120.00
C11A—C61A—C51A	120.06 (16)	С6—С5—Н5	120.00
С6А—С5А—Н5А	120.00		
O11A—S1A—N2A—C2A	-162.41 (14)	N3A—C4A—C5A—C6A	-1.5 (2)
O12A—S1A—N2A—C2A	-35.47 (17)	C42A—C4A—C5A—C6A	179.47 (15)
C11A—S1A—N2A—C2A	81.46 (16)	C4A—C5A—C6A—C62A	-178.97 (15)
O11A—S1A—C11A—C21A	-28.19 (15)	C4A—C5A—C6A—N1A	1.0 (2)
O11A—S1A—C11A—C61A	150.90 (13)	S1A—C11A—C21A—C31A	178.90 (13)
O12A—S1A—C11A—C21A	-162.20 (12)	C61A—C11A—C21A—C31A	-0.2 (2)
O12A—S1A—C11A—C61A	16.88 (15)	S1A—C11A—C61A—C51A	-178.95 (12)
N2A—S1A—C11A—C21A	82.26 (14)	C21A—C11A—C61A—C51A	0.1 (2)
N2A—S1A—C11A—C61A	-98.65 (14)	C11A—C21A—C31A—C41A	0.3 (2)
C6A—N1A—C2A—N2A	177.49 (14)	C21A—C31A—C41A—C51A	-0.3 (2)
C6A—N1A—C2A—N3A	-1.2 (2)	C21A—C31A—C41A—N41A	-180.00 (16)
C2A—N1A—C6A—C5A	0.3 (2)	C31A—C41A—C51A—C61A	0.3 (2)
C2A—N1A—C6A—C62A	-179.73 (14)	N41A—C41A—C51A—C61A	179.94 (16)
S1A—N2A—C2A—N1A	154.00 (12)	C41A—C51A—C61A—C11A	-0.2 (2)
S1A—N2A—C2A—N3A	-27.3 (2)	O1—C1—C2—N2	6.3 (2)
C4A—N3A—C2A—N1A	0.7 (2)	O1—C1—C2—C3	-172.77 (15)
C4A—N3A—C2A—N2A	-177.96 (15)	C6-C1-C2-N2	-177.07 (13)
C2A—N3A—C4A—C5A	0.7 (2)	C6—C1—C2—C3	3.8 (2)
C2A—N3A—C4A—C42A	179.73 (14)	O1-C1-C6-N6	-7.2 (2)
O21—N2—C2—C3	-138.41 (16)	O1—C1—C6—C5	173.80 (15)
O22—N2—C2—C1	-137.67 (15)	C2-C1-C6-N6	176.16 (14)

O22—N2—C2—C3	41.5 (2)	C2—C1—C6—C5	-2.8 (2)
O21—N2—C2—C1	42.4 (2)	N2-C2-C3-C4	177.92 (14)
O41—N4—C4—C3	-10.9 (2)	C1—C2—C3—C4	-3.0 (2)
O42—N4—C4—C3	170.19 (15)	C2—C3—C4—N4	-179.35 (14)
O42—N4—C4—C5	-10.0 (2)	C2—C3—C4—C5	0.8 (2)
O41—N4—C4—C5	168.93 (16)	N4—C4—C5—C6	-179.78 (14)
O61—N6—C6—C5	-30.7 (2)	C3—C4—C5—C6	0.0 (2)
O62—N6—C6—C1	-32.2 (2)	C4—C5—C6—N6	-177.92 (14)
O62—N6—C6—C5	146.91 (16)	C4—C5—C6—C1	1.1 (2)
O61—N6—C6—C1	150.26 (16)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1 <i>A</i> —H1 <i>A</i> …O1	0.91 (2)	1.70 (2)	2.5545 (19)	154 (2)
N1 <i>A</i> —H1 <i>A</i> ···O21	0.91 (2)	2.46 (2)	2.974 (2)	116.2 (18)
N2A—H2A…O1	0.85 (2)	2.07 (2)	2.7661 (19)	139.2 (17)
N2A—H2A···O62	0.85 (2)	2.59 (2)	3.319 (2)	145.0 (15)
N41 A —H41 A ···O12 A^{i}	0.90 (2)	2.16 (2)	3.035 (2)	163 (2)

Symmetry code: (i) x+1, y, z.