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An iron-catalyzed benzylic vinylation was developed to 
transfer the carbon atom in N,N-dimethyl moiety of N,N-
dimethylacetamide (or N,N-dimethylformamide) to 2-methyl 
azaarenes to generate 2-vinyl azaarenes.  10 

Vinylaromatics are important structural motifs for C-C bond 
construction via cross-coupling reactions, such as Heck 
reaction, and have been widely applied in the synthesis of 
natural products. Traditional formation of terminal alkenes 
were studied extensively including the elimination of 15 

haloalkanes, alcohols, quaternary ammonium salts, carboxylic 
esters, epoxyethanes and sulfones, for instance. However, 
most of these procedures are impaired by prefunctional 
starting materials, which limit their applications. Hence, this 
study investigated a new concise pathway employing a cross-20 

dehydrogenative-coupling (CDC) reaction between a 2-methyl 
azaarene and an N,N-dimethyl amide with tandem elimination 
to generate vinylarene compounds (Scheme 1).  

Given their remarkable advance and significance, iron 
catalysts, especially hydrous iron salts, have been given 25 

significant attention in studies involving direct C-H bond 
activation reaction.[1] Although several efforts have been made in 
recent years to develop efficient strategies for the transition 
metal-catalyzed, selective oxidation of C-H bonds adjacent to 
heteroatoms,[2] the use of eco-friendly iron as catalyst is still rare 30 

and little attention has been given to employing the more stable 
N-substituted amides as CDC partner.[3, 4] Prompted by the results 
of our previous work on the sp2 C-H bond nitration of 
quinoxalines,[5] we continued our research on the quinoxaline 
structure, this time focusing on sp3 C-H bond functionalization.[6]  35 

 

 
Scheme 1. Synthesis strategies. 

Table 1. Optimization of the Reaction Condition a  

N

N

N

N[Fe] (2 mol %)

[O] (2.0 equiv.)
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sources
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N
O

N
O
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O
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O

N
O

Ph
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O

N Ph N
O

O
N

O

N
O

Ph

CS 1 CS 2 CS 3 CS 4

CS 6

CS 5

CS 7 CS 8 CS 9 CS 10  40 

Entry Iron Carbon sources Yield (%) b 

 1 c FeCl3 CS 1   n.d. d 
2 FeCl3 CS 1 90 (81e) 
3 FeCl3 CS 2 94 
4 FeCl3 CS 3 n.d. 
5 FeCl3 CS 4 n.d. 
6 FeCl3 CS 5 83 

7-11f FeCl3 CS 6-CS10 n.d. 
12 FeCl3·6H2O CS 2 94(87 e) 
13 FeCl2·4H2O CS 2 91 
14 FeSO4·7H2O CS 2 91 
15 >99.99%, FeCl3 CS 2 94 
16 -- CS 2 4 
17 FeCl3·6H2O g CS 2 n.d. 

[a] Reaction condition : 1a (0.2 mmol), [Fe] (0.004 mmol), K2S2O8 (0.4 
mmol), solvent / carbon source (1.5 mL), 110 ℃, 3h, under air (unless 
otherwise noted). [b] GC-MS yields. [c] 10 mol % FeCl3 were used, r. t. 
for 24 h, under argon. [d] n.d. = not detected. [e] Isolated yields. [f] CS6 –
CS10 were used respectively. [g] Without oxidants. 45 

No desired product was initially obtained (entry 1) when the 
model substrate 1a was treated with FeCl3 as catalyst (10 mol%) 
and N,N-dimethylformamide (DMF) using K2S2O8 (2.0 equiv.) as 
an oxidant under argon at room temperature for 24 hours, as 
shown in Table 1. However, the desired vinyl aromatic, 2a, was 50 

isolated at 81% yield within a shorter complete substrate 
consumption time of 3 hours (entry 2) when the temperature was 
increased to 110 C and the catalyst loading was reduced to 2 
mol%. Alternative amides were employed to test this notable 
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Table 2. Vinylation of benzylic C-H bond a 

 
Entry Ar (2) R1 R2 Yield (%) b 

1 Phenyl (2a) H H 87 
2 4’-OMe Phenyl (2b) H H 89 
3 4’-Me Phenyl (2c) H H 86 
4 2’, 4’-DiMe Phenyl (2d) H H 92 
5 4’-Ph Phenyl (2e) H H 87 
6 4’-F Phenyl (2f) H H 86 
7 4’-Cl Phenyl (2g) H H 84 
8 4’-Br Phenyl (2h) H H 83 
9 4’-I Phenyl (2i) H H 81 
10 2’-Br Phenyl (2j) H H 87 
11 3’-NO2 Phenyl (2k) H H 83 
12 3’-CF3 Phenyl (2l) H H 75 
13 Phenyl (2m) Me H 91 
14 2-Thienyl (2n) H H 73 
15 Phenyl (2o) H Me  60 c 

[a] Reaction condition : 1 (0.2 mmol), FeCl3·6H2O (0.004 mmol), K2S2O8 
(0.4 mmol), DMA (1.5 mL), 110 ℃, 3h, under air (unless otherwise 
noted). [b] Isolated yields. [c] 10 mol % FeCl3·6H2O was used, 8h. 5 

transformation. Vinylation was found to occur only in the 
presence of N,N-dimethyl amides, particularly N,N-
dimethylacetamide (DMA), suggesting that the extended carbon 
atom was donated by the N,N-dimethyl moiety rather than by the 
carbonyl carbon in the amides (entries 3–5). Although other N-10 

methyl sources were also investigated, only N,N-dimethyl amides 
were found feasible (entries 6–11).[7] Having established the 
optimal carbon source for vinylation, various combinations of 
iron salts and oxidants were subsequently surveyed. To our 
delight, FeCl3·6H2O was found as effective as the anhydrous one 15 

and other hydrous iron salts also provided comparable results 
(entries 12–14). About 99.99% FeCl3 was used to avoid metal 
impurities in the catalyst (entry 15). The reaction failed in the 
absence of catalysts or oxidants (entries 16 and 17). Notably, 
K2S2O8 was the only applicable compound among a series of 20 

oxidants, including organic and inorganic compounds (see 
Supporting Information).[7] Thus, this study developed a unique 
benzylic vinylation reaction using N,N-dimethyl in amides as a 
new one-carbon source.[8] 

Under optimal conditions, the scope of the vinylation was 25 

then explored (Table 2). Both electron-donating and electron-
withdrawing aromatic rings afforded vinylation products in good 
to excellent yields (entries 1–13). No observable steric effect was 
observed for substrates bearing ortho-substituted aryl rings 
(entries 4 and 10). Heterocyclic rings, e.g., thiophene, were also 30 

tolerated at 73% isolated yield (entry 14). Notably, ethyl-
substituted quinoxaline was still available to produce the desired 
vinylaromatic product at 60% yield (entry 15).  

Table 3. Scope of substituted 2-methyl azaarenes a 

  35 
[a] Reaction condition : 3 (0.2 mmol), FeCl3·6H2O (0.004 mmol), K2S2O8 
(0.4 mmol), DMA (1.5 mL), 110 ℃, 3h, under air, isolated yields. [b] n.d. 
= not detected. [c] 7.5 mol % FeCl3·6H2O was used, 8h. 

 

Figure 1. Proposed mechanism  40 

More substituted 2-methyl azaarenes were employed to 
investigate the versatility of the present method (Table 3). 
Azaarenes without any substituents at the C3-position failed to 
generate the terminal olefines (4a, 4f, 4i). However, vinylation 
was feasible when 2-methyl quinoxalines were substituted with 45 

phenoxylate, methoxylate, or carboxylate (4b–4d). Other 
azaarenes, e.g., pyrazine, quinoline, and pyridine, were also 
subjected to the same conditions, and no obstacles were 
encountered (4e, 4g, 4h, and 4j). Remarkably, only one side of 
the benzylic C-H bond in diethyl 2,6-dimethylpyridine-3,5-50 

dicarboxylate (3j) was vinylated, even when 4.0 equiv. oxidant 
and 10 mol% catalyst were loaded onto the system. A steric effect 
made the secondary vinylation of 3j sluggish. 

Preliminary mechanistic investigations were carried out 
subsequently. The reaction failed when 2.0 equiv. 2,2,6,6-55 

tetramethylpiperidine-N-oxyl, a radical scavenger,[9] was 
employed in the system, suggesting that a radical mechanism may 
be involved in this reaction. A series of deuterated experiments 
were carried out to get further insight of the transformation, the 
results indicated that the C-H bond in both coupling partners were 60 

activated, and the terminal vinyl carbon was produced by the 
N,N-dimethyl moiety of amides.[7] Furthermore, KIE studies 
showed that the cleavage of the C-H bond of N,N-dimethyl 
amides may be involved in the rate-determining step (kH/kD ≈  
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Table 4. Synthesis of Substituted Benzo[α]phenazine a  

 
[a] Reaction condition : 2 (0.2 mmol), Pd(PPh3)4 (0.004 mmol), Ag2SO4 
(0.4 mmol), Degassed NEt3 (0.8 mmol), Degassed DMA (2.5 mL), 140 ℃, 
under argon. [b] Isolated yields. 5 

2.0)[7]. In addition, the formation of the CDC intermediate was 
detected by mass spectrometry.[7] 

Based on the above information, a proposed mechanism is 
depicted in Figure 1. The in-situ generated enamine 6[6] attacked 
the iminium species 8[4] to form the intermediate 9, which then 10 

underwent elimination to give the product 2a. 
Benzo[α]phenazine derivatives have attracted considerable 

attention because of their remarkable biological activities.[10] To 
our knowledge, previous studies on the synthesis of substituted 
benzo[α]phenazines are limited,[10] because of the challenges 15 

posed by substituent compatibility and fussy procedures. Based 
on the 2-(2-bromophenyl)-3-vinylquinoxaline (2j) obtained, the 
Heck reaction may be the ideal method for preparing 
benzo[α]phenazines. After using a modified procedure described 
in a previous report,[11] the Heck closure occurred smoothly 20 

between the terminal vinyl and bromobenzene under the said 
conditions using degassed DMA as alternative solvent (Table 4). 
The direct C-H bond ortho-bromination of the O-methyl oximes 
developed by Sanford[12] provided a general way to the 
corresponding 2-(2-bromoaromatic)-3-methylquinoxalines.[7] 25 

After vinylation and Heck cyclization, the desired substituted 
benzo[α]phenazines were collected at 77%-86% isolated yields 
based on vinylaromatics (2j, 2p–2v). 

In conclusion, we have developed a novel and facile 
procedure for synthesizing terminal aromatic alkenes at high 30 

yields through the direct iron-catalyzed vinylation of benzylic C-
H bond using the N-Methyl group in amides as a novel carbon 
source. In addition, a general pathway initiated from simple 
propiophenone and o-phenylenediamine to the synthesis of 
substituted benzo[α]phenazines using the proposed vinylation 35 

approach as a key step was presented as a promising synthetic 
strategy. As of this writing, further studies on the detailed 
mechanism and expanded substrate variations are under way.  
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