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1H-1,2,4-Triazole reacted with 2-butenal in the presence of diaryl prolinol silyl ether 3 and benzonic acid
to give 3-(1H-1,2,4-triazol-1-yl)butanal 4, which was subsequently reduced and then treated with vari-
ous acyl chloride to generate enantioriched 3-(1H-1,2,4-triazol-1-yl)butyl benzoates 6. Some of triazoles
6 exhibited strong binding interactions with the cytochrome P450-dependent sterol 14a-demethylase
(CYP51). For example, compound (R)-6f showed the best binding activity with Kd 0.3381 lM.

� 2009 Elsevier Ltd. All rights reserved.
Because of their lower application doses, high selectivity, re-
duced undesired environmental impact and high therapeutic in-
dex, azoles are the most widely used and studied class of
antifungal agents in both agricultural and medicinal usage.1 The
biochemical site of action of the fungicidal azoles is the cyto-
chrome P450-dependent lanosterol 14a-demethylase (CYP51), en-
coded by the ERG11 gene in fungal cells.2 This haem protein binds
tetracyclic steroid molecules, inserting one oxygen atom into a C–
H bond of the C-14 methyl group.3 Azole antifungal agents inhibit
CYP51 by the mechanism in which the heterocyclic nitrogen atom
(N-3 of imidazole and N-4 of triazole) binds to the heme iron atom
in the binding site of the enzyme. Azoles are fungistatic against
yeasts, but unfortunately, the broad usage of these compounds
leads to the development of resistance. Therefore, the invention
of new and effective antifungal agents is of great importance.

Triazole derivatives such as diniconazole, tebuconazole, hexac-
onazole, triadimefon, triadimenol, and so on represent the most
important category of fungicides to date. These compounds have
excellent protective, curative, and eradicant power toward a wide
spectrum of crop diseases. Structurally, they inherently have a chi-
ral centre which results in two enantiomers. It is well known that
both stereoisomers of above fungicides would display different
fungicidal activities.4 The questions concerning the synthetic
method of active enantiomers and the influence of stereochemistry
upon binding constants (Kd) of the cytochrome P450-dependent
All rights reserved.
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o).
lanosterol 14a-demethylase (CYP51) for chiral triazole pesticides
are therefore of particular interest in this study.

Since the rediscovery of the proline-catalyzed aldol reaction,5

organocatalysis has expanded widely within the last few years.6

Many chiral secondary amines are effective catalysts for enantiose-
lective b addition to a,b-unsaturated carbonyl compounds.7 In the
case of these a,b-unsaturated systems, the catalyst activates the
substrate through the iminium-ion mechanism, thereby facilitat-
ing the addition of the nucleophile to the b-carbon atom. Recently,
several organocatalyzed nucleophilic nitrogen addition reactions of
N-heterocyclic compounds to a,b-unsaturated carbonyl com-
pounds have been impressively presented with high enantioselec-
tivities using chiral organocatalysts.8 We extend this
organocatalytic strategy to the design and synthesis of potential
triazole-based antifungal agents.

In previous study, we have carried out cloning, expression, and
inhibition of CYP51 from Magnaporthe grisea and Penicillium digit-
atum. The structural characteristics of the interaction between het-
erologous CYP51 and commercial azoles were also analysed by
binding assay.9 In this Letter, we describe the synthesis of some
new triazole compounds and their binding interactions with the
cytochrome P450-dependent lanosterol 14a-demethylase.

The reaction of 1H-1,2,4-triazole (1) with 2-butenal (2) has been
performed in the presence of racemic, (R)-, and (S)-310 and benzoic
acid, respectively, to prepare racemic and both enantiomeric 4. The
result showed that full conversion to adduct 4 was achieved in tol-
uene at room temperature for 2 h. The product 3-(1H-1,2,4-triazol-
1-yl)butanal (4) was reduced with NaBH4 subsequently to give 3-
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Scheme 1. Preparation of 3-(1H-1,2,4-triazol-1-yl)butyl benzoates 6. Reagents and
conditions: (a) 10 mol % 3, 10 mol % PhCO2H, toluene, rt; (b) NaBH4, methanol, 70%
in two steps; (c) Acyl chloride, NEt3 (1.5 equiv.), 10 mol % DMAP, dichloromethane.

Figure 1. CYP51 type II binding spectrum in the presence of compound (S)-6c. Type
II spectral response to (S)-6c and the concentrations of the (S)-6c added to the
reaction mixture were 0.1, 0.2, 0.4, 0.8, 1, 2, 3 and 8 lM.
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(1H-1,2,4-triazol-1-yl)butanol (5).11 Further reaction of 5 with acyl
chloride in the presence of NEt3/DMAP produced 3-(1H-1,2,4-tria-
zol-1-yl)butyl benzoates 6 in 53–91% total yields (Scheme 1).12 By
the use of this three-step reaction procedure, the reaction under-
went with good enantioselectivities (72–82% ee) and in high yields
(Table 1).

The binding interactions of triazoles 6 with CYP51 were inves-
tigated with the commercial fungicides triadimefon and Dinico-
nazole as standards.13 Similar to our previous results, the
purified CYP51 revealed a typical absolute absorbance spectrum
of oxidized P450 with Soret maximum at 417 nm and the reduced
CO spectrum had a maximum at 449 nm. UV–visible absorption
spectroscopy provided a simple and accurate method for the deter-
mination of the level of binding of substrates and inhibitors to
P450s. Compound (S)-6c binding with the purified CYP51 was ini-
tially examined at 25 �C and induced a typical type II spectrum
with a spectral peak located at 425 nm and a trough located at
398 nm, respectively (Fig. 1). Higher concentrations of (S)-6c pro-
duced higher absorbance of different values, D425-398, accord-
ingly. These spectra resulted from an interaction of the triazole
N-4 of (S)-6c with the heme of the P450 causing a shift towards
the high-spin state.14 This exhibited the displacement of the native
sixth ligand of the heme iron by the nitrogen atom in the triazole
ring of (S)-6c. The spectral results showed that the affinity of (S)-
6c with the purified CYP51 was tight.
Table 1
Preparation of 3-(1H-1,2,4-triazol-1-yl)butyl benzoates 6

Compd Ar Yield (%) eea (%)

(RS)-6a Ph 72
(S)-6a Ph 69 76
(R)-6a Ph 75 82
(RS)-6b 2-Cl–C6H4 61
(S)-6b 2-Cl–C6H4 53 81
(R)-6b 2-Cl–C6H4 64 78
(RS)-6c 3-Cl–C6H4 84
(S)-6c 3-Cl–C6H4 81 77
(R)-6c 3-Cl–C6H4 71 79
(RS)-6d 4-Cl–C6H4 82
(S)-6d 4-Cl–C6H4 87 79
(R)-6d 4-Cl–C6H4 68 77
(RS)-6e 2,4-Cl2–C6H3 86
(S)-6e 2,4-Cl2–C6H3 76 81
(R)-6e 2,4-Cl2–C6H3 77 77
(RS)-6f 4-Me–C6H4 91
(S)-6f 4-Me–C6H4 66 76
(R)-6f 4-Me–C6H4 78 79
(RS)-6g 4-F–C6H4 80
(S)-6g 4-F–C6H4 60 82
(R)-6g 4-F–C6H4 88 81
(RS)-6h 4-MeO–C6H4 74
(S)-6h 4-MeO–C6H4 74 78
(R)-6h 4-MeO–C6H4 85 72

a Determined by chiral HPLC.
The Kd values of some of the compounds 6 are highlighted in Ta-
ble 2. The results showed that some of them exhibited strong bind-
ing interactions with CYP51. As indicated in Table 2, most of the
compounds showed strong associative interactions with CYP51.
Compounds (R)-6f showed the best binding activities with Kd value
of 0.3381 lM. Although these compounds displayed less binding
activities than Diniconazole did (Kd 0.2473 lM), some samples
(e.g., (S)-6b, (R)-6b, (RS)-6c, (S)-6c, (R)-6d, (S)-6e, and (R)-6f) did
indeed exhibit stronger binding activities than triadimefon (Kd

0.9355 lM). The presence of the groups like 3-Cl ((S)-6c), 2,4-Cl2

((S)-6e) and 4-Me ((R)-6f) on the benzene ring plays a significant
role in imparting binding activity. The absolute configuration of tri-
azoles 6 also shows influence on the binding activity. For example,
(S)-6c (Kd 0.4724 lM) is much more active than (R)-6c (Kd

2.3568 lM), whereas (R)-6f (Kd 0.3381 lM) displays much stron-
ger binding activity to CYP51 than (S)-6f (Kd 10.4903 lM) does.

In conclusion, we have synthesized some enantioriched 3-(1H-
1,2,4-triazol-1-yl)butyl benzoates 6 via organocatalytic Michael
addition and subsequent reduction and functionalization. The pre-
Table 2
In vitro binding constants (Kd, lM) of compounds 6

Compd Kd

(R,S)-6a 1.1824
(S)-6a 1.4173
(R)-6a 1.6183
(R,S)-6b 1.1163
(S)-6b 0.5600
(R)-6b 0.5801
(R,S)-6c 0.7429
(S)-6c 0.4724
(R)-6c 2.3568
(R,S)-6d 1.3759
(S)-6d 0.9881
(R)-6d 0.6824
(R,S)-6e 0.9734
(S)-6e 0.4524
(R)-6e /
(R,S)-6f 1.7392
(S)-6f 10.4903
(R)-6f 0.3381
Triadimefon 0.9355
Diniconazole 0.2473
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liminary investigation on the biological activities of 6 show that
some of them exhibited strong binding interactions with the cyto-
chrome P450-dependent lanosterol 14a-demethylase.
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