Stereoselective Addition of 2-Aminothiophenol to α-Alkoxycinnamic Acid Derivatives---Alternative Synthesis of (±)-Diltiazem---

Okiko Miyata, Tetsuro Shinada, Takeaki Naito and Ichiya Ninomiya*

Kobe Women's College of Pharmacy, Motoyamakita, Higashinada, Kobe 658, Japan.

Tadamasa Date and Kimio Okamura

Organic Chemistry Research Laboratory, Tanabe Seiyaku Co., Ltd., Kawagishi, Toda, Saitama 335, Japan

(Received in USA 5 April 1993; accepted 24 May 1993) Dedicated with respect and affection to Sir Derek Barton on the occasion of his seventy-fifth birthday.

Abstract: A stereocontrolled synthesis of (\pm) -diltiazem by applying nucleophilic addition of 2-aminothiophenol to α -alkoxycinnamic acid derivatives is described.

Michael-type addition of nucleophiles to α,β -unsaturated carbonyl compounds has been known as one of the most widely used reactions. However, its stereochemistry has not been well understood. Recently we found that nucleophilic addition^{1,2} of thiols to electron-deficient olefins proceeds stereospecifically and with high stereoselectivity in the presence of an electrophile under protic conditions, thus forming new contiguous stereogenic centers with a phenylthio substituent which has high potentiality for further conversion to various types of structures. The addition is thought to proceed via the course of rapid protonation of the intermediary enolate formed by the attack of the nucleophile (RSM) (Scheme 1). Thus the *erythro*-adduct 3 was obtained stereoselectively from the *E*-olefin 1 while predominantly *threo*-4 was obtained from *Z*-2 under protic conditions.

We now report further application of this synthetic methodology to (\pm) -diltiazem,³ a potent vasodilating drug developed by Tanabe Seiyaku Co. Ltd. With the application of the above addition reaction in mind, our synthetic strategy, based on the synthesis of the key intermediate *threo*-amino ester A by Michael addition of thiol to cinnamate, was planned. Several α -acyloxy and alkoxycinnamic acid derivatives 5 and 6 were prepared and their structures, particularly the geometries were determined mainly by NMR analysis (Table 1 and 2).

		able 1	Chem (¹ H N	Chemical Shifts of 3-H [¹ H NMR (200 MHz, CDCl 3)]				Table 2 Coupling Constants between 3-H and 1-C [¹³ C NMR (125 MHz, CDCl 3) (/ in Hz)]				
3 1 H Z-5		x	R ¹	R ²	<i>Ζ-</i> 5 (δ; ppm)	<i>E</i> -6 (δ; ppm)		Х	R ¹	R ²	<i>Z</i> -5	E-6
OR ¹ H 3 COOR ²	a b c d	Н	COOMe Ac Me MEM	Me Me Me Et	7.06 7.36 7.02 7.11	6.60 6.70	- c 1	H MeO	Me MEM	Me Et	3.5 3.5	10.5
		H H										
Ϋ́Ε-6	e f	Me MeC	MEM	Et Et	7.0 9 7.07	6.49	-					

From the above data, it is deduced that the geometry can be assigned from their chemical shifts in ¹H NMR spectra and the coupling constants between 1-C and 3-H (${}^{3}J$ values⁴) in ¹³C NMR spectra. In ¹H NMR spectra, the cinnamates which exhibited signals for an olefinic proton at the 3-position at lower field (δ >7 ppm) have Z-geometries while those which appeared at higher fields (δ < 6.7 ppm) having E-geometries (Table 1). Also, in the ¹³C NMR spectra of these cinnamates, ³J values of the Z-isomer Z-5 appeared at 3.5 Hz while at 10.5 Hz for the E-isomer E-6 as shown in Table 2. These data were perfectly consistent with the empirical rule that ³J values of the compound having a configuration with an olefinic proton and C₃-carbon on the same side of the molecule show smaller coupling constants (${}^{3}J$ value) than those with the opposite configuration.

 α -Alkoxycinnamates 5 and 6 were prepared according to the Wenkert's procedure⁵ by the aldol condensation of methyl α -alkoxyacetate with an aromatic aldehyde followed by mesylation and elimination. The cinnamates were obtained as mixtures of Z- and E-isomers with predominant formation of the more stable Z-isomer. The oily compound Z-5c having Z-geometry was determined by X-ray crystallography as its β -naphthyl ester Z-7 (Scheme 2).

Michael additions of 2-aminothiophenol 10 to cinnamates 5 with α -acyloxy and alkoxy substituents were then investigated (Scheme 3, Table 3). Though the addition of 2-aminothiophenol 10 to the cinnamates Z-5a,b with acyloxy substitutents did not give any adducts (entries, 1 and 2), the addition to cinnamates 5c-f with α alkoxy substituents proceeded differently. When Z-cinnamate 5c with an α -methoxy group was treated at room temperature, only the starting compound was recovered while treatment under refluxing temperature in tetrahydrofuran afforded the desired adduct, *threo*-8c, though in a low yield (entry 3). Use of one equivalent amount of lithium thiolate 11 gave no difference (entry 4). Then the addition to the Z-cinnamate 5d with an α -MEM-protected group was carried out in the presence of one equivalent of lithium thiolate 11 and ten equivalents of 2-aminothiophenol 10 under THF-refluxing temperature. The desired *threo*-8d was obtained in a good yield with moderate stereoselectivity (entry 6). Then the effect of substituent (X) on the aromatic ring was investigated (entries 7 and 8). The result showed that the presence of an electron-donating group (X), i.e.,

5d

5e

5f

78

80

82

76:24

82:18

85:15

:10

1 :10

1 :10

6

7

8

methyl and methoxy groups, played an important role in yielding the adducts 8e,f and 9e,f in good yields with better stereoselectivity.

ervthro-9e

threo-8f

erythro-91

4.38

4.42

4.36

4.60

4.48

4.60

0.22

0.06

0.24

The structures of the adducts 8 and 9 were determined based on the facts that these adducts showed a molecular ion peak with a greater mass number by m/z 125 than that of the cinnamates, the presence of a primary amino group in the IR spectra and the absence of an olefinic hydrogen and the presence of new signals for 2- and 3-hydrogens in their NMR spectra. Relative configurations at the 2- and 3-positions in the adducts 8 and 9 were deduced as follows. A mixture of *threo*-8d and *erythro*-9d was hydrolyzed by the treatment with 5% sodium hydroxide to give the aminocarboxylic acids which were heated in the presence of MS4A under reflux in xylene to give a mixture of two lactams, 2,3-*cis*-12 and 2,3-*trans*-13 in 30 and 13% yields, respectively, (Scheme 4) both of which showed identical molecular ion peak at m/z 359 and a strong IR absorption band at 1684 cm⁻¹ for their lactam structure.

Removal of the MEM group of 12 and 13 with titanium tetrachloride afforded the hydroxylactams **15a,b**, both of which showed a molecular ion peak at m/z 271, and an IR absorption at 3380 cm⁻¹ for a hydroxy group. Direct comparison of this compound 15a with an authentic sample⁶ of 2,3-*cis*-benzothiazepinone

unambiguously established its structure as depicted. The structure of the trans-lactam 15b which was also established by direct comparison with a known sample,⁷ firmly established the structure of 8d as *threo*- and 9d as *erythro* configurations. The structures of the adducts 8f and 9f were also established by the conversion to (\pm) -diltiazem 19.

The structures of other adducts, *threo*-8c, e and *erythro*-9c, e, were confirmed by the comparison of their chemical shifts of 2- and 3-hydrogens in their ¹H NMR spectra (Table 4). From their spectra, a practical criterion for the determination of the stereochemistry of *threo*-8e and *erythro*-9e is established. Previously, it was reported^{7.8} that in the series of compounds of benzothiazepine skeleton with two substituents at the 2- and 3-positions, the coupling constants (*J*-value) between 2- and 3-hydrogens are smaller in the 2,3-*cis* series than in the *trans* series. The observation in the present cases showed a *J*-value of 6.5 Hz in compound 14, prepared from *threo*-8c, and was found to be identical with the reported data, thus establishing the 2,3-*cis* relation in compound 14 (Figure 1). As a result, the *threo* configuration in 8c and *erythro* in 9c were also established.

Finally, the above result that established a new synthetic route to diltiazem on the model compounds 15a and b has been successfully applied to the total synthesis of (\pm) -diltizem 19 (Scheme 5 and 6). The cyclization of the key intermediate, the amino ester 8f was carried out to afford the lactam 16 as the major product (50% yield) together with the hydroxylactam 17 in 7 % yield as a result of cleavage of the protective MEM group (Method A). The poor yield and slow reaction under this reaction condition pushed us to modify the reaction condition by changing the condensation agent to trimethylaluminum⁹ (Method B). Thus the cyclization with 90% yield and in one step from the amino ester 8f was achieved. Similarly, the 2,3-trans-lactam 18 was obtained from the *erythro*-amino ester 9f in good yield.

The structures of the cyclization products were established as follows. Hydroxylactam 17, obtained as a byproduct, was found to be identical with a known sample⁶ upon comparison of various spectra. The structure of 2,3-*cis*-lactam 16 was established from its mass spectrum which shows a molecular ion peak at m/z 389 and and IR absorption at 3388 cm⁻¹ due to NH-absorption and 1686 cm⁻¹ for a lactam carbonyl group. Cleavage of the MEM group of 16 was smoothly carried out by treating with titanium tetrachloride. The structure of isomeric lactam 18 was deduced from its spectra.

Finally the conversion of the 2,3-*cis*-hydroxylactam 17 into (\pm) -diltiazem 19 was carried out by the route developed previously.^{10,11} The hydroxylactam 17 was treated with dimethylaminoethyl chloride in the presence of 2.5 equivalents of powdered potassium carbonate for N-alkylation. Acetylation and subsequent salt formation by using anhydrous hydrogen chloride gas afforded (\pm) -diltiazem hydrochloride 19¹¹ in 81 % yield, which was spectrally identical with an authentic specimen provided by Tanabe Seiyaku Co. Ltd.

ACKNOWLEDGEMENTS This work was made possible by generous support from the Ministry of Education, Science, and Culture (Japan) to T. N. (No. 03671022).

EXPERIMENTAL

The ¹H, ¹³C NMR, and ¹⁹F NMR spectra were measured with Varian XL-200 or Varian VXR-500 instrument for solutions in deuteriochloroform (with tetramethylsilane (¹H and ¹³C NMR) or fluorobenzene (¹⁹F NMR)as an internal reference). The IR spectra were measured with a Hitachi 215 machine for solutions in chloroform. MS were taken with a Hitachi M-80 spectrometer. All melting points were determined with a Kofler-type hot-stage apparatus. Extracts from reaction mixture were washed with water and dried over anhydrous sodium sulfate. All reactions were carried out under a N₂ atmosphere unless otherwise stated. Medium-pressure column chromatography (MCC) was undertaken on a Yamazen 530-4-10V chromatography apparatus using a Lobar grösse B column (310-25, Lichroprep Si60, Merck).

Preparation of the α -acyloxycinnamates 5a and 5b

According to the literature,^{12,13} the cinnamates **5a** and **b** were prepared from pyruvic acid and methyl pyruvate, respectively. Methyl (Z)-2-Methoxycarbonyloxy-3-phenyl-2-propenoate **5a** (65 %) was a colorless oil; IR: 1768 (OCOOMe), 1728 (COOMe) cm⁻¹. ¹H-NMR δ : 7.82 (2H, br d, *J*=7 Hz, ArH), 7.50-7.30 (3H, m, ArH), 7.06 (1H, s, 3-H), 3.91 (3H, s, COOMe), 3.84 (3H, s, COOMe). HRMS *m/z*: Calcd for C₁₂H₁₂O₅ (M⁺): 236.0684. Found: 236.0687. Methyl (Z)-2-Acetyloxy-3-phenyl-2-propenoate **5b** (84 %) was a colorless oil; IR: 1768 (OCOMe), 1728 (COOMe) cm⁻¹. ¹H-NMR δ : 7.62 (2H, m, ArH), 7.41 (3H, m, ArH), 7.36 (1H, s, 3-H), 3.87 (3H, s, COOMe), 2.35 (3H, s, Ac). HRMS *m/z*: Calcd for C₁₂H₁₂O₄ (M⁺): 220.0734. Found: 220.0734.

Aldol reaction between methyl methoxyacetate and benzaldehyde

A solution of methyl methoxyacetate (1.04 g, 10 mmol) in THF (10 ml) was added with stirring at -78 °C to an LDA solution, prepared from diisopropylamine (1.54 ml, 11 mmol) and butyllithium (1.60 M solution in hexane) (6.9 ml, 11 mmol) at -78 °C. After being stirred at -78 °C for 15 min, benzaldehyde (1.23 g, 11 mmol) was added and the resulting solution was stirred at -78 °C for 1 h. After addition of saturated aqueous ammonium chloride, the reaction mixture was extracted with CH₂Cl₂. The extract was dried and evaporated to give a residue which was purified by MCC (hexane:Et₂O=1:4) to afford a 1:2 (or 2:1) diastereomeric mixture of methyl *erythro*- and *threo*-3-hydroxy-2-methoxy-3-phenylpropionate (1.54 g, 73 %) as colorless oil. IR: 3572 (OH), 1740 (COOMe) cm⁻¹. ¹H-NMR & 7.50 (5H, m, ArH), 5.00 (2/3H), 4.95 (1/3H), 4.00 (2/3H), 3.92 (1/3H) (each d, J=6 Hz, 2- and 3-H), 3.68 (2H, s, COOMe), 3.66 (3H, s, COOMe), 3.43 (3H, s, OMe), 3.38 (2H, s, OMe). HRMS (CI, isobutane) *m*/*z*: Calcd for C₁₁H₁₃O₃+H (QM⁺-H₂O): 193.0863. Found: 193.0853.

Methanesulfonyl chloride (504 mg, 4.4 mmol) was added to a solution of the β-hydroxy ester (840 mg, 4 mmol) and Et₃N (0.61 ml, 4.4 mmol) in CH₂Cl₂ (40 ml) at 0 °C. After being stirred at 0 °C for 1 h, 5% HCl was added. The mixture was extracted with CH₂Cl₂. The extract was dried and evaporated to give the mesylate, which without purification was heated with DBU (1 ml) at 100 °C for 2 h. After being cooled, 5% HCl was added and the reaction mixture was extracted with CH₂Cl₂. The extract was dried and evaporated to give the mesylate, which was purified by MCC (Et₂O:hexane=1:2) to afford methyl (Z)-2-methoxy-3-phenyl-2-propenoate Z-5c (510 mg, 66%) as colorless oil and the *E*-isomer *E*-6c (56 mg, 7%) as colorless oil. Z-5c: IR: 1716 (conj. COOMe) cm⁻¹. ¹H-NMR δ: 7.88 (2H, br dd, J=7, 2 Hz, ArH), 7.64 (3H, m, ArH), 7.02 (1H, s, 3-H), 3.89 (3H, s, COOMe), 3.76 (3H, s, OMe). ¹³C NMR δ: 164.98 (1-C), 145.59, 133.46 (2- and 1'-C), 130.20, 129.05, 128.63, 124.13 (ArCx5 and 3-C), 59.25, 52.17 (COOMe and OMe). The coupling constant between 1-C and 3-H: ³J=3.5 Hz. HRMS *m*/z: Calcd for C₁₁H₁₂O₃ (M⁺): 192.0784. Found 192.0781. *E*-6c: IR: 1732 (conj. COOMe) cm⁻¹. ¹H-NMR δ: 7.30 (5H, m, ArH), 6.60 (1H, s, 3-H), 3.78 (3H, s, COOMe), 3.70 (3H, s, OMe). ¹³C-NMR δ: 164.59 (1-C), 147.64, 134.69 (2- and 1'-C), 128.50, 128.14, 126.98, 109.40 (ArCx5 and 3-C), 56.00, 52.11 (COOMe and OMe). The coupling constant between 1-C and 3-H: ³J=10.5 Hz. HRMS *m*/z: Calcd for C₁₁H₁₂O₃ (M⁺): 192.0784. Found 192.0789.

Ethyl (2-Methoxyethoxy)methoxyacetate 20

A solution of methoxyethoxymethyl chloride (1.36 g, 11 mmol) in CH₂Cl₂ (20 ml) was added with stirring at room temperature to a solution of ethyl glycolate (1.04 g, 10 mmol) and *N*,*N*-diisopropylethylamine (1.92 ml, 11 mmol) in CH₂Cl₂ (70 ml). After being stirred for 12 h, the reaction mixture was made acidic by addition of 5% HCl and then extracted with CH₂Cl₂. The extract was dried and evaporated to give a crude product, which was distilled to afford the ester **20** (1.65 g, 86 %) as colorless oil. bp. 103 °C (3 mmHg). IR: 1746 (COOEt) cm⁻¹. ¹H-NMR δ : 4.87 (2H, s, OCH₂O), 4,26 (2H, q, *J*=7 Hz, COOCH₂CH₃), 4.24 (2H, s, OCH₂COOEt), 3.76, 3.59 (each 2H, m, OCH₂CH₂O), 3.42 (3H, s, OMe), 1.31 (3H, t, *J*=7 Hz, COOCH₂CH₃). MS (CI, isobutane) *m/z* : Calcd for C₈H₁₇O₅+H (QM⁺): 193. Found: 193.

Preparation of the α -alkoxycinnamates 5de and 6de

According to the procedure given for 5c, aldol reaction between the α -alkoxy ester 20 (768 mg, 4 mmol) and benzaldehyde or p-tolualdehyde (4.1 mmol) followed by dehydration via the mesylate of the resulting hydroxy ester gave the α -alkoxycinnamates 5de and 6de. Ethyl (Z)-2-(2-Methoxyethoxy)methoxy-3-phenyl-2propenoate Z-5d (324 mg, 58 %): IR: 1712 (conj. COOEt) cm⁻¹. ¹H-NMR 8: 7.81 (2H, br d, J=7 Hz, ArH), 7.50-7.30 (3H, m, ArH), 7.11 (1H, s, 3-H), 5.25 (2H, s, OCH₂O), 4.34 (2H, q, J=7 Hz, COOCH₂CH₃), 3.64, 3.40 (each 2H, m, OCH₂CH₂O), 3.32 (3H, s, OMe), 1.40 (3H, t, J=7 Hz, COOCH₂CH₃). HRMS m/z: Calcd for C₁₅H₂₁O₅ (M⁺): 280.1309. Found: 280.1310. (E)-isomer E-6d (62 mg, 11 %): IR: 1728 (conj. COOEt) cm⁻¹. ¹H-NMR δ: 7.20-7.40 (5H, m, ArH), 6.70 (1H, s, 3-H), 5.25 (2H, s, OCH₂O), 4.16 (2H, q, J=7 Hz, COOCH₂CH₃), 3.89, 3.63 (each 2H, m, OCH₂CH₂O), 3.42 (3H, s, OMe), 1.10 (3H, t, J=7 Hz, COOCH₂CH₃). HRMS (CI, isobutane) m/z: Calcd for C15H21O5+H (QM+): 281.1386. Found: 281.1363. Ethyl (Z)-2-(2-Methoxyethoxy)methoxy-3-(4-methylphenyl)-2-propenoate Z-5e (378 mg, 53 %). Z-5e: IR: 1710 (conj. COOEt) cm⁻¹. ¹H-NMR δ: 7.71 (2H, d-like, J=7 Hz, ArH), 7.21 (2H, d-like, J=7 Hz, ArH), 7.09 (1H, s, 3-H), 5.23 (2H, s, OCH₂O), 4.32 (2H, q, J=7 Hz, COOCH₂CH₃), 3.76, 3.42 (each 2H, m, OCH₂CH₂O), 3.32(3H, s, OMe), 2.39 (3H, s, Ar-Me), 1.38 (3H, t, J=7 Hz, COOCH₂CH₃). HRMS m/z: Calcd for C₁₆H₂₂O₅ (M⁺): 294.1466, Found: 294.1479. (E)-isomer E-6e (86 mg, 12 %): IR: 1730 (conj. COOEt). cm⁻¹. ¹H-NMR 8: 6.99 (2H, d-like, J=7 Hz, ArH), 6.96 (2H, d-like, J=7 Hz, ArH), 6.49 (1H, s, 3-H), 5.08 (2H, s, OCH2O). 4.05 (2H, q, J=7 Hz, COOCH2CH3), 3.78, 3.68 (each 2H, m, OCH2CH2O), 3.30 (3H, s, OMe), 2.26 (3H, s, Ar-Me), 1.06 (3H, t, J=7 Hz, COOCH₂CH₃). HRMS m/z: Calcd for C₁₆H₂₂O₅ (M⁺): 294.1466. Found: 294.1488.

Aldol reaction between the α-alkoxy ester 20 and anisaldehyde

According to the procedure given for 5c, aldol reaction between the α -alkoxy ester 20 (2.88 g, 15 mmol) and anisaldehyde (2.18 g, 16 mmol) followed by purification of the crude product by MCC (Et₂O:hexane=1:1) gave a diastereomeric mixture of the β -hydroxy esters (3.45 g, 72 %) as a colorless oil. The less polar product (2.36 g, 48 %): IR: 3460 (OH), 1736 (COOEt) cm⁻¹. ¹H-NMR & 7.34 (2H, d-like, J=7 Hz, ArH), 6.88 (2H, d-like, J=7 Hz, ArH), 5.00 (1H, d, J=5.5 Hz, 2- or 3-H), 4.71, 4.70 (2H, ABq, J=7 Hz, OCH₂O), 4.20 (1H, d, J=5.5 Hz, 2- or 3-H), 4.15 (2H, q, J=7 Hz, COOCH₂CH₃), 3.81 (3H, s, Ar-OMe), 3.70-3.30 (4H, m, OCH₂CH₂O), 3.38 (3H, s, OMe), 1.20 (3H, t, J=7 Hz, COOCH₂CH₃). HRMS *m*/z: Calcd for C1₆H₂₅O₆ (M⁺-(H₂O+CCH₂CH₂OMe)): 235.0970. Found: 235.0974. The polar product (1.09 g, 24 %): IR: 3576 (OH), 1736 (COOEt) cm⁻¹ ¹H-NMR & 7.35 (2H, d-like, J=7 Hz, ArH), 6.91 (2H, d-like, J=7 Hz, ArH), 5.00 (1H, d, J=5 Hz, 2- or 3-H), 4.82, 4.79 (2H, ABq, J=7 Hz, OCH₂O), 4.29 (1H, d, J=5 Hz, 2- or 3-H), 4.10 (2H, q, J=7 Hz, OCH₂O), 3.36 (3H, s, OMe), 1.14 (3H, t, J=7 Hz, COOCH₂CH₃). HRMS *m*/z: Calcd for C1₆H₂₅O₆ (M⁺-(H₂OOCH₂CH₃), 3.83 (3H, s, OMe), 3.70-3.30 (4H, m, OCH₂CH₂O), 3.36 (3H, s, OMe), 1.14 (3H, t, J=7 Hz, OCH₂O), 3.36 (3H, s, OMe), 1.14 (3H, t, J=7 Hz, COOCH₂CH₃). HRMS *m*/z: Calcd for C1₆H₂₅O₆ (M⁺-(H₂O+OCH₂CH₂OMe)): 235.0970. Found: 235.0943.

According to the literature.¹⁴ EtaN (10 ml, 72 mmol) and 2-fluoro-1-methylpyridinium p-toluenesulfonate (10.2 g, 36 mmol) were added with stirring at room temperature to a solution of a mixture of the β hydroxyesters (7.9 g, 24 mmol) in CH₂Cl₂ (200 ml). After being stirred for 2 h, 5% HCl was added. The mixture was extracted with CH₂Cl₂. The extract was dried and evaporated to give a residue which was purified by MCC (Et₂O:hexane=3:7) to afford ethyl (Z)-2-(2-methoxyethoxy)methoxy-3-(4-methoxyethoxy)-2propenoate Z-5f (3.64 g. 49%) as colorless oil and a 5:1 (or 1:5) mixture of ethyl erythro- and three-3-fluoro-2-[(2-methoxyethoxy)methoxy]-3-(4-methoxyphenyl)propionate 21 (1.42 g, 18 %) as colorless oil. Z-5f: IR: 1708 (conj. COOEt) cm⁻¹. ¹H-NMR 8: 7.78 (2H, d-like, J=7 Hz, ArH), 6.92 (2H, d-like, J=7 Hz, ArH), 7.07 (1H, s, 3-H), 5.22 (2H, s, OCH₂O), 4.30 (2H, q, J=7 Hz, COOCH₂CH₃), 3.85 (3H, s, Ar-OMe), 3.77, 3.43 (each 2H, m, OCH₂CH₂O), 3.38 (3H, s, OMe), 1.36 (3H, t, J=7 Hz, COOCH₂CH₃). ¹³C-NMR &: 164.56 (1-C), 160.20, 140.59, 126.13 (1'-C, 4'-C, and 2-C), 131.88, 124.84, 113.99 (ArCx4 and 3-C), 96.09 (OCH₂O), 71.06, 69.13, 61.20 [(OCH₂CH₂O) and (OCH₂CH₃)], 58.95, 55.30 (Ar-OMe and OMe), 14.33 (OCH₂CH₃). The coupling constant between 1-C and 3-H: ³J=3.5 Hz. HRMS m/z: Calcd for C₁₆H₂₂O₆ (M⁺): 310.1414. Found: 310.1411. 21: IR: 1712 (COOEt) cm⁻¹. ¹H-NMR 8:7.55, 6.91 (each 2H, d-like, J=7 Hz. ArH₄), 5.75 (1/6H, dd, J=45, 4 Hz, 3-H), 5.63 (5/6H, dd, J=44, 6 Hz, 3-H), 4.70-4.60 (2H, m. OCH₂O), 4.57 (5/6H, dd, J=8, 6 Hz, 2-H), 4.46 (1/6H, dd, J=23, 4 Hz, 2-H), 4.23 (5/3H), 4.14 (1/3H), (each q, J=7 Hz, COOCH2CH3), 3.81 (3H, s, Ar-OMe), 3.70-3.40 (4H, m, OCH2CH2O), 3.36 (1/2H), 3.32 (5/2H), (each s, OMe), 1.26 (5/2H), 1.15 (1/2H), (each t, J=7 Hz, COOCH₂CH₃). ¹⁹F-NMR (fluorobenzene) &: -67.0 (5/6F, dd, J=44, 8 Hz), -73.7 (1/6F, dd, J=45, 23 Hz), HRMS m/z; Calcd for C16H23O6F (M+); 330,1473, Found: 330.1476.

Dehydrofluorination of the β -fluoro ester 21

A mixture of the β -fluoro ester 21 (1 g, 3 mmol) and DBU (5 ml) was heated at 150 °C for 9 h. After being cooled, 5% HCl was added. The mixture was extracted with CH₂Cl₂. The extract was dried and evaporated to give a residue which was purified by MCC (Et₂O:hexane=3:7) to afford the Z-ester 5f (550 mg, 59%). The Z-5f was identical with the sample prepared above.

2-Naphthyl (Z)-2-Methoxy-3-phenyl-2-propenoate Z-7

Hydrolysis of the Z-ester 5c (96 mg, 0.5 mmol) with 5% aqueous NaOH followed by esterification of the resulting carboxylic acid using β -naphthol (75 mg, 0.5 mmol), DCC (109 mg, 0.53 mmol), and DMAP (5 mg) gave the 2-naphthyl ester Z-7 (130 mg, 85%) as colorless crystals, mp 107-108°C (CHCl₃-pentane). IR:1730 (conj. COOAr) cm⁻¹. ¹H-NMR & 8.00-7.80 (5H, m, ArH), 7.70 (1H, m, ArH), 7.64-7.30 (6H, m, ArH), 7.32 (1H, s, 3-H), 3.40 (3H, s, OMe). HRMS *m/z*: Calcd for C₂₀H₁₆O₃ (M⁺): 304.1098. Found: 304.1094. *Anal.* Calcd for C₂₀H₁₆O₃: C, 78.92; H, 5.30. Found: C, 78.76; H, 5.21. X ray crystallographic data: C₂₀H₁₆O₃, *Mr*=304.10, monoclinic; *a*=32.303(6), *b*=6.284(1), *c*=7.855(1)Å, β =94.80 (2)°, Z=4, *Dx*=1.272 gcm⁻³, *R* value 0.057 for 2349 reflections, μ (Cu K α , 20max<120°), space group *P*2₁/C.

Addition of 2-aminothiophenol to the (Z)-a-alkoxycinnamates 5c-f

2-Aminothiophenol 10 (1.17 ml, 11 mmol) was added with stirring at 0 °C to a solution of butyllithium (1.60 M solution) (0.63 ml, 1 mmol) in THF (5 ml) to give a solution of a 10:1 mixture of the thiol and lithium thiolate. To the resulting solution was added a solution of the (Z)- α -alkoxycinnamates 5c-f (1 mmol) in THF (5 ml). After stirring at 70 °C for 5 h, the mixture was made alkaline by addition of 5% aqueous NaOH and

extracted with CH₂Cl₂. The extract was dried and evaporated to give a residue, which was purified by MCC to afford a diastereomeric mixture of adducts 8 and 9 in the yield as shown in the Table 3. The ratio of *erythro* to *threo* was determined by 200 MHz ¹H NMR.

Methyl threo- and erythro-3-(2-Aminophenylthio)-2-methoxy-3-phenylpropanoates 8c and 9c:

The major diastereomer 8c was isolated by repeated MCC (Et₂O:hexane=1:1). 8c; pale yellow oil: IR: 3438, 3380 (NH₂), 1742 (COOMe) cm⁻¹. ¹H-NMR δ :7.40-7.10 (7H, m, ArH), 6.80-6.66 (2H, m, ArH), 4.34 (1H, d, J=5 Hz, 2- or 3-H), 4.13 (1H, d, J=5 Hz, 2- or 3-H), 3.64 (3H, s, COOMe), 3.42 (3H, s, OMe). HRMS m/z: Calcd for C₁₇H₁₉NO₃S (M⁺): 317.1083. Found: 317.1072. 9c; ¹H-NMR δ : 4.42 (1H, d, J=6 Hz, 2- or 3-H), 4.13 (1H, d, J=5 Hz, 2- or 3-H), 3.59 (3H, s, COOMe), 3.48 (3H, s, OMe).

Ethyl threo- and erythro-3-(2-Aminophenylthio)-2-[(2-methoxyethoxy)methoxy]-3-phenylpropanoates 8d and 9d:

[threo-8d:erythro-9d=76:24]; pale yellow oil: IR: 3484, 3372 (NH₂), 1740 (COOEt) cm⁻¹. ¹H-NMR & 7.46-7.00 (7H, m, ArH), 6.72 (1H, dd, J=7, 2 Hz, ArH), 6.58 (1H, td, J=7, 2 Hz, ArH), 4.90, 4.80 (2H, ABq, J=7 Hz, OCH₂O), 4.66 (ca. 1/4H, d, J=7 Hz, 2- or 3-H), 4.56, 4.49 (ca. 3/2H, ABq, J=6 Hz, 2- and 3-H), 4.40 (ca. 1/4H, d, J=7 Hz, 2- or 3-H), 4.10-3.90 (2H, m, COOCH₂CH₃), 3.66-3.30 (4H, m, OCH₂CH₂O), 3.41 (ca. 3/4H), 3.34 (ca. 9/4H), (each s, OMe), 1.21 (ca. 3/4H), 1.06 (ca. 9/4H), (each t, J=7 Hz, COOCH₂CH₃). HRMS m/z: Calcd for C₂₁H₂₇NO₅S (M⁺): 405.1607. Found: 405.1602.

Ethyl *threo*- and *erythro*-3-(2-Aminophenylthio)-2-[(2-methoxyethoxy)methoxy]-3-(4-methylphenyl)-propanoates **8e** and **9e**:

threo-8e and erythro-9e were separated by MCC (Et₂O:hexane=1:1).

*threo-***8**e; pale yellow oil: IR: 3488, 3368 (NH₂), 1736 (COOEt). cm⁻¹ ¹H-NMR δ 7.24 (2H, d-like, J=7 Hz, ArH), 7.20-7.10 (2H, m, ArH), 7.10 (2H, d-like, J=7 Hz, ArH), 6.74 (1H, br d, J=7 Hz, ArH), 6.58 (1H, br t, J=7 Hz, ArH), 4.85, 4.77 (2H, ABq, J=7 Hz, OCH₂O), 4.42, 4.50 (2H, ABq, J=6 Hz, 2- and 3-H), 4.05-3.95 (2H, COOCH₂CH₃), 3.70-3.30 (4H, m, OCH₂CH₂O), 3.32 (3H, s, OMe), 2.32 (3H, s, Ar-Me), 1.06 (3H, t, J=7 Hz, COOCH₂CH₃), 3.70-3.30 (4H, m, OCH₂CH₂O), 3.32 (3H, s, OMe), 2.32 (3H, s, Ar-Me), 1.06 (3H, t, J=7 Hz, COOCH₂CH₃), 1.06 (2H, d-like, J=7 Hz, ArH), 6.76 (1H, br d, J=7 Hz, ArH), 7.16 (2H, d-like, J=7 Hz, ArH), 7.06 (2H, d-like, J=7 Hz, ArH), 6.96 (1H, br d, J=7 Hz, ArH), 6.73 (1H, br t, J=7 Hz, ArH), 4.79 (2H, s, OCH₂O), 4.60 (1H, d, J=7.5 Hz, 2- or 3-H), 4.38 (1H, d, J=7.5 Hz, 2- or 3-H), 4.16-4.08 (2H, m, COOCH₂CH₃), 3.66, 3.50 (each 2H, m, OCH₂CH₂O), 2.32 (3H, s, Ar-Me), 1.19 (3H, t, J=7 Hz, COOCH₂CH₃). HRMS *m*/*z*: Calcd for C₂₂H₂₉NO₅S (M⁺): 419.1763. Found: 419.1760. Ethyl *threo*- and *erythro*-3-(2-Aminophenylthio)-2-[(2-methoxyethoxy)methoxy]-3-(4-methoxylphenyl) propanoates **8f** and **9f**:

threo-8f and erythro-9f were separated by MCC (Et₂O:hexane=2:1).

threo-**8f**; pale yellow oil IR: 3484, 3372 (NH₂), 1738 (COOEt) cm⁻¹. ¹H-NMR & 7.26 (2H, d-like, J=7 Hz, ArH), 7.16-7.10 (2H, m, ArH), 6.79 (2H, d-like, J=7 Hz, ArH), 6.70 (1H, br d, J=7 Hz, ArH), 6.56 (1H, td, J=7, 2 Hz, ArH), 4.86, 4.79 (2H, ABq, J=7 Hz, OCH₂O), 4.48, 4.42 (2H, ABq, J=6 Hz, 2- and 3-H), 4.05-3.96 (2H, m, COOCH₂CH₃), 3.77 (3H, s, Ar-OMe), 3.66-3.30 (4H, m, OCH₂CH₂O), 3.30 (3H, s, OMe), 1.05 (3H, t, J=7 Hz, COOCH₂CH₃). HRMS *m*/*z*: Calcd for C₂₂H₂₉NO₆S (M⁺): 435.1713. Found: 435.1694. *erythro-9*f; pale yellow oil: IR: 3484, 3380 (NH₂), 1740 (COOEt) cm⁻¹. ¹H-NMR & 7.21 (2H, d-like, J=7 Hz, ArH), 7.20-7.08 (2H, m, ArH), 6.79 (2H, d-like, J=7 Hz, ArH), 6.71 (1H, br d, J=7 Hz, ArH), 6.60 (1H, td, J=7, 2 Hz, ArH), 4.81, 4.79 (2H, ABq, J=7 Hz, OCH₂O), 4.60 (1H, d, J=7.5 Hz, 2- or 3-H), 4.36 (1H, d, J=7.5 Hz, 2- or 3-H), 4.16-4.10 (2H, m, COOCH₂CH₃), 3.79 (3H, s, Ar-OMe), 3.70, 3.50 (each 2H, m, OCH₂CH₂O), 3.40 (3H, s, OMe), 1.20 (3H, t, J=7 Hz, COOCH₂CH₃). HRMS *m*/*z*: Calcd for C₂₂H₂₉NO₆S (M⁺): 435.1713. Found: 435.1713. Found: 435.1691.

Ring closure of the amino esters 8d and 9d

According to the literature,⁶ 5% aqueous NaOH was added to a solution of a 74:26 mixture of the *threo*-8d and *erythro*-9d (120 mg, 0.3 mmol) in EtOH (2 ml). After being stirred at room temperature for 1 h, the reaction mixture was made acidic by addition of 5% HCl and extracted with CH₂Cl₂. The extract was dried and evaporated to give a crude carboxylic acid, which without purification was dissolved in xylene (10 ml). The mixture was heated under reflux in the presence of molecular sieves 4A for 20 h. After evaporation of the solvent, a residue was purified by MCC (AcOEt) to give *cis*-(±)-2,3-dihydro-3-[(2-methoxyethoxy)methoxy]-2-phenyl-1,5-benzothiazepin-4(5H)-one 12 (32 mg, 30%) as colorless crystals, mp 109-110 °C (hexane-Et₂O) and *trans*-(±)-2,3-dihydro-3-[(2-methoxyethoxy)methoxy]-2-phenyl-1,5-benzothiazepin-4(5H)-one 13 (14 mg, 13%) as colorless crystals, mp 132-133 °C (hexane-Et₂O). 2,3-*cis*-12; IR: 3384 (NH), 1684 (CON) cm⁻¹. ¹H-NMR δ: 8.39 (1H, br s, NH), 7.75 (1H, br t, J=7 Hz, ArH), 7.74 (1H, dd, J=7, 2 Hz, ArH), 7.40-7.30 (4H, m, ArH), 7.28 (1H, dd, J=7, 2 Hz, ArH), 7.20 (1H, br t, J=7 Hz, ArH), 5.20 (1H, d,

J=7 Hz, 2- or 3-H), 4.68 (1H, d, J=7 Hz, 2- or 3-H), 4.61, 4.59 (2H, ABq, J=7 Hz, OCH₂O), 3.52, 3.42 (each 2H, m, OCH₂CH₂O), 3.30 (3H, s, OMe). HRMS *m/z*: Calcd for $C_{19}H_{21}NO_4S$ (M⁺): 359.1189. Found: 359.1190. Anal. Calcd for $C_{19}H_{21}NO_4S$: C, 63.49; H, 5.89; N, 3.90. Found: C, 63.28; H, 5.96; N, 3.77. 2, 3-*trans*-13; IR: 3380 (NH), 1684 (NCO) cm⁻¹. ¹H-NMR & 8.20 (1H, br s, NH), 7.72 (1H, dd, J=7, 2 Hz, ArH), 7.53 (1H, td, J=7, 2 Hz, ArH), 7.40-7.20 (7H, m, ArH), 4.56 (1H, d, J=7.5 Hz, 2- or 3-H), 4.54 (2H, s, OCH₂O), 4.40 (1H, d, J=7.5 Hz, 2- or 3-H), 3.24 (3H, s, OMe), 3.24-3.16 (4H, m, OCH₂CH₂O). HRMS *m/z*: Calcd for $C_{19}H_{21}NO_4S$ (M⁺) 359.1189. Found: 359.1171.

cis-(±)-2,3-Dihydro-3-hydroxy-2-phenyl-1,5-benzothiazepin-4(5H)-one 15a

A solution of the 2,3-cis-lactam 12 (36 mg, 0.1 mmol) and TiCl₄ (0.03 ml, 0.3 mmol) in CH₂Cl₂ (3 ml) was stirred at 0°C for 30 min. After addition of 5% HCl, the mixture was extracted with CH₂Cl₂. The extract was dried and evaporated to give a residue which was recrystallized from EtOH to afford the 2,3-cis -15a (26 mg, 97%) as colorless crystals, mp 211-212 °C (lit.⁶ 194-197 °C), which was identical with the authentic sample of 15a provided by H. Inoue of Tanabe Seiyaku Co. Ltd. IR: 3380, 3188 (OH, NH), 1684 (NCO) cm⁻¹. ¹H-NMR [CDCl₃+CD₃OD] &: 7.71 (1H, dd, J=7, 2 Hz, ArH), 7.60 (2H, m, ArH), 7.50-7.30 (4H, m, ArH), 7.26 (1H, td, J=7, 2 Hz, ArH), 7.18 (1H, dd, J=7, 2 Hz, ArH), 5.16 (1H, d, J=7 Hz, 2- or 3-H), 4.52 (1H, d, J=7 Hz, 2- or 3-H). HRMS m/z: Calcd for C₁₅H₁₃NO₂S (M⁺): 271.0666. Found: 271.0665.

trans-(±)-2,3-Dihydro-3-hydroxy-2-phenyl-1,5-benzothiazepin-4(5H)-one 15b

According to the procedure given for the *cis*-lactam 15a, demethoxyethoxymethylation of the 2,3-*trans*-lactam 13 (18 mg, 0.05 mmol) with TiCl₄ followed by recrystallization of the crude solid from EtOH gave the 2,3-*trans*-15b (12 mg, 89 %) as colorless crystals, mp 204-205 °C (lit.⁷ 202-202.5 °C), which was identical with the authentic sample of 15b provided by H. Inoue of Tanabe Seiyaku Co. Ltd.. IR: 3476, 3188 (OH, NH), 1672 (NCO) cm⁻¹. ¹H-NMR [CDCl₃+CD₃OD] &: 7.71 (1H, br d, *J*=7 Hz, ArH), 7.49 (1H, br t, *J*=7 Hz, ArH), 7.40-7.20 (7H, m, ArH), 4.40 (1H, d, *J*=10 Hz, 2- or 3-H), 4.30 (1H, d, *J*=10 Hz, 2- or 3-H). HRMS *m/z*: Calcd for C₁₅H₁₃NO₂S (M⁺): 271.0666. Found: 271.0656.

cis-(±)-2,3-Dihydro-3-methoxy-2-phenyl-1,5-benzothiazepin-4(5H)-one 14

According to the procedure given for 8d and 9d, hydrolysis of the amino ester 8c (50 mg, 0.16 mmol) with 5% aqueous NaOH followed by ring closure of the resulting carboxylic acid yielded the 2,3-*cis*-lactam 14 (16 mg, 36%) as colorless oil. IR: 3384 (NH), 1692 (NCO) cm⁻¹. ¹H-NMR & 9.22 (1H, br s, NH), 7.73 (1H, m, ArH), 7.56 (2H, m, ArH), 7.50-7.20 (6H, m, ArH), 5.21 (1H, d, J=6.5 Hz, 2- or 3-H), 4.21 (1H, d, J=6.5 Hz, 2- or 3-H), 3.24 (3H, s, OMe). HRMS *m*/*z*: Calcd for C₁₆H₁₅NO₂S (M⁺): 285.0822. Found: 285.0805.

Ring closure of the threo-amino ester 8f

was identical with the sample obtained by method A.

According to the procedure given for 8d and 9d, hydrolysis of 8f (1.8 g, 4.14 mmol) with 5% Method A aqueous NaOH followed by ring closure of the resulting carboxylic acid afforded cis-(±)-2,3-dihydro-3-[(2methoxyethoxy)methoxy]-2-(4-methoxyphenyl)-1,5-benzothiazepin-4(5H)-one 16 (800 mg, 50%) as colorless crystals, mp 136.6-137.5 °C (MeOH) and cis-(±)-2,3-dihydro-3-hydroxy-2-(4-methoxyphenyl)-1.5benzothiazepin-4(5H)-one 17 (112 mg, 7%) as colorless crystals, mp 178.5-179.5 °C (EtOH) (lit.⁶ 166-167 °C) after purification of the crude products by MCC (Et₂O, then AcOEt). 16; IR: 3388 (NH), 1686 (CON) cm⁻¹. ¹H-NMR δ: 8.68 (1H, br s, NH), 7.70 (1H, br dd, J=7, 2 Hz, ArH), 7.45 (2H, d-like, J=7 Hz, ArH), 7.41 (1H, br d, J=7 Hz, ArH), 7.23 (1H, br td, J=7, 2 Hz, ArH), 7.18 (1H, br d, J=7 Hz, ArH), 6.84 (2H, d-like, J=7 Hz, ArH), 5.15 (1H, d, J=7 Hz, 2-or 3-H), 4.63 (1H, d, J=7 Hz, 2- or 3-H), 4.61 (2H, s, OCH₂O), 3.78 (3H, s, Ar-OMe), 3.55, 3.41 (each 2H, m, OCH₂CH₂O), 3.28 (3H, s, OMe). HRMS m/z: Calcd for C₂₀H₂₃NO₅S (M⁺): 389.1296. Found: 389.1314. Anal. Calcd for C₂₀H₂₃NO₅S: C, 61.68; H, 5.96; N, 3.60. Found: C, 61.41; H, 5.94; N, 3.58. 17; IR: 3512, 3388 (OH, NH), 1680 (CON) cm⁻¹. ¹H-NMR & 8.12 (1H, br s, NH), 7.74 (1H, br d, J=7 Hz, ArH), 7.53 (2H, d-like, J=7 Hz, ArH), 7.46 (1H, br t, J=7 Hz, ArH), 7.29 (1H, br t, J=7 Hz, ArH), 7.15 (1H, br d, J=7 Hz, ArH), 6.92 (2H, d-like, J=7 Hz, ArH), 5.13 (1H, d, J=7 Hz, 2- or 3-H), 4.52 (1H, d, J=7 Hz, 2- or 3-H), 3.84 (3H, s, Ar-OMe). HRMS m/z: Calcd for C₁₆H₁₅NO₃S (M⁺): 301.0771. Found: 301.0764. Anal. Calcd for C16H15NO3S: C, 63.77; H, 5.02; N, 4.65. Found: C, 63.53; H, 4.94; N, 4.53. Method B Trimethylaluminum (15 % solution in hexane) (0.96 ml, 2 mmol) was added with stirring at 0 °C to a solution of the threo-amino ester 8f (400 mg, 0.92 mmol) in CH₂Cl₂ (5 ml). After being stirred at room temperature for 1 h, 5% HCl was added. The mixture was extracted with CH₂Cl₂. The extract was dried and evaporated to give a solid which was purified by MCC (AcOEt) to afford 16 (322 mg 90 %). The product 16

trans-(±)-2,3-Dihydro-3-[(2-methoxyethoxy)methoxy]-2-(4-methoxyphenyl)-1,5-benzothiazepin-4(5H)-one 18

According to the procedure (method B) given for **8f**, ring closure of the *erythro*-**9f** (22 mg, 0.05 mmol) with trimethylaluminum followed by purification of the crude product by MCC (AcOEt) gave the *trans*-lactam **18** (17 mg, 88 %) as pale yellow oil. IR: 3388 (NH), 1690 (NCO) cm⁻¹. ¹H-NMR & 8.63 (1H, br s, NH), 7.71 (1H, br d, J=7 Hz, ArH), 7.58 (1H, br t, J=7 Hz, ArH), 7.40-7.30 (2H, m, ArH), 7.21 (2H, d-like, J=7 Hz, ArH), 6.46 (2H, d-like, J=7 Hz, ArH), 4.55 (1H, d, J=7 Hz, 2- or 3-H), 4.51, 4.48 (2H, ABq, J=11 Hz, OCH₂O), 4.20 (1H, d, J=7 Hz, 2- or 3-H), 3.81 (3H, s, Ar-OMe), 3.30-3.10 (4H, m, OCH₂CH₂O), 3.24 (3H, s, OMe). HRMS *m*/z: Calcd for C₁₆H₁₄NO₃S (M⁺-CH₂OCH₂CH₂OCH₃): 300.9833. Found: 300.9826.

Demethoxyethoxymethylation of the 2,3-cis-lactam 16

According to the procedure given for the lactam 12, treatment of the *cis*-lactam 16 (544 mg, 1.4 mmol) with TiCl4 (0.46 ml, 0.42 mmol) gave the hydroxylactam 17 (387 mg, 92 %), which was identical with the sample obtained by ring closure of the *threo*-amino ester 8f.

(±)-Diltiazem hydrochloride 19

According to the literature, 10,11 N-alkylation of the lactam 17 followed by O-acetylation of the resulting hydroxylactam gave cis-(\pm)-3-acetoxy-5-[2-(dimethylamino)ethyl]-2,3-dihydro-2-(4-methoxyphenyl)-1,5-benzothiazepin-4(5H)-one [(\pm)-diltiazem] as pale yellow oil, which was treated with HCl to afford (\pm)-Diltiazem hydrochloride 19 as colorless crystals, mp 186-187 °C (lit.¹¹ 187-188 °C). 19 was identical with the authentic sample.¹¹

REFERENCES AND NOTES

- 1. Miyata, O.; Shinada, T.; Naito, T.; Ninomiya, I. Chem. Pharm. Bull. 1989, 37, 3158-3160.
- Miyata, O.; Shinada, T.; Ninomiya, I.; Naito, T.; Date, T.; Okamura, K.; Inagaki, S. J. Org. Chem. 1991, 56, 6556-6564.
- Asymmetric Syntheses of (+)-Diltiazem; a) Inoue, H.; Takeo, S.; Kawazu, M.; Kugita, H. Yakugaku Zasshi 1973, 93, 729-732. b) Watson, K. G.; Fung, Y. M.; Gredley, M.; Bird, G. J.; Jackson, W. R.; Gountzos, H.; Matthews, B. R. J. Chem. Soc., Chem. Commun. 1990, 1018-1019. c) Schwartz, A.; Madan, P. B.; Mohacsi, E.; O'Brien, J. P.; Todaro, L. J.; Coffen, D. L. J. Org. Chem. 1992, 57, 851-856. d) Akita, H.; Umezawa, I.; Matsukura, H.; Oishi, T. Chem. Pharm. Bull. 1992, 40, 318-324. e) Miyata, O.; Shinada, T.; Ninomiya, I.; Naito, T. Tetrahedron Lett. 1991, 32, 3519-3522.
- a) Breitmaier, E.; Voelter, W. "Carbon-13 NMR Spectroscopy," 3rd ed., VCH Verlagsgesellschaft, Weinheim, 1987, pp. 143-147.
 b) Marshall, J. L. "Methods in Stereochemical Analysis; Vol. 2, Carbon-Carbon and Carbon-Proton NMR Couplings," ed. by Marchand, A. P. Verlag Chemie International, Florida, 1983, pp. 33-41.
- 5. Wenkert, E.; Golob, N. F.; Hatch, R. P.; Wenkert, D.; Pellicciari, R. Helv. Chim. Acta 1977, 60, 1.
- a) Hashiyama, T.; Inoue, H.; Konda, M.; Takeda, M.; J. Chem. Soc., Perkin Trans. 1, 1984, 1725-1732.
 b) Kugita, H.; Inoue, H.; Ikezaki, M.; Takeo, S. Chem. Pharm. Bull. 1970, 18, 2028-2037.
- 7. Kugita, H.; Inoue, H.; Ikezaki, M.; Konda, M.; Takeo, S. Chem. Pharm. Bull. 1970, 18, 2284-2289.
- 8. Ohno, S.; Mizukoshi, K.; Izumi, K.; Kato, K.; Hori, M. Chem. Pharm. Bull. 1988, 36, 551-562.
- a) Woodward, R. B.; Heusler, K.; Gostelli, J.; Naegeli, P.; Oppolzer, W.; Ramage, R.; Ranganathan, S.; Vorbrüggen, H. J. Am Chem. Soc., 1966, 88, 852-853. b) Basha, A.; Lipton, M. Weinreb, M. Tetrahedron Lett. 1977, 4171-4174.
- 10. Tanabe Seiyaku Co., Ltd., Eur. Pat. Appl. Ep 81234 (1983) [Chem. Abstr. 1983, 99, 630-631].
- 11. Kugita, H.; Inoue, H.; Ikezaki, M.; Konda, M.; Takeo, S. Chem. Pharm. Bull. 1971, 19, 595-602.
- 12. Domagala, J. M. Tetrahedron Lett. 1980, 21, 4997-5000.
- 13. Richter, P.; Wagner, G. Pharmazie 1973, 28, 514-519.
- 14. Narasaka, K.; Uchimura, T. Chem. Lett., 1982, 57-58.