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ABSTRACT: We report the magnesiation of aryl 
fluorides catalyzed by an Al–Rh heterobimetallic 
complex. We show that the complex is highly reactive to 
cleave the C–F bonds across the polarized Al–Rh bond 
under mild conditions. The reaction allows the use of an 
easy-to-handle magnesium powder to generate a range of 
arylmagnesium reagents from aryl fluorides, which are 
conventionally inert to such metalation compared with 
other aryl halides.

Complexes that contain metal–metal bonds have 
received considerable attention in organometallic 
chemistry due to their unique electronic properties, which 
differ significantly from those of single-metal systems, 
especially with respect to achieving novel organic 
transformations.1 Among complexes with metal–metal 
bonds, heterobimetallic metal–metal bonding motifs are 
particularly reactive towards the cleavage of 
conventionally inert bonds due to their inherent 
polarization. In a pioneering study, Bergman showed that 
Zr–Ir complexes can activate a variety of 
thermodynamically strong bonds including O–H and N–
H bonds.2 B–Rh3 and Si–Rh4 manifolds have been 
reported to effectively activate C–F bonds5 in 
perfluorinated organic molecules such as 
pentafluoropyridine and hexafluorobenzene. Moreover, a 
Zr–Co complex realizes the challenging activation of the 
C=O bond in benzophenone to afford a cobalt carbene 
complex.6 However, catalytic transformations that 
include these bond-activation events remain elusive. 
Recently, we have developed an Al–Rh heterobimetallic 
complex in which an X-type Al moiety7 is ligated to the 
Rh center, and demonstrated its reactivity in the 
alkylation of pyridines.8a An NBO analysis suggested a 
polarized Al+–Rh– bond, and this result prompted us to 
test the reactivity of such Al–Rh bonds in the context of 
cleaving -bonds, which usually exhibit high bond-
dissociation energies. We previously reported that the 
energy level of the orbital containing the Al–Rh bond in 

(Me2Al)Rh(PMe3)2 was higher than those containing the 
B–Rh bond in (Me2B)Rh(PMe3)2 and the Si–Rh bond in 
(Me3Si)Rh(PMe3)2.8b We thus expected reactivity of the 
Al–Rh bonds toward the C–F bond activation higher than 
that of B–Rh and Si–Rh bonds based on these results. 
Herein, we report the activation of C–F bonds in 
fluoroarenes by means of an Al–Rh bond under very mild 
conditions, which results in an unprecedented catalytic 
magnesiation of fluoroarenes using easy-to-handle Mg 
powder.9

The reaction of Al–Rh complex 1a, which was 
generated in situ by the reduction of Al–Rh complex 2a8a 
with KC8, and fluorobenzene (3a) under N2 resulted in the 
activation of the C–F bond at the Al–Rh bond to afford 
complex 4a in 95% yield (Scheme 1). The solid-state 
structure of 4a was determined unequivocally by single-
crystal x-ray diffraction analysis. In 4a, the Al(III) moiety 
coordinates to the Rh center as an electron-accepting Z-
type ligand10 with trigonal bipyramidal geometry. The Rh 
center adopts a square-pyramidal geometry stabilized by 
an end-on N2 ligand. It is noteworthy that the C–F-bond 
activation proceeds even at –30 °C (for details, see the 
Supporting Information). To the best of our knowledge, 
these are the mildest hitherto reported conditions for the 
activation of unactivated C–F bonds by a homogeneous 
metal complexes.3,4,5,11 

THF
–78 °C to r.t., 12 h

under N2
4a, 95%

2a, 0.30 mmol

F

+

3a, 0.60 mmol

P = P(i-Pr)2

RhP
Ph P

N

F

N
Al
N

Me

N N

P
N

N
Al

Me

P

Rh

N

N
N Al

Me

P

Rh
P

N

Cl Cl

2

1a
generated in situ

KC8 (4.2 eq.)
THF

Al

Rh P

P N N

N
N

N

F

Scheme 1. C–F Bond Activation by Al–Rh Complex 
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To gain mechanistic insights into the C–F-bond 
activation by 1a, the reaction pathway was theoretically 
modelled by DFT calculations (Figure 1; for details, see 
the Supporting Information). The C2=C3 bond of 
fluorobenzene coordinates to the Rh atom and the F atom 
occupies the position close to the Al atom in Al–Rh -
complex 1AD1. The C–F bond of 1AD1 then changes its 
orientation to give adduct 1AD2. The activation of the C–
F bond occurs at the Al–Rh -bond in a cooperative 
fashion to afford Rh–phenyl complex 4b via transition 
state TS. After isomerization, which includes a positional 
change of the Ph group, followed by coordination of N2, 
another Rh–phenyl complex 4a is generated. The Gibbs 
energy of activation (Gº‡) and the Gibbs energy of 
reaction (Gº) were estimated to be 3.7 kcal mol–1 and –
63.5 kcal mol–1, respectively (blue line in Figure 1). The 
very small Gº‡ stands in sharp contrast to the 
considerably large Gº‡ required for the activation of the 
C–F bond by Rh alone (24.2 kcal mol–1; red lines in 
Figure 1). The small Gº‡ value obtained for the 
cooperative activation of the C–F bond matches well with 
the experimentally observed reaction, which proceeds at 
low temperature.

Next, we turned our attention to developing new 
catalytic transformations based on the unique reactivity 
of this Al–Rh manifold toward the activation of C–F 
bonds. Our working hypothesis is shown in Scheme 2. 
We anticipated that the C–F-bond activation would afford 
Z-type AlIII–RhI complex 4, which could potentially be 
reduced with Mg to realize a catalytic magnesiation of 

Ar–F bonds. The reduction potential of Mg metal should 
be sufficiently high to reduce the Al center of 4 (Mg2+/Mg 
= –2.4 V; Al3+/Al = –1.7 V vs SHE).12 In contrast to the 
magnesiation of Ar–X bonds (X = I, Br, Cl),13 that of Ar–
F bonds is extremely difficult, even for highly dispersed 
Mg.14 For example, the magnesiation of p-fluorotoluene 
proceeds only in moderate efficiency, even when a large 
excess of Rieke magnesium is used in refluxing THF.14a 
Although the magnesiation of the C–F bond with Mg(I)–
Mg(I) complexes has recently been reported,5h–k 
precedents of the magnesiation of C–F bonds using 
readily available and easy-to-handle Mg powder remain 
elusive.

Scheme 2. A Plausible Catalytic Cycle for the 
Magnesiation of Aryl Fluorides using Al–Rh 
Complexes such as 2

Figure 1. Energy diagram of the C–F bond activation of 3a by 1a.

Rh

P
P

N
NN Al
F

Rh

P
P

N
NN Al

F

Rh

P
P

N
NN Al

F

1AD1
TS Rh

P
P

N
NN Al

F

4b

0.0 3.4 3.7

RhP
Ph P

N

F

N
Al
N

Me

N N

4a

–46.6

–63.5

1AD2

0.9

24.2

Rh

P
P

N
NN Al
F

1AD2'

Rh

P
P

N
NN Al

F

TS'
C–F bond activation at Al–Rh
C–F bond activation at Rh

G
ib

bs
en

er
gy

(k
ca

l/m
ol

)

P = P(i-Pr)2

Page 2 of 7

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



The proposed catalytic magnesiation of 1-
fluoronapthalene (3b, 0.30 mmol) with Mg powder (0.90 
mmol), which was pre-activated upon treatment with 1,2-
dibromoethane (5.0 mol%), was attempted in the 
presence of various catalysts in THF at room temperature 
(Scheme 3). Gratifyingly, 1-napthoic acid (5a) was 
obtained in 88% NMR yield using 2a (5.0 mol% Rh) after 
quenching of the reaction with CO2 (1 atm), followed by 
acidic work-up using 3 M HCl. Al–Rh complex 2b, which 
bears phenyl groups on the phosphorus atoms instead of 
isopropyl groups, also furnished 5a in high yield. The 
reaction did not proceed in the absence of an Al–Rh 
complex. Catalytic systems based on [RhCl(nbd)]2 (5.0 
mol% Rh; nbd = 2,5-norbornadiene)/phosphorus ligands 
(10 mol% P)/Et2AlCl (20 mol%) did not afford 5a. 
Adding LiCl, which facilitates the magnesiation of C–Br 
bonds,15 or adding a catalytic amount of anthracene, to 
generate magnesium anthracene,16 did not show any 
effect. Using i-PrMgClLiCl led to the magnesiation of 3b 
to afford 5a in low yield, albeit that this approach is 
unsuitable for simple aryl fluorides such as 3a.17 
Accordingly, it can be concluded that only Al–Rh 
complexes 2a and 2b catalyze the magnesiation of aryl 
fluorides.

Scheme 3. Screening Catalysts for the Catalytic 
Magnesiation of 3b

catalyst
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The magnesiation of various aryl fluorides 3 was 
examined at the 0.50-mmol-scale under the optimized 
conditions (Scheme 4). Under these conditions, 1-
naphthoic acid (5a) was obtained from 1-
fluoronaphthalene (3b) and isolated in 99% yield, while 
benzoic acid (5b) was isolated in 86% yield from the 
reaction involving fluorobenzene (3a). 5a could be also 
prepared in 82% yield on a 10 mmol-scale. Electron-
donating substituents at the para- or meta-position of 
fluorobenzene were tolerated to afford the corresponding 
benzoic acids (5c–5g) in good to high yield, whereas the 
reaction efficiency was decreased with 4-fluorobiphenyl 
(3h). It should also be noted here that the C–S bond of 4-
fluorothioanisole (3f), which is easily functionalized by 
palladium or nickel catalysts,18 was tolerated in this 
transformation. Sterically demanding 2-fluorotoluene (3i) 
and 2,6-dimethylfluorobenzene (3j) furnished the 
corresponding carboxylic acids (5i and 5j) in 92% and 
48% yield, respectively. D2O, B(Oi-Pr)3, and N-methoxy-
N-methylbenzamide19 can also serve as quenching 
electrophiles to generate the corresponding deuterated, 
borylated, and acylated products (5k–5m).
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Scheme 4. Scope of the Reaction with Respect to Aryl 
Fluorides 3
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To evaluate the plausible catalytic cycle shown 
in Scheme 2, stoichiometric reactions were conducted. To 
gain insights into the reduction of 2 to 1 in Scheme 2, the 
reaction of 2a (30 mol) with Mg powder (0.60 mmol) in 
the presence of nbd (90 mol) was examined. It 
proceeded at 60 °C to afford nbd-coordinated Al–Rh 
complex 1a-nbd in high yield (Eq 1). The catalytic 
magnesiation of p-fluorotoluene (3c, 0.25 mmol) with Mg 
powder (0.75 mmol) in the presence of 4a (20 mol%, 50 
mol) afforded p-toluic acid (5c) in 70% yield (0.18 
mmol) based on 3c under concomitant formation of 
benzoic acid (5b) in 48% yield (24 mol) based on 4a (Eq 
2). These results support the generation of 
phenylmagnesium species from 4a under the applied 
conditions, and thus corroborate the catalytic cycle 
proposed in Scheme 2. In fact, the formation of 

diphenylmagnesium was implied by 1H and 13C NMR 
spectroscopies of the crude mixture upon magnesiation of 
3a under the optimized conditions (for details, see the 
Supporting Information).20

In conclusion, we have developed a catalytic 
magnesiation of Ar–F bonds through the C–F bond 
activation across the X-type heterobimetallic Al–Rh 
center. It is worth mentioning that the cooperative 
activation allows the functionalization of C–F bonds in 
unactivated fluoroarenes under very mild conditions. This 
is a rare example of successful applications of 
heterobimetallic catalysis. Further developments of 
catalytic functionalization of other strong polar -bonds 
by the heterobimetallic systems are currently under 
investigation in our laboratories.
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