Silylfurane und Bis(silyl)butadiine

- Synthese, Lithiumderivate, Kristallstrukturen

Silylfurans and Bis(silyl)butadiynes - Synthesis, Lithium Derivatives, Crystal Structures

Peter Neugebauer, Uwe Klingebiel und Mathias Noltemeyer

Institut für Anorganische Chemie der Universität Göttingen,

Tammannstr. 4. D-37077 Göttingen, Germany

Sonderdruckanforderungen an Prof. Dr. U. Klingebiel.

Fax: 0551/39-3373; E-mail: uklinge@gwdg.de

Z. Naturforsch. 55 b, 913-923 (2000); eingegangen am 29. Mai 2000

Silylbutadiynes, 2-Furanylsilanes, Lithium-fluorosilyl-(2-furanylsilyl)amide

Furan reacts with BuLi and halosilanes to give mono- (1, 5, 7), bis- (2, 6), tris- (3), and tetrakis(2-furanyl)silanes (4); (Fu-R; R = SiMe₂Cl (1), SiisoPr₂F (5), Si'Bu₂F (7); Fu-R-Fu; R = SiMe₂ (2), SiisoPr₂ (6); Fu₃Si'Bu (3), Fu₄Si (4)), 2,5-Bis(silyl)furans (8, 9) are obtained in the reaction of dilithiated furan and fluorosilanes in a molar ratio 1:2 (R-Fu-R; R = SiisoPr₂F (8), Si'Bu₂F (9), 1,4-Bis(di-*tert*-butylfluorosilyl)butadiyne (10) is formed from furan four equivalents of BuLi, and two equivalents of F₂Si'Bu₂. 10 reacts with KOH to give 'Bu₂(OH)Si-C≡C-C≡C-Si'Bu₂OH (11). Substitution of the fluorine atoms of 5 and 7 by a NH₂ group occurs with MNH₂ (M = Li, Na). 12 and 13 are obtained. The reaction of 13 with BuLi and 'Bu₂SiF₂ leads to the formation of FuSi'Bu₂NHSi'Bu₂F (14) and 'Bu₂Si(NH-Si'Bu₂Pu)₂ (15). The lithium derivative of 14 crystallizes as monomer from THF as FuSi'Bu₂NSi'Bu₂NSi'Bu₂E) (17). The crystal structures of 4, 10, 16, 17 have been determined.

Einleitung

Furan, Thiophen und Pyridin sind die am leichtesten darstellbaren heteroaromatischen Systeme. Sie können direkt metalliert und somit derivatisiert werden [1 - 3]. Der Heteroatomeffekt (induktiv, koordinativ und polarisierend) dirigiert die Metallierung überwiegend in die α -Position des Heteroatoms und erleichtert die Deprotonierung verglichen mit Benzol [1]. In einigen Fällen ermöglicht ein Brom-Lithium-Austausch die Einführung des Lithiums in eine Position, die sonst nicht direkt zu deprotonieren ist [4]. Mit Halogensilanen reagieren die metallierten Heteroaromaten unter Substitution des Metalls gegen Silylgruppen.

In der Synthesechemie spielen Silylgruppen eine wichtige Rolle bei elektrophilen aromatischen Substitutionen, Diels-Alder-Reaktionen oder als Schutzgruppen, die nach erfolgter Reaktion in der Regel durch nucleophile Agentien vollständig wieder vom Substrat abgespalten werden können [5 - 7]. Eine Reihe natürlich vorkommender Substanzen enthalten Furangerüste [8, 9], silylsubstituierte Furane sind jedoch erst wenig bekannt [10 - 12].

Furan lässt sich mit Butyllithium in THF oder Diethylether bei Temperaturen von –20 °C bis +35 °C in 2-Position metallieren. Dimetallierung des Furans in 2-/5-Position kann mit zwei Äquivalenten Butyllithium und TMEDA oder mit zwei Äquivalenten Butyllithium und 'BuOK in TMEDA-Hexan erreicht werden [4, 13].

Bei der Lithiierung des Furans mit *n*-Butyllithium stellt sich folgendes Gleichgewicht ein:

In Reaktionen mit Dihalogensilanen kann es somit zur Bildung der folgenden Produkte kommen (X = Hal; R = Alkyl):

0932-0776/00/1000-0913 \$ 06.00 © 2000 Verlag der Zeitschrift für Naturforschung, Tübingen · www.znaturforsch.com

K

Im Rahmen dieser Arbeit stellen wir Produkte der Umsetzungen von mono-, di- und tetralithiierten Furanen mit Halogensilanen vor und berichten über die Synthese erster Amino-, Fluoro- und Hydroxysilylfurane.

Ergebnisse und Diskussion

1. Silylfurane und Tetra-2-furanylsilan

Lithiierung des Furans mit einem Moläquivalent *n*-Butyllithium und anschließende Umsetzung mit Dichlordimethylsilan bei -15 °C ergibt als Hauptprodukt Chlor-2-furanyl-dimethylsilan (1). Hierbei wird das Dichlordimethylsilan vorgelegt und das Lithiumfuranid hinzugegeben.

Wird das Dichlordimethylsilan zum Lithiumfuranid gegeben oder die Reaktion bei Raumtemperatur durchgeführt. so entsteht als Hauptprodukt Di-(2furanyl)dimethylsilan (2):

1 und 2 sind klare Flüssigkeiten mit aromatischem Geruch.

Im molaren Verhältnis 1:3 bzw. 1:4 reagieren *tert*-Butyltrifluorsilan oder Tetrafluorsilan mit einer Suspension von Lithiumfuranid in *n*-Hexan zum *tert*-Butyltri(2-furanyl)silan (**3**) und Tetra(2-furanyl)silan (**4**).

3 ist eine ölige, klare Flüssigkeit, 4 ein Feststoff.

Tab. 1. Ausgewählte Bindungslängen [pm] und -winkel [°] des Tetra(2-furanyl)silans **4**.

182.6	C(4)-C(5)	149.2
138.4	C(3)-C(4)	146.9
138.9		
108.9	C(2)-Si(1)-C(1c)	108.9
110.6		
	182.6 138.4 138.9 108.9 110.6	182.6 C(4)-C(5) 138.4 C(3)-C(4) 138.9 108.9 108.9 C(2)-Si(1)-C(1c) 110.6 108.9

Abb. 1. Kristallstruktur des Tetra-2-furanylsilans (4).

Kristallstruktur von 4

Nach Kristallisation aus *n*-Hexan konnte eine Röntgenkristallstruktur von **4** angefertigt werden. **4** kristallisiert in der tetragonalen Raumgruppe $P\bar{4}2_1/c$. Tab. 1 zeigt ausgewählte Bindungslängen [pm] und -winkel [°].

Das Siliciumatom ist tetraedrisch von den vier Furangruppen umgeben. Diese orientieren sich derart, dass die Sauerstoffatome einen maximalen Abstand voneinander haben.

Die SiC-Bindungsabstände sind mit im Mittel 182.6 pm kurz, was auf den mesomeren Effekt der Furanylsubstituenten zurückzuführen ist, der das Siliciumatom mit einschließt. Dies erklärt die starke ²⁹Si-NMR-Hochfeldverschiebung von $\delta = -55.47$.

Wird Lithiumfuranid mit Di(isopropyl)- oder Di-(*tert*-butyl)difluorsilan umgesetzt, entstehen Di(iso-

Brought to you by | New York University Bobst Library Technical Services Authenticated Download Date | 7/12/15 12:28 PM

propyl)fluor-2-furanylsilan (**5**), Di(2-furanyl)diisopropylsilan (**6**) und Di(*tert*-butyl)fluor-2-furanylsilan (**7**).

Die voluminösen *tert*-Butylgruppen verhindern den Angriff eines zweiten Furanmoleküls am Siliciumatom. Aus diesem Grund sind die Ausbeuten des an 7 größer als die an 5. Die Verbindungen 5 und 7 besitzen im Gegensatz zu 6 ebenfalls einen intensiven aromatischen Geruch. Das 2,5-Dilithiumfuranid reagiert mit zwei Äquivalenten Di(isopropyl)difluorsilan oder Di(*tert*butyl)difluorsilan zu 2,5-Bis[di(isopropyl)fluorsilyl]furan **8** bzw. 2,5-Bis[di(*tert*-butyl)fluorsilyl]furan (**9**).

2. 1,4-Bis[di(tert-butyl)silyl]butadiine

Werden bei der Lithiierung des Furans mehr als zwei Moläquivalente *n*-Butyllithium eingesetzt, so zersetzt sich das aromatische Gerüst. Nach Zugabe von Di(*tert*-butyl)difluorsilan konnte das 1,4-Bis-[di(*tert*-butyl)fluorsilyl]butadiin (**10**) isoliert werden. Bei dieser Reaktion wird formal Li₂O aus dem aromatischen Gerüst eliminiert und das Dilithiumsalz des Butadiins gebildet.

Da in der Reaktion keine trisubstituierten oder tetrasubstituierten Furane entstehen, wird ein ähnlicher Mechanismus wie für die Ringöffnung des Thiophens mit Butyllithium angenommen [4, 14], wonach 2,5-Dilithiumfuranid von einem weiteren *n*-Butyllithium gespalten wird.

Durch Reaktion von 9 mit zwei Moläquivalenten Butyllithium konnte das Diin 10 nicht dargestellt werden.

Die Ringspaltung findet somit vor Einführung einer Silylgruppe statt. Die Fluorfunktionalität von

Brought to you by | New York University Bobst Library Technical Services Authenticated Download Date | 7/12/15 12:28 PM

	0		
Si(1)-F(1)	159.3	Si(1)-C(1)	183.5
Si(1)-C(11)	187.4	Si(1)-C(15)	187.0
C(1)-C(2)	119.4	C(2)-C(2a)	138.9
F(1)-Si(1)-C(1)	106.3	F(1)-Si(1)-C(11)	106.7
F(1)-Si(1)-C(15)	105.7	C(1)-Si(1)-C(11)	107.9
C(1)-Si(1)-C(15)	107.1	C(15)-Si(1)-C(11)	122.2
C(2)-C(1)-Si(1)	178.6	C(2a)-C(2)-C(1)	178.4

Tab. 2. Ausgewählte Bindungslängen [pm] und -winkel [°] von Verbindung **10**.

Abb. 2. Kristallstruktur von 1,4-Bis(di-*tert*-butylfluorsilyl)butadiin (**10**).

10 erlaubt eine leichte Derivatisierung. Exemplarisch setzten wir **10** mit KOH um und erhielten das 1,4-Bis[di(*tert*-butyl)hydroxysilyl]butadiin (**11**).

Kristallstruktur von 10

Die Verbindung 10 kristallisiert in der triklinen Raumgruppe $P\bar{1}$.

Moleküle von **10** zeigen eine aus sechs Atomen aufgebaute lineare SiCCCCSi-Einheit. Die Fluoratome sind in *trans*-Konformation, die *tert*-Butylgruppen ekliptisch angeordnet. Die Winkel betragen an C(1) = 178.6(5)° und an C(2) = 178.4(7)°. Die Abweichung der Diineinheit von der Linearität ist äußerst gering. Es handelt sich um ein delokalisiertes π -Elektronensystem, welches die Heteroatome teilweise mit einschließt. Die Si-C(sp²)-Bindung mit 183.5 pm ist kürzer als eine Si-C(sp³)-Bindung mit 187.0 pm. Auch die ¹³C-NMR-Verschiebungen stützen diese Annahme. Die Resonanzen sind im Vergleich zu organischen Diinen tieffeldverschoben [15].

¹³C-NMR:

3. Aminosilylfurane

Die Umsetzungen der 2-Furanyl-fluorsilane mit Lithium- oder Natriumamid führen zur Bildung der entsprechenden 2-Furanyl-aminosilane.

12 und 13 sind klare, viskose Flüssigkeiten, die durch fraktionierte Destillation rein erhalten werden. Eine Kondensation unter NH_3 -Abspaltung wird nicht beobachtet. Wird die NH_2 -Gruppe metalliert, sind in Reaktionen mit Fluorsilanen Aminofluorsilane und längerkettige Silylamine synthetisierbar. Zum Beispiel reagiert das Lithiumderivat von 13 mit 'Bu₂SiF₂ zu 14 und 15.

14 und 15 werden durch Destillation im Ölpumpenvakuum (0.01 mbar) rein erhalten. 15 ist bei Normaldruck ein Feststoff mit einem Schmelzpunkt von 95 °C. 14 enthält stabilisierende Substituenten. Nach der von uns praktizierten Methode (Gl. (14)) sollte 14 zu einem Iminosilan reagieren [15].

4. Lithium-fluorsilyl-(2-furanylsilyl)amide

Wird 14 mit *n*-Butyllithium in THF lithiiert, so entsteht das Lithium-di(*tert*-butyl)fluorsilyl[di-

(*tert*- butyl)2-furanylsilyl]amid-THF-Addukt **16**. **16** enthält sowohl im Festkörper als auch in Lösung zwei Moleküle THF. Seine NMR-Daten stehen im Einklang mit der vorgeschlagenen Struktur.

Das ¹⁹F-NMR-Signal des Amids ($\delta = 11.7$) ist gegenüber dem des Amins 14 ($\delta = 1.0$) aufgrund des LiF-Kontakts um 10.7 in Richtung Tieffeld verschoben. Das ⁷Li-NMR-Spektrum zeigt eine Aufspaltung zum Dublett (${}^{1}J_{\text{LiF}} = 3.9 \text{ Hz}$). Die ${}^{29}\text{Si}$ -NMR-Signale sind gegenüber 14 hochfeldverschoben. Dies ist auf die SiN-Bindungsverkürzung im Amid zurückzuführen. Die ${}^{1}J_{\text{SiF}}$ -Kopplung (${}^{1}J_{\text{SiF}}$ = 260.6 Hz) ist im Amid 16 aufgrund des Lithium-Fluor-Kontakts 43.2 Hz kleiner als im Amin 14 $({}^{1}J_{\text{SiF}} = 303.8 \text{ Hz})$. Die ${}^{3}J_{\text{SiF}}$ -Kopplung ist dagegen im Amid 16 (${}^{3}J_{\text{SiF}}$ = 3.6 Hz) größer als im Amin 14 $({}^{3}J_{\text{SiF}} = 1.1 \text{ Hz})$. **16** ist im Vakuum unzersetzt destillierbar. Erst oberhalb 140 °C gibt es im Vakuum die gebundenen THF-Moleküle ab. Lithiumfluorid-Eliminierung wird nicht beobachtet. 16 zersetzt sich oberhalb 180°C. Die Synthese eines Iminosilans gelang nicht (Gl. (14)) [15].

Kristallstruktur von 16

Der strukturelle Aufbau der lithiierten Aminofluorsilane ist ausschlaggebend für deren Reaktionsverhalten [15]. **16** kristallisiert aus THF als monomeres Amid in der monoklinen Raumgruppe C2/c.

Das Lithiumatom liegt durch Bindungen an das Fluoratom, das Stickstoffatom, das Sauerstoffatom des Furanrestes sowie die Sauerstoffatome zweier THF-Moleküle fünffach koordiniert vor.

Die Struktur zeigt im Grundgerüst drei anellierte Ringsysteme bestehend aus einem planaren viergliedrigen NSiFLi-Ring, einem fünfgliedrigen SiNLiOC-Ring, bei dem das Lithiumatom etwas aus der Ringebene herausragt, und einem planaren fünfgliedrigen OCCCC-Ring (vgl. Abb. 4).

Die SiN-Bindungslängen betragen Si(1)-N(1) = 164.0 pm und Si(2)-N(1) = 166.4 pm. Beide Bindungen sind deutlich kürzer als SiN-Einfachbindun-

Tab. 3. Ausgewählte Bindungslängen [pm] und -winkel $[^{\circ}]$ von **16**.

Si(2)-N(1) Si(1)-F(1) N(1)-Li(1)	166.4 166.3 216.2	Li(1)-O(1) Li(1)-O(2) Li(1)-O(3)	207.9 197.3 205.9
Si(1)-N(1)-Si(2) N(1)-Si(1)-F(1) Si(1)-F(1)-Li(1) Si(2)-N(1)-Li(1) Si(1)-N(1)-Li(1) F(1)-Li(1)-N(1) O(3)-Li(1)-N(1) O(1)-Li(1)-N(1)	161.5 103.7 90.1 108.1 90.4 74.1 141.4 89.3	O(2)-Li(1)-O(1) O(2)-Li(1)-F(1) O(1)-Li(1)-F(1) O(2)-Li(1)-O(3) O(3)-Li(1)-O(1) O(3)-Li(1)-F(1) O(2)-Li(1)-N(1)	103.8 97.6 157.9 93.6 91.5 92.6 123.6

Abb. 3. Kristallstruktur des Lithium-di-*tert*-butylfluorsilyl(di-*tert*-butyl-2-furanylsilyl)amid-THF-Addukts (16).

gen mit 170 - 180 pm. Der Winkel am Stickstoffatom beträgt Si(1)-N(1)-Si(2) = 161.5° und die Winkelsumme am Stickstoffatom beträgt 359.9°, was Planarität anzeigt. Auffällig lang ist der LiN-Abstand mit 216.2 pm.

Die LiO-Abstände unterscheiden sich stark: der kürzeste ist der zu einem THF-Molekül Li(1)-O(2) = 197.3 pm, gefolgt von Li(1)-O(3) = 205.9 pm (THF) und Li(1)-O(1) = 207.9 pm (Furan). Abb. 4

Abb. 4. Grundgerüst von 16 im Kristall.

veranschaulicht die räumliche Anordnung der Ringe sowie die pseudo-quadratisch-pyramidale Umgebung des Lithiumatoms.

Wird **16** im Vakuum (10^{-2} mbar) über 140 °C erhitzt, so werden die zwei Moleküle THF abgegeben. **17** ist auch aus **14** in Toluol/*n*-Hexan zugänglich.

Kristallstruktur von 17

17 kristallisiert aus Toluol in der triklinen Raumgruppe P1.

17 bildet im Kristall über zwei LiF-Bindungen ein Dimer. Dadurch ergeben sich fünf anellierte Ringe. Ein zentraler achtgliedriger (LiNSiF)₂-Ring besitzt in der Mitte ein Inversionszentrum. Über die beiden LiN-Bindungen schließt sich jeweils ein fünfgliedriger LiNSiCO-Ring an. Über die CO-Bindung ist an beide LiNSiCO-Ringe noch je ein fünfgliedriger Furan-Ring angefügt. Die Lithiumatome sind durch Bindungen zu einem Stickstoffatom, einem Sauerstoffatom und einem Fluoratom dreifach koordiniert. Die Bindungen sind kürzer

Tab. 4. Ausgewählte Bindungslängen [pm] und -winkel [°] von **17**.

Si(1)-N(1)	164.3	Si(2)-N(1)	167.1
Si(1)-F(1)	170.4	Li(1a)-N(1)	200.5
Li(1)-F(1)	184.9	Li(1a)-O(24)	199.7
Si(2)-C(20)	191.1		
Si(1)-N(1)-Si(2)	159.2	F(1)-Li(1)-N(1a)	143.1
Si(2)-N(1)-Li(1a)	102.2	F(1)-Li(1a)-O(24)	118.9
Si(1)-N(1)-Li(1a)	98.4	O(24)-Li(1a)-N(1a)	95.7
N(1)-Si(1)-F(1)	103.1	Si(1)-F(1)-Li(1)	162.7

Abb. 5. Kristallstruktur des Lithium-di-*tert*-butylfluorsilyl(di-*tert*-butyl-2-furanylsilyl)amids (**17**).

als am fünffach koordinierten Lithium in Verbindung **16**. Die Winkelsumme beträgt am Lithiumatom 357.7° und am Stickstoffatom 359.8°, was jeweils Planarität anzeigt. Die SiN-Bindungsabstände liegen in der Größenordnung von SiN-Doppelbindungen.

Abb. 6. Grundgerüst des Lithiumamids (17) in der Kristallstruktur.

Wie die Abb. 6 veranschaulicht, liegen die Atome des zentralen achtgliedrigen Ringes in einer Ebene, aus der ein Lithiumatom nach oben, das zweite nach unten herausragt. Die Siliciumatome Si(2) und Si(2a) der benachbarten Ringe liegen in der durch den achtgliedrigen Ring aufgespannten Ebene. Aus der Ebene der zwei fünfgliedrigen NLiOCSi-Ringe ragt das Stickstoffatom heraus. Für den Gesamtaufbau der Ringsysteme ergibt sich eine große "Sesselkonformation".

Wie bei 16 tritt auch bei 17 beim Erwärmen keine Eliminierung von LiF unter Bildung eines Iminosilans ein.

Experimenteller Teil

Alle Reaktionen (mit Ausnahme der mit * gekennzeichneten) wurden unter Feuchtigkeitsausschluss in einer trockenen Schutzgasatmosphäre (N₂, Ar) durchgeführt. Verwendetes *n*-Butyllithium lag als 15-proz. Lösung in *n*-Hexan vor, Lösungsmittel wurden mit LiAlH₄ getrocknet und – soweit möglich – über Natriumdraht, ansonsten über Molekularsieb aufbewahrt. Der Reaktionsverlauf wurde NMR-spektroskopisch (¹H, ¹⁹F) verfolgt. Die Reinheit der isolierten Substanzen wurde kernresonanzspektroskopisch und nach Möglichkeit massenspektroskopisch oder gaschromatographisch gesichert.

Chlor-2-furanyl-dimethylsilan (1)

0.1 mol Furan (6.80 g) wird mit 0.1 mol *n*-Butyllithium (65.0 ml) versetzt und 1 h unter Rückfluss erhitzt. Das entstandene Lithiumsalz wird bei -15° C zu einer Lösung aus 0.1 mol Me₂SiCl₂ (12.9 g) in 50 ml *n*-Hexan gegeben und 2 h bei dieser Temperatur gerührt. Danach werden die flüchtigen Bestandteile im Vakuum (10⁻² mbar) abgetrennt. Anschließende Destillation im Vakuum (12 mbar) liefert Verbindung **1**.

Ausb. 51%. – Sdp. 40 °C/12 mbar. – ¹H-NMR (CDCl₃): $\delta = 0.69$ [s, 6H, SiMe], 6.43 [dd, 1H, 4-H, ³J_{HH} = 3.3 Hz, ³J_{HH} = 1.7 Hz], 6.85 [dd, 1H, 3-H, ³J_{HH} = 3.3 Hz, ⁴J_{HH} = 0.6 Hz], 7.68 [dd, 1H, 5-H, ${}^{3}J_{\text{HH}} = 1.7$ Hz, ${}^{4}J_{\text{HH}} = 0.6$ Hz]. $-{}^{13}\text{C-NMR}$ (CDCl₃): $\delta = 1.55$ [s, SiC], 109.76 [s, 4-C], 121.83 [s, 3-C], 147.69 [s, 5-C], 155.47 [s, 2-C]. $-{}^{29}\text{Si-NMR}$ (CDCl₃): $\delta = 9.23$. - MS (EI) m/z(%) = 160(39)[M⁺], 145(100) [M-CH₃⁺]. $-C_{6}\text{H}_{9}\text{CIOSi}$ (160.67): ber. C 48.45, H 5.65; gef. C 49.04, H 5.83.

Dimethyl-di(2-furanyl)silan (2)

0.1 mol Furan (6.80 g) wird mit 0.1 mol *n*-Butyllithium (65.0 ml) versetzt und 1 h unter Rückfluss erhitzt. Anschließend werden 0.05 mol Me_2SiCl_2 (6.50 g) bei R. T. zugegeben. Aufarbeitung analog Verbindung 1 liefert Verbindung 2.

Ausb. 85%. – Sdp. 35°C/ 0.01 mbar. – ¹H-NMR (CDCl₃): δ = 0.73 [s, 6H, SiMe], 6.53 [dd, 2H, 4-H, ³J_{HH} = 3.3 Hz,³J_{HH} = 1.7 Hz], 6.90 [dd, 2H, 3-H, ³J_{HH} = 3.3 Hz, ⁴J_{HH} = 0.6 Hz], 7.80 [dd, 2H, 5-H, ³J_{HH} = 1.7 Hz, ⁴J_{HH} = 0.6 Hz]. – ¹³C-NMR (CDCl₃): δ = 3.40 [s, SiC], 109.51 [s, 4-C], 121.28 [s, 3-C], 147.14 [s, 5-C], 156.60 [s, 2-C]. – ²⁹Si-NMR (CDCl₃): δ = 24.01. – MS (EI) *m*/*z*(%) = 192(55) [M⁺], 177(100) [M-CH₃⁺]. – C₁₀H₁₂O₂Si (192.28): ber. C 62.47, H 6.29; gef. C 62.59, H 6.41.

tert-Butyl-tri(2-furanyl)silan (**3**) *und Tetra(2-furanyl)silan* (**4**)

0.1 mol Furan (6.80 g) wird mit 0.1 mol *n*-Butyllithium (65.0 ml) versetzt und 1 h unter Rückfluss erhitzt. Zur abgekühlten Suspension werden 0.03 mol 'BuSiF₃ (4.27 g) in 50 ml *n*-Hexan zugegeben bzw. 0.03 mol SiF₄ (3.12 g) in die Suspension eingeleitet. Die entstandenen Rohprodukte werden im Vakuum (10^{-2} mbar) unter Erwärmen abgezogen. Verbindungen **3** und **4** werden durch Destillation im Vakuum (10^{-2} mbar) rein erhalten. **4** wird anschließend aus *n*-Hexan umkristallisiert.

3: Ausb. 89%. – Sdp. 80°C/ 0.01 mbar. – ¹H-NMR $(CDCl_3): \delta = 1.02 [s, 9H, CMe], 6.26 [dd, 3H, 4-H, {}^{3}J_{HH} =$ $3.3 \text{ Hz}, {}^{3}J_{\text{HH}} = 1.1 \text{ Hz}$, 6.72 [dd, 3H, 3-H, ${}^{3}J_{\text{HH}} = 3.3 \text{ Hz}$, ${}^{4}J_{\rm HH} = 0.6 \text{ Hz}$], 7.57 [dd, 3H, 5-H, ${}^{3}J_{\rm HH} = 1.1 \text{ Hz}$, ${}^{4}J_{\rm HH} =$ 0.6 Hz]. $-{}^{13}$ C-NMR (CDCl₃): $\delta = 18.38 \text{ [s, SiC]}$, 26.47 [s, SiCC₃], 109.56 [s, 4-C], 124.33 [s, 3-C], 147.71 [s, 5-C], 152.78 [s, 2-C]. – ²⁹Si-NMR (CDCl₃): δ = –31.22. – MS (EI) m/z: (%) = 286(15) [M⁺], 229(100) [M-C(CH₃)₃⁺]. - C₁₆H₁₈O₃Si (286.40). 4: Ausb: 87%. - Schmp. 93 °C - 95 °C. – ¹H-NMR (CDCl₃): δ = 6.46 [dd, 1H, 4-H, ${}^{3}J_{\text{HH}} = 3.3 \text{ Hz}, {}^{3}J_{\text{HH}} = 1.6 \text{ Hz}], 6.98 \text{ [dd, 1H, 3-H, }{}^{3}J_{\text{HH}} =$ 3.3 Hz, ${}^{4}J_{\text{HH}} = 0.6$ Hz], 7.76 [dd, 1H, 5-H, ${}^{3}J_{\text{HH}} = 1.6$ Hz, ${}^{4}J_{\text{HH}} = 0.6 \text{ Hz}]. - {}^{13}\text{C-NMR} \text{ (CDCl}_3): \delta = 109.93 \text{ [s, 4-}$ C], 125.04 [s, 3-C], 148.58 [s, 5-C], 150.69 [s, 2-C]. -²⁹Si-NMR (CDCl₃): $\delta = -55.47. - MS$ (EI) m/z: (%) = 296(100) $[M^+]$. – $C_{16}H_9O_4Si$ (296.35): ber. C 64.85, H 3.06; gef. C 64.61, H 2.97.

Fluor-2-furanyl-di(isopropyl)silan (5)

0.1 mol Furan (6.80 g) wird mit 0.1 mol *n*-Butyllithium (65.0 ml) versetzt und anschließend 2 h unter Rückfluss erhitzt. Zur abgekühlten Suspension werden 0.1 mol Diisopropyldifluorsilan (15.2 g) gegeben. Die Reaktionslösung wird unter Rückfluss erhitzt. Nach beendeter Reaktion werden die flüchtigen Bestandteile im Vakuum (10^{-2} mbar) vom entstandenen Lithiumfluorid abgetrennt. Durch Destillation im Vakuum (10^{-2} mbar) wird Verbindung **5** erhalten.

Ausb. 57%. – Sdp. 73°C/ 12 mbar. – ¹H-NMR (CDCl₃): $\delta = 1.07$ [d, 6H, Me, ³ $J_{HH} = 7.0$ Hz], 1.13 [d, 6H, Me, ³ $J_{HH} = 7.0$ Hz], 1.19 - 1.40 [m, 2H, CH], 6.44 [ddd, 4-H, ³ $J_{HH} = 3.3$ Hz, ³ $J_{HH} = 1.7$ Hz, ⁵ $J_{HF} = 0.4$ Hz], 6.89 [ddd, 3-H, ³ $J_{HH} = 3.3$ Hz, ⁴ $J_{HH} = 0.6$ Hz, ⁴ $J_{HF} = 0.3$ Hz], 7.70 [dd, 5-H, ³ $J_{HH} = 1.7$ Hz, ⁴ $J_{HH} = 0.6$ Hz]. – ¹³C-NMR (CDCl₃): $\delta = 12.21$ [d, SiC, ² $J_{CF} = 13.4$ Hz], 16.40 [s, SiC C_2], 109.29 [s, 4-C], 122.76 [s, 3-C], 147.35 [s, 5-C], 153.31 [d, 2-C, ² $J_{CF} = 22.5$ Hz]. – ¹⁹F-NMR (CDCl₃): $\delta = -19.65. - ^{29}$ Si-NMR (CDCl₃): $\delta = 11.19$ [d, ¹ $J_{SiF} = 291.5$ Hz]. – MS (EI) m/z: (%) = 200(20) [M⁺], 185(8) [M-CH₃⁺]. – C₁₀H₁₇FOSi (200.32).

Di(2-furanyl)di(isopropyl)silan (6)

0.1 mol Furan (6.80 g) wird mit 0.1 mol *n*-Butyllithium (65.0 ml) versetzt und anschließend 2 h unter Rückfluss erhitzt. Zur abgekühlten Suspension werden 0.05 mol Diisopropyldifluorsilan (7.60 g) gegeben. Die Reaktionslösung wird unter Rückfluss erhitzt, bis die Reaktion beendet ist. Die Aufarbeitung erfolgt analog der Verbindung **5**.

Ausb. 80%. – Sdp. 70°C/ 12 mbar. – ¹H-NMR (CDCl₃): $\delta = 1.17$ [d, 12H, Me. – ³ $J_{HH} = 7.0$ Hz], 1.45 [sept, 2H, CH, ³ $J_{HH} = 7.0$ Hz], 6.45 [dd, 2H, 4-H, ³ $J_{HH} = 3.3$ Hz, ³ $J_{HH} = 1.7$ Hz], 6.84 [dd, 2H, 3-H, ³ $J_{HH} = 3.3$ Hz, ⁴ $J_{HH} = 0.6$ Hz], 7.74 [dd, 2H, 5-C, ³ $J_{HH} = 1.7$ Hz, ⁴ $J_{HH} = 0.6$ Hz]. – ¹³C-NMR (CDCl₃): $\delta = 11.34$ [s, SiC], 17.72 [s, SiCC₂], 109.31 [s, 4-C], 122.97 [s, 3-C], 147.18 [s, 5-C], 154.28 [s, 2-C]. – ²⁹Si-NMR (CDCl₃): $\delta = -13.33$. – MS (EI) *m/z*: (%) = 248(20) [M⁺], 205(100) [M⁺-C₃H₇]. – C₁₄H₂₀O₂Si (248.39): ber. C 67.70, H 8.12; gef. C 67.87, H 8.23.

Di(tert-butyl)fluor-2-furanylsilan (7)

0.1 mol Furan (6.80 g) wird mit 0.1 mol *n*-Butyllithium (65.0 ml) versetzt und anschließend 2 h unter Rückfluss erhitzt. Zur abgekühlten Suspension werden 0.1 mol Di-*tert*-butyldifluorsilan (18.0 g) gegeben. Die Reaktionslösung wird unter Rückfluss erhitzt. Nach beendeter Reaktion werden die flüchtigen Bestandteile im Vakuum (10^{-2} mbar) vom entstandenen Lithiumfluorid abgetrennt. Durch Destillation wird Verbindung 7 erhalten. Ausb. 73%. – Sdp. 25°C/ 0.01 mbar. – ¹H-NMR (CDCl₃): δ = 1.17 [d, 18H, Me, ⁴J_{HF} = 1.7 Hz], 6.46 [dd, 1H, 4-H, ³J_{HH} = 3.3 Hz, ³J_{HH} = 1.6 Hz], 6.94 [ddd, 1H, 3-H, ³J_{HH} = 3.3 Hz, ⁴J_{HH} = 0.6 Hz, ⁴J_{HF} = 0.6 Hz], 7.72 [ddd, 1H, 5-H, ³J_{HH} = 1.6 Hz, ⁴J_{HH} = 0.6 Hz, ⁵J_{HF} = 0.6 Hz]. – ¹³C-NMR (CDCl₃): δ = 20.17 [d, SiC, ²J_{CF} = 12.2 Hz], 26.91 [d, SiCC₃, ³J_{CF} = 0.9 Hz], 109.33 [s, 4-C], 122.69 [s, 3-C], 146.98 [d, 5-C, ⁴J_{CF} = 1.11 Hz], 153.77 [d, 2-C, ²J_{CF} = 23.7 Hz]. – ¹⁹F-NMR (CDCl₃): δ = -25.22. – ²⁹Si-NMR (CDCl₃): δ = 10.15 [d, ¹J_{SiF}= 296.1 Hz]. – MS (EI) *m*/*z*: (%) = 228(40) [M⁺], 171(100) [M-C(CH₃)₃⁺]. – C₁₂H₂₁FOSi (228.38).

2.5-Bis(diisopropylfluorsilyl)furan (8) und 2.5-Bis(ditert-butylfluorsilyl)furan (9)

0.1 mol Furan (6.80 g) wird mit 0.2 mol *n*-Butyllithium (130 ml) versetzt und anschließend 2 h unter Rückfluss erhitzt. Zur abgekühlten Suspension werden 0.2 mol Diisopropyldi-fluorsilan (30.4 g) bzw. Di-*tert*-butyldifluorsilan (36.0 g) gegeben. Die Reaktionslösung wird unter Rückfluss erhitzt. Nach beendeter Reaktion werden die flüchtigen Bestandteile im Vakuum (10^{-2} mbar) vom entstandenen Lithiumfluorid abgetrennt. Anschließende Destillation liefert Verbindung **8** bzw. **9**.

8: Ausb. 64%. – Sdp. 65°/ 0.01 mbar. – ¹H-NMR (CDCl₃): δ = 1.08 [d, 12H, Me, ³J_{HH} = 7.1 Hz], 1.12 [d, 12H, Me, ³J_{HH} = 6.8 Hz], 1.20 - 1.40 [m, 4H, CH], 6.90 [s, 2H, 3-H, 4-H]. – ¹³C-NMR (CDCl₃): δ = 12.40 [d, SiC, ²J_{CF} = 13.3 Hz], 16.46 [s, SiCC₂], 122.27 [s, 3-C, 4-C], 158.80 [dd, 2-C, 5-C, ²J_{CF} = 21.5 Hz, ⁴J_{CF} = 0.9 Hz]. – ¹⁹F-NMR (CDCl₃): δ = 19.80. – ²⁹Si-NMR (CDCl₃): δ = 11.49 [d, ¹J_{SiF} = 292.4 Hz]. – MS (EI) *m*/*z*: (%) = 332(25) [M⁺], 289(5) [M⁺-C₃H₇]. – C₁₆H₃₀F₂OSi₂ (332.58).

9: Ausb. 78%. – Sdp. 90 °C/0.01 mbar. – ¹H-NMR (CDCl₃): δ = 1.09 [d, 36H, Me, ⁴J_{HF} = 1.5 Hz], 6.90 [s, 2H, 3-H, 4-H]. – ¹³C-NMR (CDCl₃): δ = 20.05 [d, SiC, ²J_{CF} = 12.1 Hz], 26.88 [d, SiCC₃, ³J_{CF} = 1.0 Hz], 122.2 [s, 3-C, 4-C], 158.9 [dd, 2-C, 5-C, ²J_{CF} = 24.0 Hz, ⁴J_{CF} = 0.5 Hz]. – ¹⁹F-NMR (CDCl₃): δ = -25.66. – ²⁹Si-NMR (CDCl₃): δ = 10.44 [d, ¹J_{SiF} = 297.0 Hz]. – MS (EI) *m*/*z*: (%) = 388(30) [M⁺], 331(100) [M-C(CH₃)₃⁺]. – C₂₀H₃₈F₂OSi₂ (388.68): ber. C 61.80, H 9.85; gef. C 62.02, H. 9.96.

1.4-Bis(di-tert-butylfluorsilyl)butadiin (10)

0.10 mol Furan (6.80 g) wird mit 0.25 mol *n*-Butyllithium (163 ml) versetzt und anschließend 2 h unter Rückfluss erhitzt. Zur abgekühlten Suspension werden 0.20 mol Di-*tert*-butyldifluorsilan (36.0 g) gegeben. Die Reaktionslösung wird unter Rückfluss erhitzt, bis die Reaktion beendet ist. Anschließend werden die flüchtigen Bestandteile im Vakuum (10^{-2} mbar) vom entstandenen Lithiumfluorid abgetrennt. Verbindung **10** wird nach Destillation der Rohprodukte fraktioniert kristallisiert.

Ausb.8%. – Schmp. 100°C. – ¹H-NMR (CDCl₃): δ = 1.08 [d, Me, ⁴J_{HF} = 1.1 Hz]. – ¹³C-NMR (CDCl₃): δ = 20.07 [d, SiCC₃, ²J_{CF} = 13.3 Hz], 26.53 [d, SiCC₃, ³J_{CF} = 0.8 Hz], 80.15 [dd, SiC, ²J_{CF} = 22.7 Hz, ⁵J_{CF} = 0.8 Hz], 89.18 [dd, CC, ³J_{CF} = 4.6 Hz, ⁴J_{CF} = 1.9 Hz]. – ¹⁹F-NMR (CDCl₃): δ = –17.52. – ²⁹Si-NMR (CDCl₃): δ = 5.02 [d, ¹J_{SiF} = 301.2 Hz]. – MS (EI) *m*/*z*: (%) = 370(100) [M⁺], 331(70) [M-C(CH₃)₃⁺]; (FI) *m*/*z* (%) = 370(100) [M⁺]. – C₂₀H₃₆F₂Si₂ (370.67).

1.4-Bis(di-tert-butylhydroxysilyl)butadiin (11)

Zu einer Süspension aus 0.02 mol Kaliumhydroxid (1.12 g) in 200 ml Diethylether werden 0.01 mol der Verbindung **10** gegeben. Die Suspension wird 24 h bei R. T. gerührt. Die Reaktionsmischung wird zur Abtrennung vom entstandenen Kaliumfluorid filtriert. Anschließend wird der Diethylether im Vakuum (10^{-2} mbar) abgetrennt. Die erhaltene Verbindung **11** kann aus Diethylether kristallisiert werden.

Ausb. 72%. – Schmp. 107°C. – ¹H-NMR (CDCl₃): $\delta = 1.00$ [s, 36H, Me], 1.81 [br, s, 2H, OH]. – ¹³C-NMR (CDCl₃): $\delta = 19.85$ [s, SiCC₃], 27.08 [s, SiCC₃], 110.73 [s, SiC], 122.01 [s, CCC]. – ²⁹Si-NMR (CDCl₃): $\delta = -4.64$. – MS (EI) *m/z*: (%) = 309(80) [M⁺-C₄H₉]. – C₂₀H₃₈O₂Si₂ (366.69): ber. C 65.51, H 10.44; gef. C = 65.43, H 10.34.

Aminodiisopropyl-2-furanylsilan (12) und Aminodi-tertbutyl-2-furanylsilan (13)

0.1 mol NaNH₂ (3.9 g) wird in 100 ml THF suspendiert. Die Suspension wird bis zum Sieden erhitzt. In der Siedehitze werden 0.1 mol der Verbindungen **5** bzw. **7** dazugegeben. Die Reaktionsmischung wird unter Rückfluss erhitzt, bis die Reaktion beendet ist. Durch Filtration wird das entstandene Natriumfluorid abgetrennt. Destillation im Vakuum (10^{-2} mbar) liefert die Verbindungen **12** und **13**.

12: Ausb. 67%. – Sdp. 82 °C / 12 mbar. – ¹H-NMR (CDCl₃): δ = 0.37 - 0.49 [br,s, 2H, NH], 0.73 [sept, 2H, CH, ³J_{HH} = 6.9 Hz], 0.91 [d, 12H, Me, ³J_{HH} = 6.9 Hz], 6.27 [dd, 1H, 4-H, ³J_{HH} = 3.2 Hz, ³J_{HH} = 1.7 Hz], 6.61 [dd, 1H, 3-H, ³J_{HH} = 3.2 Hz, ⁴J_{HH} = 0.5 Hz], 7.55 [dd, 1H, 5-H, ³J_{HH} = 1.7 Hz, ⁴J_{HH} = 0.5 Hz]. – ¹³C-NMR (CDCl₃): δ = 12.72 [s, SiC], 16.99 [s, SiCC₂], 108.68 [s, 4-C], 120.73 [s, 3-C], 146.14 [s, 5-C], 157.56 [s, 2-C]. – ²⁹Si-NMR (CDCl₃): δ = -4.69. – MS (EI) *m/z*: (%) = 154(80) [M⁺-C₃H₇]. – C₁₀H₁₉NOSi (197.35).

13: Ausb. 92%. – Sdp. 49 °C / 0.01 mbar. – ¹H-NMR (CDCl₃): δ = 0.5 - 0.7 [br,s, 2H, NH], 1.02 [s, 18H, Me], 6.37 [dd, 1H, 4-H, ³J_{HH} = 3.2 Hz, ³J_{HH} = 1.7 Hz], 6.73 [dd, 1H, 3-H, ³J_{HH} = 3.2 Hz, ⁴J_{HH} = 0.6 Hz], 7.65 [dd,

1H, 5-H, ${}^{3}J_{\text{HH}} = 1.7$ Hz, ${}^{4}J_{\text{HH}} = 0.6$ Hz]. – 13 C-NMR (CDCl₃): $\delta = 19.55$ [s, SiC], 27.79 [s, SiCC₃], 108.94 [s, 4-C], 121.41 [s, 3-C], 146.25 [s, 5-C], 158.50 [s, 2-C]. – 29 Si-NMR (CDCl₃): $\delta = -4.15$. – MS (EI) m/z: (%) = 225(5) [M⁺], 168(50) [M-C(CH₃)₃⁺], 151(100) [M-C(CH₃)₃NH₂⁺]. – C₁₂H₂₃NOSi (225.40): ber. C 63.95, H 10.28; gef. C 64.07, H 10.41.

Di-tert-butylfluorsilyl(di-tert-butyl-2-furanylsilyl)amin (14) und Di-tert-butyl-bis(di-tert-butyl-2-furanylsilylamino)silan (15)

Eine Lösung aus 0.1 mol **13** (22.5 g) in 150 ml *n*-Hexan und 50 ml THF wird mit 0.1 mol *n*-Butyllithium (65 ml) versetzt und anschließend unter Rückfluss erhitzt, bis die Butanabspaltung beendet ist. Zur abgekühlten Reaktionslösung wird 0.1 mol ${}^{t}Bu_{2}SiF_{2}$ (18.0 g) gegeben. Die Reaktionsmischung wird unter Rückfluss erhitzt, bis die Reaktion beendet ist. Die flüchtigen Bestandteile werden im Vakuum (10⁻² mbar) vom entstandenen Lithiumfluorid abgetrennt. Anschließende Destillation liefert Verbindung **14** und **15**.

14: Ausb. 91%. – Sdp. 120 °C / 0.01 mbar. – ¹H-NMR (CDCl₃): δ = 0.40 - 0.47 [br,d, 1H, NH, ³J_{HF} = 9.9 Hz], 0.99 [d, 18H, FSiCMe, ⁴J_{HF} = 1.0 Hz], 1.10 [s, 18H, Me], 6.37 [dd, 1H, 4-H, ³J_{HH} = 3.3 Hz, ³J_{HH} = 1.7 Hz], 6.86 [dd, 1H, 3-H, ³J_{HH} = 3.3 Hz, ⁴J_{HH} = 0.5 Hz], 7.63 [dd, 1H, 5-H, ³J_{HH} = 1.7Hz, ⁴J_{HH} = 0.5 Hz]. – ¹³C-NMR (CDCl₃): δ = 20.88 [s, SiC], 21.00 [d, FSiC $_3$, ³J_{CF} = 1.3 Hz], 109.28 [s, 4-C], 122.66 [s, 3-C], 145.74 [s, 5-C], 156.52 [s, 2-C]. – ¹⁹F-NMR (CDCl₃): δ = 0.97 [d, ³J_{HF} = 9.9Hz]. – ²⁹Si-NMR (CDCl₃): δ = -4.66 [d, SiC₃, ³J_{SiF} = 1.1Hz], 2.54 [d, SiF, ¹J_{SiF} = 303.8Hz]. – MS (EI) *m/z*: (%) = 328(100) [M-C₄H₉⁺]. – C₂₀H₄₀FNOSi₂ (385.71): ber. C 62.28, H 10.45; gef. C 62.51, H 10.62.

15: Ausb. 6%. – Schmp. 95°C. – ¹H-NMR (CDCl₃): $\delta = 0.95$ [s, 18H, N₂SiCMe], 1.07 [s, 36H, Me], 6.37 [dd, 2H, 4-H/4'-H, ³J_{HH} = 3.3 Hz, ³J_{HH} = 1.7 Hz], 6.93 [dd, 2H, 3-H/3'-H, ³J_{HH} = 3.3 Hz, ⁴J_{HH} = 0.5 Hz], 7.63 [dd, 2H, 5-H/5'-H, ³J_{HH} = 1.7 Hz, ⁴J_{HH} = 0.5 Hz]. – ¹³C-NMR (CDCl₃): $\delta = 21.82$ [s, SiC], 22.91 [s, N₂SiC], 29.35 [s, N₂SiCC₃], 29.49 [s, SiCC₃], 109.43 [s, 4-C], 123.37 [s, 3-C], 145.83 [s, 5-C], 155.88 [s, 2-C]. – ²⁹Si-NMR (CDCl₃): $\delta = -7.49$ [s, SiC₃], –0.18 [s, SiN₂]. – MS (EI) *m*/*z*: (%) = 533(100) [M-C₄H₉⁺]. – C₃₂H₆₂N₂O₂Si₃ (591.11).

Lithium-di-tert-butylfluorsilyl(di-tert-butyl-2-furanyl-silyl)amid-THF-Addukt (16)

0.01 mol **14** (3.85 g) wird in 50 ml THF gelöst und mit 0.01 mol *n*-Butyllithium (6.50 ml) versetzt. Die Reaktionslösung wird unter Rückfluss erhitzt, bis die Reaktion beendet ist. **16** kristallisiert bei -15 °C aus der Reaktionslösung.

	4	10	16	17
Summenformel	C ₁₆ H ₁₂ O ₄ Si	C ₂₀ H ₃₆ F ₂ Si ₂	C ₃₀ H ₅₉ FLiNO _{3 50} Si ₂	$C_{40}H_{78}F_{2}Li_{2}N_{2}O_{2}Si_{4}$
Molmasse	296.35	370.67	571.90	783.28
Temperatur [K]	220(2)	153(2)	150(2)	153(2)
Wellenlänge [pm]	71.073	71.073	71.073	71.073
Kristallsystem	tetragonal	triklin	monoklin	triklin
Raumgruppe	$P\bar{4}2_1c$	ΡĪ	C2/c	ΡĪ
a [pm]	1101.4(2)	615.0(4)	39.37.0(3)	889.4(2)
b [pm]	1101.4(2)	859.0(7)	1047.6(2)	1123.6(3)
c [pm]	651.0(10)	1191.0(8)	1682.3(3)	1314.9(4)
α [°]	90	105.86(6)	90	75.48(2)
βi°i	90	96.1(2)	100.74(3)	72.57(12)
γ [°]	90	101.9(3)	90	72.34(11)
Zellvolumen [nm ³]	0.7897	0.584(7)	6.817(6)	1.1761(6)
Z	2	1	8	1
Berechnete Dichte [Mg/m ³]	1.246	1.055	1.114	1.106
Absorptionskoeff. $[mm^{-1}]$	0.160	0.167	0.140	0.167
F(000)	308	202	2612	428
Kristallgröße [mm]	$0.70 \times 0.40 \times 0.30$	$0.70 \times 0.70 \times 0.60$	$0.70 \times 0.70 \times 0.20$	$0.50 \times 0.30 \times 0.30$
Gemessener 2θ Bereich [°]	3.64 bis 25.02	3.54 bis 25.02	3.53 bis 22.53	3.52 bis 22.54
Indexbereich	-13 < h < 13	-7 < h < 7	-42 < h < 42	-8 < h < 9
	$-13 \leq k \leq 13$	-10 < k < 9	$-11 \leq k \leq 11$	$-11 \le k \le 12$
	-2 < l < 7	$0 < \overline{l} < \overline{14}$	-6 < l < 18	$-13 \leq l \leq 14$
Gemessene Reflexe	1289	1938	6395	4107
Unabhängige Reflexe (R_{int})	536 (0.0558)	1938 (0.0000)	4448 (0.0293)	3078 (0.0359)
Strukturverfeinerung	— Vollmatrix Least-Squares an F^2 —			
Daten/Restraints/Parameter	535/0/48	1933/0/115	4441/0/360	3074 / 0 / 247
GOOF an F^2	1.128	1.171	1.037	1.030
Endgült. <i>R</i> -Werte $[I > 2\sigma(I)]$	R1 = 0.0933	R1 = 0.0854	R1 = 0.0423	R1 = 0.0353
	wR2 = 0.2812	wR2 = 0.2481	wR2 = 0.0980	wR2 = 0.0884
<i>R</i> -Werte (sämtliche Daten)	R1 = 0.1007	R1 = 0.0905	R1 = 0.0563	R1 = 0.0439
	wR2 = 0.2974	wR2 = 0.2610	wR2 = 0.1132	wR2 = 0.0986
Max. $[enm^{-3}]$	458	662	300	261
Min. $[enm^{-3}]$	-396	-521	-292	-210

Tab. 5. Kristalldaten von 4, 10, 16 und 17.

Ausb. 95%. – Schmp. 74°C – 80°C. – ¹H-NMR (C₆D₆): δ = 1.31 [s, 18H, CMe], 1.32 [m, 8H, CH₂], 1.37 [d, 18H, FSiCMe], 3.46 [m, 8H, OCH₂], 6.22 [dd, 1H, 4-H, ³J_{HH}= 3.3 Hz, ³J_{HH}= 1.7 Hz], 6.53 [dd, 1H, 3-H, ³J_{HH}= 3.3 Hz, ⁴J_{HH}= 0.4 Hz], 7.14 [dd, 1H, 5-H, ³J_{HH}= 1.7 Hz, ⁴J_{HH}= 0.4 Hz]. – ⁷Li-NMR (C₆D₆): δ = 0.59 [d, ¹J_{LiF}= 3.9 Hz]. – ¹³C-NMR (C₆D₆): δ = 22.0 [d, SiC, ⁴J_{CF} = 1.8 Hz], 22.4 [d, FSiC, ²J_{CF}= 20.5 Hz], 25.5 [s, CH₂], 29.2 [s, SiCC₃], 29.6 [s, FSiCC₃], 68.0 [s, OCH₂], 110.8 [s, 4-C], 117.8 [s, 3-C], 142.9 [s, 5-C], 147.3 [s, 2-C]. – ¹⁹F-NMR (C₆D₆): δ = 11.7. – ²⁹Si-NMR (C₆D₆): δ = –21.8 [d, SiC₃, ³J_{SiF} = 3.6 Hz], -7.5 [d, SiF, ¹J_{SiF} = 260.6 Hz]. – MS (EI) m/z: (%) = 334(100) [M-(C₄H₉)-2(THF)⁺]. – C₂₈H₅₅FLiNO₃Si₂ (535.85).

Lithium-di-tert-butylfluorsilyl(di-tert-butyl-2-furanylsilyl)amid (17)

Die Darstellung von **17** erfolgt analog Verbindung **16** in Toluol als Lösungsmittel. – Ausb. 56%. – Schmp. 195 °C (Zers.). – ⁷Li-NMR (C_6D_6/n -Hexan): $\delta = 1.03$ [br,s]. – ¹⁹F-NMR (C_6D_6/n -Hexan): $\delta = 8.07$ [s]. – $C_{40}H_{78}F_2Li_2N_2O_2Si_4$ (783.29).

Kristallstrukturanalyse von 4, 10, 16 und 17

Eine Zusammenfassung der Kristalldaten ist in Tab. 5 gegeben. Die Datensammlungen erfolgten auf einem Stoe-Siemens-AED2 Diffraktometer mit Mo-K_{α}-Strahlung (λ = 71.073 pm). Die Strukturen wurden mit direkten Methoden gelöst [17] und nach F²-Werten mit SHELXL-93 [18] verfeinert. Alle Nicht-Wasserstoffatome wurden anisotrop verfeinert. Wasserstoffatome wurden ideal positioniert und nach dem Reitermodell verfeinert. Die kristallographischen Daten der in dieser Veröffentlichung beschriebenen Strukturen wurden als "supplementary publication" nos. CCDC-145488, CCDC-145489, CCDC-145490 und CCDC-145491 beim Cambridge Crystallographic Data Centre hinterlegt. Kopien der Daten können kostenlos bei folgender Adresse in Großbritannien angefordert werden: CCDC, 12 Union Road, Cambridge CB21EZ (FAX: (+44)1223-336-033; Email: deposit@ccdc.cam.ac.uk). Dank

Für die Förderung dieser Arbeit danken wir dem Fonds der Chemischen Industrie.

- H. W. Gschwend, H. R. Rodriguez, Organic Reactions, John Wiley, New York, Vol. 26, 1 - 360 (1979).
- [2] B. J. Wakefield, The Chemistry of Organolithium Compounds, Pergamon Press, Oxford (1974).
- [3] J. M. Mallau, R. L. Bebb, Chem. Rev. 69, 693 (1969).
- [4] L. Brandsma, H. Verkruijsse, Preparative Polar Organometallic Chemistry 1, Springer Verlag, Berlin (1987).
- [5] M. S. Ho, H. N. C. Wong, J. Chem. Soc., Chem. Comm. 1238 - 1240 (1989).
- [6] A. P. Kotikowski, Heterocycles 16, 267 291 (1981).
- [7] N. H. Anderson, D. A. McCrae, D. B. Grotjahn, S. Y. Gahbe, L. J. Theodore, R. M. Ippolito, T. K. Sarkar, Tetrahedron 37, 4069 - 4079 (1981).
- [8] a) Z. J. Pang, F. Bocchio, O. Sterner, Tetrahedron Lett. 33, 6863 - 6866 (1992); b) R. C. Cambie, P. A. Craw, M. J. Stone, J. Nat. Prod. 51, 293 - 297 (1988);
 c) S. Hirsch, Y. Kashman, J. Nat. Prod., 51, 1243 -1245 (1988).
- [9] a) N. Katagiri, H. A. Haneda, C. Kaneko, J. Org. Chem. 53, 5464 - 5470 (1988); b) W. Eberbach, H. Fritz, N. Laber, Angew. Chem. 100, 599 - 600 (1988); Angew. Chem. Int. Ed. Engl. 27, 568 - 569 (1988); c) B. H. Lipschutz, Chem. Rev. 86, 795 -819 (1986); d) W. Eberbach, N. Laber, J. Bussenius, H. Fritz, G. Rihs, Chem. Ber. 126, 975 - 995 (1993).

- [10] E. Lukevics, M. G. Voronkov, Khim. Geterotsikl. Soedin. Akad. Nauk. Latv. SSR 31 (1965).
- [11] F. Riedmiller, A. Jockisch, H. Schmidbaur, Organometallics 18, 2760 (1999).
- [12] a) T. J. Barton, G. P. Hussmann, J. Am. Chem. Soc.
 105, 6316 (1983); b) A. J. Carpenter, D. J. Chadwick, Tetrahedron Lett. 26, 5335 (1985); c) W. Eberbach, H. Fritz, N. Laber, Angew. Chem. Int. Ed. Engl. 27, 568 (1988); d) E. J. Bures, B. A. Keay, Tetrahedron Lett. 29, 1247 (1988).
- [13] D. J. Chadwick, Ch. Willbe, J. Chem. Soc., Perkin 1, 887 - 893 (1977).
- [14] R. Gräfing, L. Brandsma, Rec. Trav. Chim. Pays-Bas 95, 264 (1976).
- [15] M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 4. Auflage, S. 179 Georg Thieme Verlag Stuttgart (1991).
- [16] I. Hemme, U. Klingebiel, Adv. in Organomet. Chem. 39, 159 - 192 (1996).
- [17] G. M. Sheldrick, Acta Crystallogr. A 46, 467 (1990).
- [18] G. M. Sheldrick, SHELXL-93, Program for crystal structure refinement, University of Göttingen (1993).