Cyclodimerizations of Alkyl Styryl Ketones and Their Silyl Enol Ethers by Use of Iron Carbonyls

Tatsuo UEDA and Yoshio OTSUJI^{*} Department of Chemistry, College of Engineering, University of Osaka Prefecture, Sakai, Osaka 591

The reaction of alkyl styryl ketones with $Fe_3(CO)_{12}$ gives 3-acyl-4,5-diphenylcyclohexanones in a manner of [2+4] cyclodimerization. $(\eta^4$ -Enone)Fe(CO)₃ complexes serve as catalyst for this reaction. Silyl enol ethers of the same ketones afford 4-acyl-3,5-diphenylcyclohexanones in the different type of [2+4] cyclodimerization upon treatment with Fe₃(CO)₁₂.

In a previous paper, we have reported that the reaction of unenolizable α,β -unsaturated ketones such as benzylideneacetophenone with Fe₃(CO)₁₂ in refluxing toluene gives cyclopentene derivatives in high yields.¹⁾ This reaction has been interpreted as a deoxygenative [2+3] cyclodimerization of intermediary (n^4 -enone)tricarbonyliron complexes.¹⁾ We now report that enolizable α,β -unsaturated ketones such as alkyl styryl ketones and their silyl enol ethers undergo respectively different types of [2+4] cyclodimerizations upon treatment with Fe₃(CO)₁₂. Alkyl styryl ketones were converted into 3-acyl-4,5-diphenyl-cyclohexanones via their tricarbonyliron complexes. It was also found that (n^4 -enone)tricarbonyliron complexes serve as effective catalyst for this conversion. On the other hand, silyl enol ethers of the same ketones were converted into 4-acyl-3,5-diphenylcyclohexanones probably via their iron enolates.

A mixture of methyl styryl ketone (<u>1a</u>; 876 mg, 6 mmol) and $\text{Fe}_3(\text{CO})_{12}$ (503 mg, 1 mmol) in dry toluene (10 cm³) was refluxed for 20 h under nitrogen and poured onto I₂-benzen solution. The resulting mixture was stirred for 1 h at

 Table I.	Reaction of	aiky	yl styryl	Ketones	with iron carbonyis
 Ketone	Iron car	bony	1	Product	Yield/% ^{a)}
<u>1a</u>	Fe ₃ (CO) ₁₂ ,	2	mmol	<u>2a</u>	58 (87)
<u>1a</u>	$Fe_{3}(CO)_{12}$	1	mmol	<u>2a</u>	62 (186)
<u>1a</u>	$Fe_3(CO)_{12}$	0.5	mmol	<u>2a</u>	52 (312)
<u>1a</u>	Fe(CO) ₅ ,	3	mmol	no	reaction
<u>1a</u>	$\operatorname{Fe}_2(\operatorname{CO})_9,$	1.5	mmol	<u>2a</u>	26 (52)
<u>1b</u>	$Fe_{3}^{(CO)}12'$	2	mmol	<u>2b</u>	90 (135)
<u>1c</u>	$Fe_{3}(CO)_{12}$	2	mmol	<u>2c</u>	89 (134)
<u>1d</u>	Fe ₃ (CO) ₁₂	2	mmol	<u>2d</u>	33 (50)

a) Isolated yields based on ketones 1 used, and those in parentheses based on iron carbonyls used.

room temperature and then washed successively with 10% aqueous NaOH, water, 10% HCl, and water. The organic layer was dried over Na₂SO₄ and evaporated. Chromatography of the residue on silica gel with benzene gave 543 mg (62%) of 3-acetyl-4,5-diphenylcyclohexanone (2a). In a similar manner, ethyl, propyl, and isopropyl styryl ketones $(\underline{1b-d})$ were converted into the corresponding 2-substituted 3-acyl-4,5-diphenylcyclohexanones 2b-d. The results are summa rized in Table 1. The structures of the products were assigned from their IR and ¹H-NMR, ¹³C-NMR, and Mass spectral data.²⁾

The efficiency of this dimerization reaction depended on iron carbonyl complexes employed. The reaction of <u>1a</u> with Fe(CO)₅ under the similar conditions as above resulted in a quantitative recovery of the starting ketone. $Fe_2(CO)_a$ induced the cyclodimerization of <u>1a</u> with a lower efficiency. The results are also given in Table 1.

Lewis et al. have reported that the reaction of $\underline{1a}$ with iron carbonyls at ambient temperatures affords $(\eta^4$ -methylstyrylketone)tricarbonyliron $(\underline{3a})$.³⁾ We also isolated the iron complexes 3a-d by the reaction of 1a-d with Fe₃(CO)₁₂ in toluene at 75 °C for 7 h in good yields. Furthermore, it was found that when degassed toluene solutions of <u>1a-c</u> (40 mmol) containing a catalytic amount of

 of alkyl styryl ketones					
Ketone	Catalyst	Product	Yield / % ^{a)}		
 <u>1a</u>	<u>3a</u>	<u>2a</u>	11 (2250)		
<u>1b</u>	<u>3a</u>	<u>2b</u>	15 (3000)		
<u>1c</u>	<u>3a</u>	<u>2c</u>	14 (2750)		
<u>1a</u>	<u>3b</u>	<u>2a</u>	25 (4920)		
<u>1b</u>	<u>3b</u>	<u>2b</u>	81 (16200)		
<u>1c</u>	<u>3b</u>	<u>2c</u>	60 (11900)		
<u>1c</u>	3c	2c	53 (10600)		

Table	2.	$(\eta^4$ -Enone)tricarbonyliron-catalyzed	cyclodimerization

a) Yields were determined by GLC and based on ketones 1 used, and those in parentheses based on iron complexes $\underline{3}$ used.

 $(\eta^4$ -enone)tricarbonyliron <u>3a</u> (0.1 mmol) are heated in sealed tubes at 110 °C for 22 h, <u>2a-c</u> are obtained in good yields. Other $(\eta^4$ -enone)tricarbonyliron complexes such as <u>3b-c</u> also served as catalyst for the conversion of <u>1a-c</u> to <u>2a-c</u>. The results are shown in Table 2.

However, complexes $Fe(CO)_4 PPh_3$, $Fe(CO)_3 (PPh_3)_2$, $Fe(CO)_3 [P(OPh)_3]_2$, $(\eta^2 - maleic anhydride)Fe(CO)_4$, $(\eta^4 - cyclooctadiene)Fe(CO)_3$, and $(\eta^4 - PhCH=CHCH=CHPh)Fe-(CO)_3$ were ineffective as catalyst; in the reactions using these iron complexes the substrate enones were recovered unchanged. Barton⁴) and Brookhart⁵) have demonstrated that <u>3a</u> acts as an efficient transfer agent of $[Fe(CO)_3]$ species towards dienes and other unsaturated compounds. Scheme 1 shows a possible catalytic cycle for the cyclodimerization of enolizable enone <u>1</u>. A key step is the formation of dienol complex <u>4</u>⁶ from $(\eta^4 - enone)$ tricarbonyliron complex <u>3</u>. The complex <u>4</u> may react with <u>1</u> to produce cyclohexanone derivative <u>2</u> with elimination of $[Fe(CO)_3]$ species.

Table 3. Cyclodimerization of silvi end ether	Table 3.	Cyclodimerization	of	silyl	enol	ether ^a
---	----------	-------------------	----	-------	------	--------------------

Silyl enol ether	Product	Yield/% ^{b)}
<u>5a</u> ; R=H	<u>6a</u>	32 (95)
<u>5b;</u> $R=CH_3$	<u>6b</u>	36 (108)
$\underline{5c}$; R=CH ₂ CH ₃	<u>6c</u>	32 (96)

a) A mixture of 5 (6 mmol) and $\text{Fe}_3(\text{CO})_{12} (1 \text{ mmol})$ in toluene (10 cm³) was stirred at 110 °C for 20 h under nitrogen. b) Isolated yields based on 4 used, and those in parentheses based on $\text{Fe}_3(\text{CO})_{12}$ used.

In contrast, the reaction of silyl enol ethers <u>5a-c</u>, which were derived from <u>1a-c</u>, with $\text{Fe}_3(\text{CO})_{12}$ in refluxing toluene gave 2-substituted 4-acyl-3,5diphylcyclohexanones <u>6a-c</u>, that are regioisomers of <u>2a-c</u>. The results are shown in Table 3. The structures of <u>6a-c</u> were assigned from their spectral data.⁷⁾

Nielsen and Dubin have reported that the same type of cyclohexanone derivatives as <u>6a-c</u> can be obtained from alkyl styryl ketones by a base-catalyzed self-condensation reaction in low yields.⁸⁾ These results strongly suggest that the cyclodimerization of silyl enol ethers <u>5</u> with $Fe_3(CO)_{12}$ proceeds via iron enolate <u>7</u> as shown in Scheme 2.

Scheme 2.

References

- 1) T. Ueda and Y. Otsuji, the preceding paper.
- 2) Spectral data of <u>2a</u>: ¹³C-NMR (CDCl₃) δ (ppm) 31.7(<u>C</u>H₃), 40.7, 41.1(<u>C</u>H₂), 42.9, 44.3, 58.4(<u>C</u>H[<]), 126.9, 127.1, 127.6, 128.2, 128.6, 128.8(aromatic =<u>C</u>H-), 140.2, 143.1(aromatic =<u>C</u><), 210.5, 210.7(<u>C</u>=0); ¹H-NMR (CDCl₃) δ (ppm) 1.6(s, 3H), 2.4-3.2(m, 4H), 3.4-3.6(m, 3H), 7.0-7.9(10H, ArH); IR (KBr) 1710, 1630 cm⁻¹(v_{CO}); MS m/e 292 (M⁺). The spectral data for <u>2b-e</u> were also consistent with the assigned structures.
- 3) J. A. S. Howell, B. F. G. Johnson, P. L. Josty, and J. Lewis, J. Organomet. Chem., <u>39</u>, 329 (1972).
- 4) D. H. R. Barton, A. A. L. Gunatilaka, T. Nakanishi, H. Patin, D. A. Widdowson, and B. R. Worth, J. Chem. Soc., Perkin Trans. 1, <u>1976</u>, 821.
- 5) C. R. Graham, G. Scholes, and M. Brookhart, J. Am. Chem. Soc., <u>99</u>, 1180 (1977).
- 6) C. H. DePuy, R. L. Parton, and T. Jones, J. Am. Chem. Soc., <u>99</u>, 4070 (1977);
 C. H. DePuy, R. N. Greene, and T. E. Schroer, J. Chem. Soc., Chem. Commun., <u>1968</u>, 1225.
- 7) Spectral data of <u>6a</u>: ¹³C-NMR (CDCl₃) δ (ppm) 33.0(<u>C</u>H₃), 47.8(<u>C</u>H₂), 47.2, 62.0 (<u>C</u>H \leq), 127.3, 127.5, 129.0(aromatic =<u>C</u>H-), 141.1(aromatic =<u>C</u> \leq), 207.5, 210.4 (<u>C</u>=O); ¹H-NMR (CDCl₃) δ (ppm) 1.25(s, 3H), 2.68(broad d, J=6 Hz, 4H), 3.0-3.5 (m, 3H), 7.2(10H, ArH); IR (KBr) 1710, 1670 cm⁻¹(ν_{CO}); MS m/e 292 (M⁺). The spectral data for <u>6b,c</u> were also consistent with the assigned structures.
- 8) A. T. Nielsen and H. J. Dubin, J. Org. Chem., <u>28</u>, 2120 (1963).

(Received July 23, 1986)

1638