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Graphical Abstract: 

 

A supramolecular gel (PN-G) was constructed, which could ultrasensitively 

detect cyanide. 
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Abstract: 

In this work, we constructed a supramolecular gel (PN-G) by phenazine derivative, 

which can ultrasensitive detect cyanide (detection limit equals to 4.18×10-10 M). The 

decrease of fluorescent intensity displayed a linear relationship in the range of 0-0.4 

equivalents of cyanide. And no significant fluorescence quenching was observed for 

all used interfering ions. The cyanide recognition mechanism of PN-G was verified 

by XRD, NMR, MS and SEM. With addition of cyanide to the supramolecular gel 

(PN-G), cyanide broken π-π stacking of PN-G, and then PN-G undergoes a 

nucleophilic addition reaction with CN−, resulting in fluorescence quenched. 
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1. Introduction 

Noncovalent interactions(NCI), such as hydrogen bonds [1-2], hydrophobic 

interaction [3], π-π stacking [4-5], C-H-π [6-7], exo-wall π-π interactions [8], cation-π 

[9-10] and anion-π [11-12] interactions et al, arise from the balance between attractive 

and repulsive effects and are usually classified into multipole-multipole interactions 

are ubiquitous in nature [13-14]. They play significant roles in broad areas, for 

instance: supramolecular chemistry, structural biology, and material science [15-16]. 

As we all know, the DNA/RNA double-helix is a life-matter example in which 

stabilization arises from both π-stacking and hydrogen-bonds between the base pairs 

[17-18].  

In recent years, benefiting from the dynamic and reversible nature of noncovalent 

interactions (NCI), supramolecular gels have attracted increasing attention in diverse 

fields including, sensors, biomedicine, environmental monitoring, and materials 

synthesis [19-22]. In particular, reversible nature in the supramolecular gels and the 

physical properties of these gels in response to a specific signal input are thus pivotal 

for the creation of smart materials [23-25]. The integration of selective molecular 

recognition units into the gelator molecules is advantageous to create specific 

responses or develop multistimuli-responsive gels. The recognition process of these 

units inevitably affects the structure of the supramolecular gels, resulting in changes 

in macroscopic properties. In particular, anions and metal ions also play a crucial 

structural and regulatory role in supramolecular gels [26-28]. 

Cyanide (CN−) is known for their high toxic effects [29-31]. Therefore, the 



sensitive and selective detection of this extremely toxic anion is highly necessary. In 

recent years, various analytical and spectroscopic methods have been developed to 

detect metal ions and anions in various chemical and biological systems, but problems 

associated with high cost and low sensitivity limit their use [32-45]. Recently, our 

group has devoted to comprehensive investigations of the phenazine derivative 

assembly mechanism and supramolecular gel, in which the close π-π stacking of 

phenazine derivatives is the driving factor of the final structures [46-48]. In this work, 

2-(hexadecylthio)oxazolo[4,5-b]phenazine (PN) was successfully synthesized 

(Scheme 1). PN was capable of forming supramolecular gel in DMSO solution by van 

der waals interaction and π-π stacking. We surveyed the response of PN gel (PN-G) 

to various anions in water. The result displayed that when added cyanide anion at 

room temperature, the fluorescent of PN-G didn’t show any change. Nevertheless, 

after heating from the gel to the sol and gelling again, the fluorescence was 

dramatically quenched from bright yellow.  

2. Experimental section 

2.1. Materials and Characterizations 

All reagents were commercially available and used as supplied without further 

purification. The fluorescence spectra were recorded on a Shimadzu RF-5301PC 

fluorescence spectrophotometer. 1H NMR (400 MHz and 600 MHz) and 13C NMR 

spectra (151 MHz) were carried out with a Mercury-600 BB spectrometer. 

High-resolution mass spectra were recorded with a Bruker Esquire 3000 Plus 

spectrometer. Melting points were measured on an X-4 digital melting-point 



apparatus. The X-ray diffraction (XRD) pattern was generated using a Rigaku 

RINT2000 diffract meter equipped (copper target; λ = 0.154073 nm). Scanning 

electron microscopy (SEM) images of the xerogels were investigated using 

JSM-6701F instrument. 

2.2. Synthesis of receptor molecule PN Compound 

A mixture of oxazolo[4,5-b]phenazine-2-thiol (0.253 g, 1 mmol), K2CO3 (0,138 g, 

1 mmol), KI (1.992 g, 1.2 mmol), 1-bromohexadecane (0.365 g, 1.2 mmol) and 

acetonitrile (50 mL) were add to a 100 mL round-bottom flask under nitrogen 

atmosphere. The reaction mixture was stirred at 80℃ for 72h. The crude product was 

purified by silica gel column chromatography using petroleum ether/ethyl acetate (v/v 

= 20:1) as the eluent, compound PN as yellow solid (0.393 g, yield 80%) was isolated, 

(Fig. S1, Fig. S2 and Fig. S3). m.p. >300℃, 1H NMR (600 MHz, CDCl3) δ 8.33 (s, 

1H), 8.24 (d, J = 2.8 Hz, 2H), 8.13 (s, 1H), 7.83 (dd, J = 3.5, 1.3 Hz, 2H), 3.43 (s, 2H), 

1.90 (s, 2H), 1.52 – 1.51 (m, 2H), 1.37 (d, J = 7.8 Hz, 4H), 1.24 (s, 22H), 0.87 (s, 3H). 

13C NMR (151 MHz, CDCl3) δ 172.45, 153.76, 146.53, 142.66, 142.58, 141.62, 

141.27, 130.19, 130.15, 129.29, 129.11, 114.92, 105.76, 32.64, 31.89, 29.67, 29.66, 

29.64, 29.62, 29.60, 29.53, 29.42, 29.33, 29.04, 29.03, 28.65, 22.66, 14.09. ESI-MS 

m/z: Calcd for C22H13N4O2 [PN + H]+: 478.2892; Found 478.2881. 

2.3. General Experimental Procedures 

2.3.1. General procedure for fluorescence spectra experiments. 

All the fluorescence spectroscopy was carried out in DMSO solution on a 

Shimadzu RF-5301 spectrometer. Any changes in the fluorescence spectra of 



compound were recorded on addition of sodium salt, while gelation concentration of 

the sensor was 5% in all experiments. Sodium salt (1 M) of anions (F−, Cl−, Br−, I−, 

AcO−, PO4
3−, SO4

2−, CO3
2−, NO3

2−, S2−, HS−, ATP, SO3
2−, SCN− and CN−) were used 

for the fluorescence experiments. 

3. Result and Discuss 

Due to the excellent self-assemble properties of phenazine [49-52], and the 

introduced of alkyl group in PN, we explored whether this receptor can formed as gel 

in various solvents. Firstly, we configured PN in 10 different solvents into the 

proportion of 5% and heated it completely. As shown in Table S1, when cooled to 

room temperature, we found that PN could form as gel only in DMSO and DMF. The 

lowest critical gelation concentration (CGC) was 2% (w/v, 10 mg/mL = 1%), while 

the gel-sol transition temperature (Tgel) was 25-97℃. As shown in Fig. 1, PN-G didn’t 

have any fluorescence in DMSO (T＞Tgel). After the temperature cooling down to the 

Tgel (T＜Tgel) gradually, the emission dramatically enhanced at 523 nm and reached a 

steady state within 1 min. At the same time, PN-G showed a bright yellow 

fluorescence, which indicated that PN assembled as supramolecular gel in DMSO 

(Fig. S6). To further confirm the stability of PN-G, fluorescence decay experiments 

were conducted. The decay curve of PN-G was fitted, which showed the fluorescence 

lifetimes of τ1 = 0.3670 ns, τ2 = 2.3650 ns and τ3 = 7.3668 ns (Fig. S7). And 

time-dependent experiments showed that the fluorescence intensity of PN-G 

remained unchanged (Fig. S8). Moreover, it was interesting to find that PN-G showed 

reversible transition (gel−sol) in response to temperature and performed many times 



with small fluorescence efficiency loss (Fig. S9).  

As is well-known, selectivity and sensitivity are important properties for sensors. 

Therefore, we carefully investigated the specific selectivity of PN-G toward various 

anions. Firstly, a serious of anions (F−, Cl−, Br−, I−, AcO−, PO4
3−, SO4

2−, S2−, HS−, ATP, 

SO3
2−, SCN−, CO3

2−, NO3
2− and CN−, 1 equivalent) were diffused into PN-G in 

DMSO (T＞Tgel). After the temperature cooling down to the Tgel (T＜Tgel) gradually, 

the results showed that basic ions (F−, AcO−, PO4
3−, CO3

2−, CN−, SO3
2−, S2−, HS−) 

caused a small amount of red shift in the fluorescence spectrum of PN-G, but only 

CN− could lead to complete fluorescence quenching. However, other miscellaneous 

anions including (Cl−, Br−, I−, SO4
2−, NO3

2−, ATP, SCN−) did not lead to any 

significant change in the PN-G sensing process as shown in Fig. 2. And make bar 

graph to comparison them with error bar. As shown in Fig. S10, No significant 

fluorescence quenching was observed for all used interfering ions. 

To further explore the optimized condition about the sensing behavior of PN-G 

toward CN−, The sensitivity and lowest fluorescence detection concentrations of 

PN-G for CN− was determined by fluorescent titrations (Fig. 3). The incremental 

addition of cyanide (0−0.55 equivalents) to PN-G (5%) at room temperature reveals a 

gradual decrease of the strong fluorescence emission at 523 nm with a significant red 

shift. At the same time, a visible fluorescence quenched from yellow could be 

observed by naked eyes (Fig. 3). This should be attributed to destruction of phenazine 

π-π stacking. However, no further change was observed in the fluorescence spectra 

beyond the addition of 0.55 equivalents of CN− (Fig. S11). On the basis of the 3δ/S 



method, the LODs of PN-G for CN− was 4.18×10-10 M (Fig. S12). The most 

noteworthy was that the lowest detection limit of supramolecular gel PN-G for CN− 

was much better than most reported fluorescent gel sensors for CN− (Table 1) [29, 39, 

53-55]. This result indicates that PN-G could be used as good fluorescence material 

for detecting CN− in water.  

What we predicted that the self-assembly behavior of PN-G could be demonstrated 

by XRD through monitoring the molecular spacing (Scheme 2). The XRD patterns of 

xerogel PN-G suggested that there was a distances of 3.46 Å at 2θ = 25.74° which 

confirmed the π-π stacking consisted of phenazine groups in PN-G (Fig. S13). The 

result proved that the orderly arrangement characteristics of PN molecules induce 

their assembly into stable supramolecular gel of PN-G. There results were further 

confirmed by 1H NMR spectra. As shown in Fig. S14 and Fig. S15, as the PN 

concentration increases, all proton peaks on the phenazine aromatic ring shifted 

upfield, which suggested that the self-assembled system was formed by π-π stacking 

in the solution. Interestingly, Partial peak shift to downfield on the PN alkyl chain, 

which shows that Van der Waals interactions also participated in the PN self-assembly 

process. 

The possible mechanism of PN-G interacted with CN− was further investigated by 

1H NMR, MS and SEM (Scheme 2). Because PN had poor solubility in DMSO 

solution, PNM, a compound with similar structure to PN was synthesized for 1H 

NMR titration experiments (Fig. S4, Fig. S5 and Fig. 4,).Upon addition of CN− in 

PNM solution, the signals of protons Ha, Hb and Hc on PNM aromatic hydrocarbon 



shifted downfield. Meanwhile, the signals of protons Hd on PNM alkyl group shifted 

upfield. These results confirmed that the ubiquitous intermolecular interaction would 

occur between CN− and phenazine rings of PNM. Firstly, CN− destroyed the π-π 

assembly in PNM. To further verify rationality of sensing mechanism, we tested the 

reaction mixture of PN and CN− by mass spectrometer. To our delight, Fig. S16 

manifests an increased molecular weight of 27, which was equal to the molecular 

weight of HCN. CN− destroys the π-π stacking of PN, and then PN undergoes a 

nucleophilic addition reaction with CN−, resulting in fluorescence quenched. 

Finally, the morphologies of PN, PN-G and PN-G with CN− were investigated by 

scanning electron microscope (SEM). As shown in Fig. 5, PN powder showed 

fragment structure (Fig. 5a), and PN-G showed regular large pieces of layered 

structure (Fig. 5b), the images demonstrated the idea that PN could self-assemble into 

supramolecular gel by π-π stacking interactions and van der waals interaction. 

However, after adding CN− in PN-G, the xerogel showed thin strips are inlaid in 

blocks structure (Fig. 5c). The above experiments further support the correctness of 

our proposed sensing mechanism. 

4. Conclusion  

In summary, we efficiently synthesized a simple organic molecule with 16 alkyl 

group 2-(hexadecylthio)oxazolo[4,5-b]phenazine (PN) and investigated its 

self-assembly behavior by 1H NMR and XRD. The aggregation formation was found 

to be dependent on the π-π stacking interactions and van der waals interaction 

between PN molecules. We surveyed the response of PN gel (PN-G) to various 



anions in water, whereas with the addition of CN− and heated from gel to sol, after 

gelation again, the ability to selected recognize CN− unfolding. The yellow 

fluorescence quenching of PN-G could be observed by naked eyes. The detection 

limit of PN-G to CN− was as low as 4.18×10-10 M. Detailed analyses reveal that CN− 

destroyed the π-π assembly in PN-G, and PN-G undergoes a nucleophilic addition 

reaction with CN−.  
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Scheme 1 Structure and synthesis of the sensor PN. 

 

Fig. 1 Fluorescence spectra and photograph of supramolecular gel PN-G and sol. 

  



 

Fig. 2 Fluorescent spectra of target supramolecular gel PN-G in the presence of CN−- 

ion and other anions (1 equiv.). Inset: photograph showing the change in color of the 

supramolecular gel of PN-G after addition of CN− ion and other anions using 

UV-lamp (365 nm) at room temperature. 

  



`  

 

Fig. 3 Fluorescence titration spectra of PN-G (5%) in DMSO solution upon added 

different concentrations of CN− anions; Inset: fluorescent photograph of PN-G and 

after added CN− anions in it. (λex = 390 nm). 

 

Table 1 Comparison of the Analytical Performance of the Sensor Molecules for CN−. 

Ref. State Mechanism LOD 
53 solution nucleophilic addition 4.97 × 10−7 M 
54 solution deprotonation 1.48 × 10−7 M 
55 solution nucleophilic addition 1.60 × 10−7 M 
29 solution Complexation approach 5.77 ×10−7 M 
39 polymer Complexation approach \ 

This work gel nucleophilic addition 4.18 × 10-10 M 
  



 

Scheme 2 Chemical structures and cartoon representations of PN and CN− and the 

reaction mechanism in this system. 

  



 

Fig. 4 Partial 1H NMR spectra of PNM (DMSO–d6) and in the presence of varying 

amounts of CN− (1M, D2O). 

 

 

 

Fig. 5 SEM images of (a) PN powder, (b) the large pieces of layered self-assembled 

from PN-G, (c) the thin strips are inlaid in blocks structure after adding CN− in 

PN-G. 

 



Highlights  

1. Constructed a supramolecular gel by self-assembly. 

2. A novel supramolecular gel for highly selective and sensitive detection of cyanide. 

3. Taking advantage of a simple mechanism of nucleophilic addition reaction. 
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