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Glyoxylic acid in the reaction of isatoic anhydride with amines: a
rapid synthesis of 3-(un)substituted quinazolin-4(3H)-ones leading
to rutaecarpine and evodiamine
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Figure 1. Rutaecarpine (A) and (±)-evodiamine (B).
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A dual reactant/catalyst role of glyoxylic acid in the reaction of isatoic anhydride with various amines
afforded a novel, robust and rapid synthesis of 3-(un)substituted quinazolin-4(3H)-ones. This metal
catalyst-free reaction proceeds via an unusual and unexpected cleavage of C–C bond. A shorter and
common route to two alkaloids, that is, rutaecarpine and evodiamine is also accomplished.

� 2014 Elsevier Ltd. All rights reserved.
Development of shorter routes to the known and bioactive nat-
ural products via newly established methodologies is of high
demand in modern organic synthesis. Indeed, these strategies
allow quicker and economical access to these compounds for
medicinal and other uses.

Rutaecarpine1a (A, Fig. 1), an indolopyridoquinazolinone alka-
loid isolated from Evodia rutaecarpa and related herbs has shown
a range of pharmacological properties including anti-thrombotic,
anticancer, anti-inflammatory and anti-obesity activities.1b,c Evodi-
amine (B, Fig. 1) on the other hand belongs to quinazolin-carboline
alkaloid isolated from the fruit of Evodia rutaecarpa and possesses
diverse pharmacological properties such as resisting tumour, anti-
nociception, weight losing, protecting heart and reducing blood
pressure etc.2 Both these alkaloids attracted our attention due to
their promising anti-cancer properties. Indeed, evodiamine has
shown strong cytotoxic effects against human cancer cells in addi-
tion to apoptosis induction, suppression of invasion and metasta-
sis. In continuation of our efforts on identification of novel
inducers of apoptosis3 we required robust and continuous supply
of these two alkaloids for our in-house pharmacological screen.
Since the isolation of these alkaloids, a number of methods have
been reported for the synthesis of rutaecarpine1b,4 and evodi-
amine.5 While many of these methods are elegant and interesting
several of them however, are either not convenient or not suitable
for scale-up preparation due to the involvement of relatively
longer synthetic routes and low overall yields. Notably, tryptamine
has been used as a key starting material in some of these synthe-
ses. Accordingly, we wondered if a new, shorter and common route
to both A and B starting from common reactants, that is, isatoic
anhydride (1) and tryptamine (2a) can be developed (Scheme 1).
Indeed, the synthesis of A and B via a common intermediate is
not known in the literature.

Our proposed strategy was mainly based on the elegant con-
struction of 3-substituted quinazolin-4(3H)-one ring as a key step
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Table 2
Synthesis of 3-substituted quinazolin-4(3H)-ones (3)a
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Scheme 1. Proposed synthesis of rutaecarpine (A) and evodiamine (B).
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followed by a subsequent cyclization leading to the common
precursor for A and B. A literature search revealed that the
proposed strategy of constructing quinazolin-4(3H)-one ring using
glyoxylic acid was not only an unknown fact but also unusual and
unexpected as it involved the cleavage of a C–C bond. We therefore
decided to expand the scope and generality of this novel
methodology further. Herein we report our preliminary results
on the rapid synthesis of 3-(un)substituted quinazolin-4(3H)-ones
leading to rutaecarpine and evodiamine.

The 3-substituted quinazolin-4(3H)-ones are generally synthe-
sized via a 3-component reaction of anthranilic acid, amines and
ortho esters. The reaction proceeds in the presence of a range of
catalysts such as NaHSO4 or Amberlyst-15,6 Yb(III)-resin,7

Yb(OTf)3,8 Bi(TFA)3-[nbp]FeCl4 ionic liquid,9 La(NO3)3�6H2O or
p-toluenesulfonic acid,10 Keggin-type heteropoly acid under micro-
wave irradiation,11 SnCl4�4H2O,12 SiO2–FeCl3

13 and Al(NO3)3�6H2-

O.14 However, the use of expensive metal or non-metal catalysts
and longer reaction times are the main drawbacks of many of these
methods. A catalyst-free synthesis of 3-aryl quinazolin-4(3H)-ones
via the reaction of isatoic anhydride, formic acid and anilines under
solvent-free conditions has been reported.15 However, the method
involved microwave heating and yields of products were not par-
ticularly high. We anticipated that the commercially available
50% aqueous glyoxylic acid could be a cheaper alternative to the
formic acid (neat) used earlier. Moreover, like formic acid the gly-
oxylic acid also could play a dual role, that is, as a reactant as well
as a catalyst. Accordingly, the reaction of isatoic anhydride (1),
cyclohexyl amine (2b) and glyoxylic acid was used as a model reac-
tion to establish the optimized reaction condition (Table 1). The
reaction was initially performed in polar and protic solvents such
as MeOH, EtOH and n-BuOH at their refluxing temperatures when
the desired product 3b was isolated in moderate to good yields
Table 1
Reaction of 1, 2b and glyoxylic acid under various conditionsa

N
H

O

O

O N

N

ONH2

+ OHC-COOH

Solvent
air1 2b 3b

50% aqueous

Entry Solvent/temp Time Yieldb (%)

1 MeOH/65 �C 48–50 h 44
2 EtOH/80 �C 48–50 h 52
3 n-BuOH/115 �C 8–10 h 76
4 CHCl3/60 �C 48–50 h 10
5 Toluene/110 �C 20–22 h 70
6 PEG-400/110–120 �C 12 min 94
7 Neatc/120 �C 10 min 82

a Reactions were performed by using a mixture of 1 (1.0 equiv), 2b (1.1 equiv)
and glyoxylic acid (50% w/w in water) (1.1 equiv) in a solvent (3 mL) under open air.

b Isolated yield.
c Reaction was performed under microwave irradiation (300 W).
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(entries 1–3, Table 1). The reaction was almost suppressed in chlo-
roform (entry 4, Table 1) but proceeded well in toluene (entry 5,
Table 1). In all these cases the duration of the reaction was 8–
50 h. We then examined the use of PEG-400 and to our surprise
the reaction reached to completion within 12 min affording the
high yield of 3b (entry 6, Table 1). The reaction time was margin-
ally reduced to 10 min when the reaction was performed under
neat microwave irradiation (entry 7, Table 1). However the yield
of 3b was decreased (entry 6 vs 7, Table 1) due to the formation
of an unknown side product. Being an inexpensive, polar, nontoxic
and high boiling solvent, PEG has several advantages over other
commonly used organic solvents. We therefore used the reaction
condition of entry 6 in Table 1 for further studies.

A range of aliphatic and aromatic amines as well as ammonia
were reacted with 1 under optimized conditions (Table 2). The ali-
phatic amines may contain groups like alkyl, cycloalkyl, alkylaryl
etc., (entries 1–3 and 5–12, Table 2) whereas the aromatic amines
may contain various substituents like alkyl, haloalkyl, alkoxy, mor-
pholino etc., on the aromatic ring (entries 13–19, Table 1). The
reaction proceeded well in all these cases affording the desired
3-substituted quinazolin-4(3H)-ones (3) in good yields.

A plausible mechanism for the step-wise formation of 3-substi-
tuted quinazolin-4(3H)-ones (3) is shown in Scheme 2. The reac-
tion of isatoic anhydride (1) with amine (2) affords the o-amino
benzamide intermediate E-1 which on reaction with glyoxylic acid
gives the cyclic intermediate E-2. This step seemed to proceed via
an imine formation between the –NH2 group of E-1 and the alde-
hyde moiety of glyoxylic acid16 followed by intramolecular cycliza-
tion. The glyoxylic acid seemed to play a dual role, that is, as a
reactant and a catalyst in this step. An oxidative decarboxylation
of E-2 in the presence of aerial oxygen affords the desired product
3.17
3 2d; Cycloheptyl 12 3d 90
4 2e; Hc,d 8 3e 96
5 2f; Mec,e 8 3f 96
6 2g; n-Buc 10 3g 94
7 2h; CH2(CH2)2OMe 18 3h 93

8 2i;
O

20 3i 85

9 2j; CH2Ph 22 3j 86
10 2k; CH2C6H4F-p 25 3k 81
11 2l; CH2C6H4OMe-p 22 3l 91
12 2m; CH(Me)Ph-(S) 25 3m 88
13 2n; Ph 20 3n 82
14 2o; C6H4Me-p 20 3o 84
15 2p; C6H4But-p 25 3p 89
16 2q; C6H4CF3-p 30 3q 78
17 2r; C6H4Cl-p 30 3r 76
18 2s; C6H4OMe-p 25 3s 88
19 2t; C6H4(morpholino)-p 30 3t 83

a Reaction was performed by using a mixture of 1 (1.0 equiv), 2b–t (1.1 equiv)
and glyoxylic acid (50% w/w in water) (1.1 equiv) in PEG-400 (3 mL) under open air.

b Isolated yield.
c Reaction was performed in a closed vessel without removing air.
d 28% aqueous NH4OH was used.
e 40% aqueous MeNH2 was used.
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Scheme 2. Proposed reaction mechanism for the formation of 3.
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To gain further evidence on the proposed mechanism, the isa-
toic anhydride 1 was reacted with the amine 2g in PEG-400 at
room temp for 10 min (Scheme 3) when the amino amide interme-
diate E-1g was formed that was isolated and characterized by 1H
NMR, MS and HRMS. Then the glyoxylic acid was added and the
mixture was stirred at room temp for 5 h. We were able to detect
the formation of the intermediate E-2g that was supported by MS
and HRMS data (see ESI). However, we failed to isolate pure E-2g
due to its quick conversion to 3g during the removal of PEG-400
at elevated temperature. Nevertheless, all these studies indicated
the intermediacy of E-1 and E-2 in the present reaction.

Having developed a novel and catalyst-free rapid synthesis of
3-substituted quinazolin-4(3H)-ones we then applied this
methodology for the synthesis of our target natural products, that
is, rutaecarpine (A) and evodiamine (B) (Scheme 4). Thus isatoic
anhydride (1) was reacted with tryptamine (2a) and glyoxylic acid
in PEG-400 at 110–120 �C for 15 min under open air to give the
desired product 3a in 85% yield. The compound 3a on treatment
with TFAA followed by KOH afforded 13b,14-dihydrorutaecarpine
4 in 82% yield.1a,18 Treatment of 4 with alkaline H2O2 afforded A
in 88% yield whereas reaction of 4 with MeI in the presence of
Cs2CO3 provided B in 62% yield. Notably, earlier attempts to
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Scheme 4. Synthesis of rutaecarpine (A) and evodiamine (B).
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Scheme 3. Reaction of isatoic anhydride 1 with amine 2g.
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convert 4 directly to A using oxidative coupling reagents such as
Hg(OAc)2, FeCl3 and Pb(OAc)4 were not successful as complex reac-
tion mixtures were obtained in all these cases.1a Thus the present
effort represents the first example of successful conversion of 4
into A and the method does not require the use of any metal cata-
lyst. It is also mention worthy that our approach of converting 4
into B has not been explored earlier. Overall, our strategy of syn-
thesizing A and B via a common intermediate 4 seemed to be
attractive and may find a wide usage.

In conclusion, we have demonstrated for the first time the use
of glyoxylic acid in the reaction of isatoic anhydride with various
amines to furnish a novel and metal catalyst-/microwave-free
rapid synthesis of 3-(un)substituted quinazolin-4(3H)-ones. The
glyoxylic acid played a dual reactant/catalyst role in this reaction
which proceeded via the cleavage of a C–C bond. The potential of
this methodology has been realized in developing a shorter, com-
mon and economical route to two known alkaloids, for example,
rutaecarpine and evodiamine.
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