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ABSTRACT: Pinacolborane, catecholborane, triethylsilane, triphenylsilane,
dimethylphenylsilane, 1,1,1,3,5,5,5-heptamethyltrisiloxane, triethylgermane, ~ H-BR2
triphenylgermane, and triphenylstannane deuterated at the heteroatom position =~ H-ERj
have been catalytically prepared in 50—70% isolated yield, through H/D

exchange between the D, molecule and the respective boranes and hydrides of

the group 14 elements, in the presence of the rhodium(I)-monohydride catalyst D,
precursor RhH{x’-P,0,P-[xant(PPr,),]} (xant(P'Pr,), = 9,9-dimethyl-4,5-bis-

(diisopropylphosphino )xanthene).

dditions of B—H and E—H bonds of boranes (R,BH) and

hydrides of the group 14 elements (R;EH; E = Si, Ge, Sn)
to unsaturated organic molecules, the so-called reactions of
hydroboration," hydrosilylation,” hydrogermylation,” and
hydrostannation,* are powerful tools in the modern organic
synthesis, which allow access to a great number of handy
synthetic intermediates. The use of isotopically labeled
reagents for these reactions is of paramount importance from
two different points of view: they provide relevant mechanistic
information,” which is necessary for a rational improvement of
the reactions, and generate products bearing heavy isotopes
with a slower metabolism,’ facilitating lower pharmaceutical
doses. Unfortunately, deuterated-boranes, -silanes, -germanes,
and -stannanes are very expensive and the required one is not
always commercially available. As a consequence, they are
prepared by graduate students and postdoctoral researchers in
the majority of the academic laboratories of organic chemistry,
including organometallics.

Preparation of such reagents by multistep procedures may
be even more expensive than the commercial products, given
the loss of yield in each step and the time required. So,
catalytic one-pot synthesis promoted by transition metals is an
attractive alternative. Benzene-d,,” D,0,® and D, are usual
sources of deuterium. The use of the former requires that the
catalyst activates C—D bonds, whereas the utility of the second
one needs of stable metal species toward the hydrolysis. So,
only D, has general applicability. Thus, reactions shown in
Scheme 1 are the most clean and straightforward method to
prepare these classes of deuterated compounds. Catalysts are
also specific for each type of reagent. Some complexes of iron,”
cobalt,”® rhodium,"' and iridium'? stabilized by P,N,P- and
N,N,N-pincer and chelate-diphosphines and NHC ligands
have shown to be efficient for the exchange in boranes (a).
Deuterated pinacolborane (pinBD) has been also synthesized
in high yield, by deuterogenolzsis of B,pin,, in the presence of
iron and cobalt precursors.”'”” Catalysts for the deuteration of
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E = Si, Ge, Sn

Scheme 1. Reactions with Deuterium

[cat]

(@) RyB-H+D, R,B-D + H-D

) [cat] )
(b)  R4Si-H + Dy ——> R3Si-D + H-D

[cat]
(¢) R3Ge-H + Dy ——— R3Ge-D + H-D

[cat]

(d) RsSn-H + D, R4Sn-D + H-D

silanes (b) include ruthenium-polyhydrides," half-sandwich
rthodium(IIT) derivatives,'* iridium(II1)-NHC compounds,'”
and platinum(0)-phosphine species.'® To our knowledge,
catalysts for the reactions with germanes (c) and stannanes
(d) have not been reported to date. This specificity forces us to
prepare or to buy a particular catalyst for the preparation of
each class of deuterated reagent that is desired. In this note, we
report and recommend the use of the square-planar complex
RhH{x*-P,0,P-[xant(P'Pr,),]} (xant(PPr,), = 9,9-dimethyl-
4,5-bis(diisopropylphosphino)xanthene) as catalyst precusor,
which is efficient for the four reactions of Scheme 1, working
under very mild conditions and with low catalyst loading.
This complex is a notable example of stable late-transition-
metal unsaturated monohydride.'” It catalyzes the direct
borylation of arenes,'® the decianative borylation of nitriles,"”
the dehydrogenation of ammonia borane,”” the dehydropoly-
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merization of amine boranes,”’ and the hydroboration of
diphenylacetylene.”” Furthermore, it participates in the
catalytic cycle of dehydrogenative borylation—hydroborylation
of bis(alkyl)alkynes.”* So far, a handicap for its use was the
preparation procedure, which afforded a moderate yield. In
order to solve this issue and to give it a more general use, we
have significantly improved its preparation. Now, it is simple
(see Experimental Section) with reduced reaction time,
resulting in a high yield (90%) in spite of involving two
steps. It starts from the chloride derivative RhCI{x*-P,0,P-
[xant(P'Pr,),]}, which is almost quantitatively transformed
into the dihydride-rhodium(III) complex RhH,CI{x’-P,0,P-
[xant(P'Pr,),]} by oxidative addition of H, in pentane. The
dechlorination of the latter with KO'Bu also in pentane yields
the monohydride (Scheme 2).

Scheme 2. Preparation of RhH{x>-P,0,P-[xant(P'Pr,),]}

The catalysis was carried out at room temperature, under
1.14 bar of D,, in diethyl ether as solvent, with concentrations
of substrate and catalyst of 0.36 M and 3.6 X 107> M,
respectively. Under these conditions, the boranes pinacolbor-
ane and catecholborane; the silanes triethylsilane, triphenylsi-
lane, dimethylphenylsilane and 1,1,1,3,5,5,5-heptamethyl-
trisiloxane; and the germanes triethylgermane and triphenyl-
germane were transformed in the respective species
monodeuterated at the element with conversions higher than
95%, in all cases, after 6 h (Table 1). The stannane
triphenylstannane was also converted into the monodeuterated
counterpart. However, in this case, the reaction had to be
performed in the absence of light and in the presence of 5 mol
% of hydroquinone, to prevent the formation of the radical
Ph;Sn-. The latter dimerizes to afford Ph;Sn—SnPh,, which is a
usual impurity of the reagent. The deuterated compounds were
isolated in 50—70% yield after purification and were
characterized by NMR spectroscopy. The purification of the
deuterated triphenylsilane, triphenylgermane, and triphenyl-
stannane was performed by column chromatography on silica
gel, whereas the remaining compounds were distillated in a
Kugelrohr glass oven.

The deuteration can be rationalized according to Scheme 3.
Under a D, atmosphere, complex RhH{x’-P,0,P-[xant-
(P'Pr,),]} undergoes H/D exchange to afford the deuteride
counterpart RhD{x*-P,0,P-[xant(P'Pr,),]}, which is the true
catalyst of the reactions. This species oxidatively adds the B—H
or E—H bond of the substrates, along the O—Rh—H axis with
the electropositive element on the oxygen atom of the
diphosphine, to afford the respective rhodium(III) derivatives
RhHD(BR,){x*-P,0,P-[xant(P'Pr,),]} and RhHD(ER;){x*-
P,0,P-[xant(P'Pr,),]}. This is strongly supported by the
reactions of RhH{x’-P,0,P-[xant(P'Pr,),]} with pinacolborane
(pinBH), catecholborane (catBH), triethylsilane (Et;SiH), and
triphenylsilane (Ph;SiH).”* As is well-known, there is a marked
diagonal relationship between the elements of rows 2 and 3,
which is particularly pronounced for boron and silicon and
evident in the chemistry of the platinum group metals.”® In
accordance with it, the square-planar monohydride reacts with

Table 1. H/D Isotopic Exchange of Boranes, Silanes,
Germanes, and Stannanes Catalyzed by RhH{x*-P,0,P-
[xant(P'Pr,),]}"

catalyst
RoB-H 1 mol% R2B-D
- 77 .

RsE-H 25°C.6h  pED

D, (1.14 bar)

diethyl ether
Product Deuterium Isolated yield

incorporation

pinB-D >95% 65%
catB-D >95% 47%
Et:Si-D >95% 72%
PhsSi-D >95% 78%
PhMe,Si-D >95% 68%
(MesSiO)2MeSi-D >95% 70%
Et:Ge-D >95% 58%
PhsGe-D >95% 72%
PhiSn-D >95% 81%

“Reactions were carried out in diethyl ether (S mL) in a 160 mL
screw cap Schlenk flask under 1.14 bar of D,. The deuteration of
HSnPh; was performed in the presence of hydroquinone (S mol %)
and in the absence of light. To ensure full deuteration two D, loadings
are used. Deuterium incorporation based on integration of '"H NMR
spectra.

the four compounds of the same manner, to give the related
trans-dihydrides RhH,(BR,){x’-P,0,P-[xant(P'Pr,),]} (BR, =
Bpin, Bcat) and RhH,(SiR;){«*-P,O,P-[xant(P'Pr,),]} (SiRy =
SiEt,, SiPh;).”* The ether-diphosphine xant(P'Pr,), is flexible,
and the ether function displays hemilabile character. As results,
transitory and stable species bearing the ligand coordinated in
fashions 3-mer,*° K3—fac,27 KE-cis,”® and x*-trans®® are known.
This coordinating versatility allows it a fast interconversion
between the different coordination modes. Thus, it adapts to
the requirements of the participating intermediates of the
catalytic cycles, enabling the necessary geometrical trans-
formations on the metal coordination sphere to allowing
reactions initially forbidden. As proof of this ability, complexes
RhH,(BR,){x*>-P,0,P-[xant(P'Pr,),]} and RhH,(SiR;){x>-
P,O,P-[xant(P'Pr,),]} undergo reductive elimination of H,,
to give the respective square-planar boryl- and silyl-derivatives
Rh(BR,){x>-P,0,P-[xant(P'Pr,),]} and Rh(SiR;){x*-P,0,P-
[xant(P'Pr,),]} in spite of the trans disposition of the hydride
ligands and the concerted nature of the elimination.”* Under
the catalytic conditions, the square-planar boryl complexes and
the Rh(ER;){x*>-P,0,P-[xant(P'Pr,),]} counterparts can be
similarly formed by reductive elimination of HD from
RhHD(BR,){x*-P,0,P-[xant(P'Pr,),]} and RhHD(ER;){x’-
P,0,P-[xant(P'Pr,),]}. In this way, the subsequent oxidative
addition of D, to the metal center of these square-planar
species, now along the O—Rh—B or O—RhE axis, could give
the cis-dideuteride intermediates RhD,(BR,){x>-P,0O,P-[xant-
(P'Pr,),]} and RhD,(ER;){x*-P,O,P-[xant(P'Pr,),]}, which
should yield the wished R,BD and R;ED products through
the respective reductive eliminations, regenerating the catalyst.

The behavior of the catalyst during the deuteration of
Et;SiH was followed by *'P{'H} NMR spectroscopy (Figure
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Scheme 3. Deuteration Mechanism

$30). In accordance with Scheme 3, the hydride-deuteride-
rhodium(IIT) complex RhNHD(SiEt,){x’-P,0O,P-[xant(P'Pr,),]}
(8310 61.8; 81y, —5.87; Sy, —5.9) is the key species of the
catalysis. It is rapidly formed and the unique detected species
while Et;SiH is present in the solution. Once the deuteration is
completed, the deuteride-rthodium(I) catalyst is quantitatively
regenerated. These observations confirm the cycle proposed on
the basis of the previously mentioned stoichiometric reactions
and points out the reductive elimination of H—D from
RhHD(SiEt;){x>-P,0,P-[xant(P'Pr,),]} as the rate-determin-
ing step of the catalysis.

In conclusion, the rthodium(I)-monohydride RhH{x>-P,O,P-
[xant(P'Pr,),]} is an efficient catalyst precursor to perform the
H/D exchange between the D, molecule and the heteroatom—
H bond of boranes and hydrides of the group 14 elements. The
deuterated products are obtained in high yields, and >95%
deuterium incorporation was achieved at the desired position.
The preparation of this precursor is simple, with reduced
reaction time, and results in very high yields.

B EXPERIMENTAL SECTION

General Information. All reactions were carried out with
exclusion of air using Schlenk-tube techniques or in a drybox.
Pentane and diethyl ether were obtained oxygen- and water-free from
an MBraun solvent purification apparatus. 'H, *H, "B{'H}, BC{'H},
and Si{'H} NMR spectra were recorded on Bruker 300 ARX,
Bruker Avance 300 MHz, Bruker Avance 400 MHz, or Bruker Avance
500 MHz instruments at 25 °C. Chemical shifts (expressed in ppm)
are referenced to residual solvent peaks (H, *H, 3C), BF;-OEt,
('B), or SiMe, (*Si). High-resolution electrospray (HRMS) and
MALDI-TOF mass spectra were acquired using a MicroTOF-Q
hybrid quadrupole time-of-flight spectrometer and a Bruker Autoflex
III, MALDITOF/TOF equipped with a DCTB matrix, respectively.
RthlC;I{K3—P,O,P—[xant(PiPrz)z]} was prepared as reported previ-
ously.

Improved Method of Synthesis of RhH{x3-P,0,P-[xant-
(P'Pry),0} A suspension of RhH,Cl{x*-P,0,P-[xant(P'Pr,),]} (1000
mg, 1.71 mmol) in pentane (30 mL) was treated with K'BuO (250
mg, 2.23 mmol). The resulting mixture was stirred at room

temperature for 12 h, and during this time the gradual darkening of
the color was observed. The resulting suspension was extracted with
pentane (S X 30 mL) and filtered through a porous frit to remove the
potassium salts, obtaining a very dark solution that was dried to
vacum to afford a very dark solid. Yield: 850 mg (91%). NMR data
agree with those reported previously.'”

General Procedure for the Deuteration Experiments. In an
argon-filled glovebox a screw cap Schlenk flask (volume ~160 mL)
was charged with RhH{x’-P,0,P-[xant(PPr,),]} (10 mg, 0.018
mmol), the corresponding substrate (1.83 mmol), and diethyl ether
(5 mL). The resulting solution was freeze—pump—thaw degassed and
filled with D, (0.14 bar over the atmospheric pressure) while
immersed in liquid N,. The solution was thawed and stirred for 3 h at
room temperature. Then, the flask atmosphere was removed and it
was charged again with 1.14 bar of D,. After an additional 3 h, the
deuterium atmosphere was replaced by argon and two different
purification methods were used: flash chromatography over silica gel
using diethyl ether as eluent (DSiPh;, DGePhs, and DSnPh;) or by
evaporation to dryness and vacuum distillation (DBpin, DBcat,
DSiEt,;, DSiMe,Ph, DSiMe(OSiMe,),, and DGeEt;). The deuteration
of HSnPh; was performed following the general procedure but in the
presence of hydroquinone (0.09 mmol) and in the absence of light.

Pinacolborane-d,. Colorless liquid. Yield: 153 mg (65%). NMR
Spectra (Figures S1—S3): 'H NMR (300.13 MHz, C¢Dg): 6 1.00 (s,
12H). *H NMR (46.07 MHz, C4H,): & 4.25 (broad s, vy, = 67 Hz).
B NMR (96.29 MHz, C¢Dg): 6 28.3 (broad t, ‘Jy.p = 20.4 Hz).
NMR data agree with those reported previously.*

Catecholborane-d,. Colorless liquid. Yield: 104 mg (47%). NMR
Spectra (Figures S4—S6): "H NMR (300.13 MHz, C¢Dy): 6 6.97 (dd,
Jueu = 5.7 Hz, Jy_y = 3.3 Hz, 2H), 6.75 (dd, Jy_y = 6.0 Hz, Jy_y =
3.6 Hz, 2H). *H NMR (46.07 MHz, C¢Hy): & 4.38 (broad s, v/, , = 60
Hz). "B NMR (96.29 MHz, C(Dy): & 28.6 (broad s). NMR data
agree with those reported previously.

Triethylsilane-d,. Colorless liquid. Yield: 155 mg (72%). NMR
Spectra (Figures S7—S9): "H NMR (300.13 MHz, C;Dy): 5 0.97 (t, ]
= 7.8 Hz, 9H), 0.53 (q, ] = 7.8 Hz, 6H). *H NMR (61.42 MHz,
C¢Hy): 6 3.9 (s). PSi{'H} NMR (59.63 MHz, C¢Dy): 6 —0.1 (t, J.p
= 27.4 Hz). NMR data agree with those reported previously.”

Triphenylsilane-d;. White solid. Yield: 373 mg (78%). NMR
Spectra (Figures S10—S12): 'H NMR (300.13 MHz, C¢Dy): 6 7.70
(m, 6H), 7.30 (m, 9H). *H NMR (61.42 MHz, C¢Hy): 6 5.7 (s).
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2Si{'H} NMR (59.63 MHz, CeHy): & —18.7 (t, Jg.p = 30.0 Hz).
NMR data agree with those reported previously.'>

Dimethylphenylsilane-d;. Colorless liquid. Yield: 171 mg
(68%). NMR Spectra (Figures S13—S15): '"H NMR (300.13 MHz,
CDy): 6 7.44 (m, 2H), 7.17 (m, 3H), 0.18 (s, 6H). ’H NMR (61.42
MHz, C¢Hy): 6 4.6 (s). ®Si{'H} NMR (59.63 MHz, C(Dy): 6 —17.8
(t, Jsp = 289 Hz). NMR data agree with those reported
previously.

1,1,1,3,5,5,5-Heptamethyltrisiloxane-d,. Colorless liquid.
Yield: 286 mg (70%). NMR Spectra (Figures S16—S18): '"H NMR
(300.13 MHz, C4Dy): 6 0.15 (s, 21H). *H NMR (61.42 MHz, C(Hy):
5 5.0 (s). PSi{'H} NMR (59.63 MHz, C¢Dy): 6 3.6 (s), —42.0 (t,
Ysip = 36.0 Hz). NMR data agree with those reported previously.7d

Triethylgermane-d;.>> Colorless liquid. Yield: 170 mg (58%).
NMR Spectra (Figures $19—S21): '"H NMR (300.13 MHz, C¢D): 6
1.11 (t, J = 7.5 Hz), 0.87 (q, ] = 7.8 Hz, 6H). 2H NMR (61.42 MHz,
C¢Hy): 6 3.9 (s). BC{'H} NMR (75.47 MHz, C(Dy): 6 9.4, 8.4.
HRMS (Figure S22, electrospray, m/z): calcd for CsH,sGe [M — D],
161.0381; found, 161.0367.

Triphenylgermane-d;.>> White solid. Yield: 403 mg (72%).
NMR Spectra (Figures $23—525): 'H (300.13 MHz, C¢Dy): 6 7.50
(m, 6H), 7.14 (m, 9H). *H NMR (61.42 MHz, C¢Hy): 6 5.9 (s).
BC{'H} NMR (7547 MHz, C(Dg): & 1512, 135.6, 129.5, 128.8.
MALDI-TOF (m/z): caled for C;gH,sGe [M — D]*, 305.038; found,
304.968.

Triphenylstannane-d,.>? Oily white solid. Yield: 521 mg (81%).
NMR Spectra (Figures $26—528): 'H (300.13 MHz, C;D): 5 7.60
(m, 6H), 7.10 (m, 9H). *H NMR (61.42 MHz, C¢Dg): 6 6.9 (s with
tin satellites, 'J; 10500 = 319 Hz, YJ 1700 = 303 Hz). BC{*H} NMR
(7547 MHz, C¢Dy): & 137.7, 137.3, 129.4, 129.0. HRMS (Figure S29,
electrospray, m/z): caled for C;gH;sSn [M — D]*, 351.0193; found,
351.0175.

NMR Spectroscopic Study of the Catalytic Deuteration of
Triethylsilane. In the glovebox, two J Young NMR tubes were
charged with a solution of RhH{x*-P,O,P-[xant(P'Pr,),]} (10 mg,
0.02 mmol) and triethylsilane (30 L, 0.2 mmol) in diethyl ether
(0.40 mL) or diethyl ether-d;, (0.40 mL), respectively. The argon
atmosphere was replaced by a deuterium atmosphere (1.14 bar), and
3p{'H}, 'H, and *H NMR spectra were recorded periodically.

Gram-Scale Preparation of Triphenylsilane-d,. In an argon-
filled glovebox a screw cap Schlenk flask (volume ~160 mL) was
charged with RhH{x*-P,O,P-[xant(P'Pr,),]} (54.6 mg, 0.1 mmol),
HSiPh; (2.604 g, 10 mmol), and diethyl ether (27.5 mL). The
resulting solution was freeze—pump—thaw degassed and filled with D,
(0.14 bar over the atmospheric pressure) while immersed in liquid N,.
The solution was thawed and stirred for 1 h at room temperature.
Afterward, the flask atmosphere was removed and it was charged again
with 1.14 bar of D,. This procedure was repeated each hour, up to
four times. Then the deuterium atmosphere was replaced by argon,
and triphenylsilane-d; was purified by flash chromatography over silica
gel using diethyl ether as eluent. Isolated yield: 2.28 g (87%).
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