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 The reaction of alkyl styryl ketones with Fe3(CO)12 

gives 3-acyl-4, 5-diphenylcyclohexanones in a manner of

[2+4] cyclodimerization. (η4-Enone)Fe(CO)3 complexes

serve as catalyst for this reaction. Silyl enol ethers of 

the same ketones afford 4-acyl-3, 5-diphenylcyclohexanones 

in the different type of [2+4] cyclodimerization upon 

treatment with Fe3(CO)12.

 In a previous paper, we have reported that the reaction of unenolizable 

a,s-unsaturated ketones such as benzylideneacetophenone with Fe3(CO)12 in 

refluxing toluene gives cyclopentene derivatives in high yields.1) This reac-

tion has been interpreted as a deoxygenative [2+3) cyclodimerization of inter-

mediary (n4-enone)tricarbonyliron complexes. 1) We now report that enolizable 

a,s-unsaturated ketones such as alkyl styryl ketones and their silyl enol ethers 

undergo respectively different types of [2+4] cyclodimerizations upon treatment 

with Fe 3(CO)12. Alkyl styryl ketones were converted into 3-acyl-4,5-diphenyl-

cyclohexanones via their tricarbonyliron complexes. It was also found that 

(TI 4-enone)tricarbonyliron complexes serve as effective catalyst for this conver-

sion. On the other hand, silyl enol ethers of the same ketones were converted 

into 4-acyl-3,5-diphenylcyclohexanones probably via their iron enolates. 

 A mixture of methyl styryl ketone (1a; 876 mg, 6mmol) and Fe3(CO)12 (503 

mg, 1mmol) in dry toluene (10cm3) was refluxed for 20 h under nitrogen and 

poured onto I2-benzen solution. The resulting mixture was stirred for 1 h at



1636 Chemistry Letters , 1986 

 Table 1. Reaction of alkyl styryl ketones with iron carbonyls

a) Isolated yields based on ketones 1 used, and those in parentheses 

based on iron carbonyls used.

room temperature and then washed successively with 10% aqueous NaOH, water, 10% 

HCl, and water. The organic layer was dried over Na2SO4 and evaporated. 

Chromatography of the residue on silica gel with benzene gave 543 mg (62%) of 

3-acetyl-4,5-diphenylcyclohexanone (2a). In a similar manner, ethyl, propyl, 

and isopropyl styryl ketones (lb-d) were converted into the corresponding 

2-substituted 3-acyl-4,5-diphenylcyclohexanones 2b-d. The results are summa 

rized in Table 1. The structures of the products were assigned from their IR 

and 1H-NMR, 13C-NMR, and Mass spectral data. 2) 

 The efficiency of this dimerization reaction depended on iron carbonyl 

complexes employed. The reaction of la with Fe(CO)5 under the similar condi-

tions as above resulted in a quantitative recovery of the starting ketone. 

Fe2(CO)9 induced the cyclodimerization of la with a lower efficiency. The 

results are also given in Table 1. 

 Lewis et al. have reported that the reaction of la with iron carbonyls at 

ambient temperatures affords (n4-methylstyrylketone)tricarbonyliron (3a).3) We 

also isolated the iron complexes 3a-d by the reaction of la-d with Fe3(CO)12 in 

toluene at 75 C for 7 h in good yields. Furthermore, it was found that when 

degassed toluene solutions of la-c (40mmol) containing a catalytic amount of

Table 2. (n4-Enone)tricarbonyliron-catalyzed cyclodimerization 

of alkyl stvrvl ketones

a) Yields were determined by GLC and based on ketones 1 used, 

and those in parentheses based on iron complexes 3 used.
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Scheme 1.

(TI 4-enone)tricarbonyliron 3a (0.1mmol) are heated in sealed tubes at 110 C for 

22 h, 2a-c are obtained in good yields. Other (n4-enone)tricarbonyliron com-

plexes such as 3b-c also served as catalyst for the conversion of la-c to 2a-c. 

The results are shown in Table 2. 

 However, complexes Fe(CO) 4PPh3, Fe(CO) 3(PPh3)2, Fe(CO) 3[P(OPh)3]2, (n2-
maleic anhydride)Fe(CO)4, (n4-cyclooctadiene)Fe(CO)3, and (n-PhCH=CHCH=CHPh)Fe-

(CO)3 were ineffective as catalyst; in the reactions using these iron complexes 

the substrate enones were recovered unchanged. Barton4) and Brookhart5) have 

demonstrated that 3a acts as an efficient transfer agent of [Fe(CO)3] species 

towards dienes and other unsaturated compounds. Scheme 1 shows a possible 

catalytic cycle for the cyclodimerization of enolizable enone 1. A key step is 

the formation of dienol complex 46) from (n4-enone)tricarbonyliron complex 3. 

The complex 4 may react with 1 to produce cyclohexanone derivative 2 with 

elimination of [Fe(CO)31 species. 

 Table 3. Cyclodimerization of silyl enol ether a)

a) A mixture of 5 (6mmol) and Fe3(CO)12 (1mmol) in 

toluene (10cm3) was stirred at 110 C for 20 h under 

nitrogen. b) Isolated yields based on 4 used, and 

those in parentheses based on Fe3(CO)12 used.
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 In contrast, the reaction of silyl enol ethers 5a-c, which were derived 

 from la-c, with Fe3(CO)12 in refluxing toluene gave 2-substituted 4-acyl-3,5-

 diphylcyclohexanones 6a-c, that are regioisomers of 2a-c. The results are shown 

 in Table 3. The structures of 6a-c were assigned from their spectral data. 7) 

 Nielsen and Dubin have reported that the same type of cyclohexanone deri-

 vatives as 6a-c can be obtained from alkyl styryl ketones by a base-catalyzed 

 self-condensation reaction in low yields. 8) These results strongly suggest that 

 the cyclodimerization of silyl enol ethers 5 with Fe3(CO)12 proceeds via iron 

 enolate 7 as shown in Scheme 2.

Scheme 2.
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