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Abstract: Rearrangement of epoxides is performed with erbium
triflate as catalyst. In contrast to most proposed catalysts for this re-
action, erbium triflate works well with both aromatic and aliphatic
epoxides.
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The rearrangement of epoxides to carbonyl compounds is
a useful synthetic transformation and hence several re-
agents have been utilized for this purpose.1 It has been
performed under acid and base catalysis, and mechanistic
aspects including the migratory aptitudes of different
groups attached to the epoxy carbon have been explored
in detail.2 Nevertheless, despite the number of methods
that have been developed, only few are both regioselec-
tive and catalytic. Further, most literature methods do not
work well for the rearrangement of aliphatic epoxides
unless they are di- or tri-substituted.

In the course of our research program on Lewis acid-cat-
alyzed reactions, we found that the hydrates of cerium and
erbium triflate are very useful and environmentally
friendly catalysts for many acid-catalyzed reactions.3

Moreover, it is possible to rule out that the triflic acid
could be the active catalyst, in fact the solutions of
Ce(OTf)3 and Er(OTf)3 in water are only weakly acidic
(pH = 6.0, pH = 5.9, respectively), and the aqueous layers
from the workups were even less acidic (pH = 6.7).

We now wish to report that erbium triflate is a highly ef-
ficient and regioselective catalyst for the rearrangement of
epoxides to carbonyl compounds.

At first, the reactivity of cerium and erbium triflate was
compared by studying their effect on the rearrangement of
styrene oxide (1a) to phenylacetaldehyde (2a, Table 1).

Cerium triflate was a less efficient catalyst than erbium,
since reaction times are longer, except when acetonitrile
was used as solvent. Moreover, it should be noted that
erbium salt can be used without drying either the salt or
the solvent while diols are formed in the presence of
cerium salts in wet solvents.4

Erbium triflate is an efficient catalyst especially in non-
polar solvents, where the coordination with the oxygen of
the epoxides increases. In fact, the best results (fast
reaction times and high yields) were obtained in less polar
solvents such as dichloromethane (Table 1, entry 7).

Remarkably, both catalysts perform the rearrangement
with catalyst percentages as little as 0.1% mol (Table 1,
entries 11 and 12). They did not work so well when other
substrates, less reactive than styrene oxide, were used.
Thus, the use of 1% mol of catalyst was the best com-
promise.

Based on the best results presented in Table 1, the rear-
rangement of a series of epoxides was studied (Table 2).5

The reactions were very clean and further purification was
unnecessary for all the tested compounds except limonene
(1f), where some unidentified by-products were found. In
agreement with the literature,2 rearrangements of alkyl
epoxides were more difficult than aryl ones, so refluxing
temperatures were necessary for the reaction to occur.

Table 1 Comparison between Hydrate Cerium and Erbium Triflate 
as Catalyst for Rearrangement of the Styrene Oxide (1a) to Phenyl-
acetaldehyde (2a) at Room Temperature

Entry Catalyst (mol%) Solvent Time Yield (%)

1 Ce(OTf)3 (1) CH3NO2 29 h 80

2 Er(OTf)3 (1) CH3NO2 24 h 81

3 Ce(OTf)3 (1) MeCN 12 h 100

4 Er(OTf)3 (1) MeCN 24 h 79

5 Ce(OTf)3 (1) THF 12 h 42

6 Er(OTf)3 (1) THF 100 min 63

7 Ce(OTf)3 (1) Et2O 3 h 100

8 Er(OTf)3 (1) Et2O 90 min 100

9 Ce(OTf)3 (1) CH2Cl2 40 min 100

10 Er(OTf)3 (1) CH2Cl2 20 min 100

11 Ce(OTf)3 (1) CH2Cl2 4 h 100

12 Er(OTf)3 (1) CH2Cl2 45 min 100

a GC yields.
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This is a good example of green chemistry since this
method shows atom economy, no requirement of purifi-
cation processes, and an easily recoverable, non-toxic cat-
alyst.6

One of the best procedures reported to perform this rear-
rangement employs bismuth salts,2a,b which is restricted to
aryl epoxides and to aliphatic epoxides with a tertiary
center only. The present procedure has comparable yields,
ratios, and catalyst percentages, but allows rearrangement
of mono-substituted aliphatic epoxides.

It is accepted that the direction of ring-opening of the ep-
oxide is governed by two main factors: the direction of the
ring-opening and the relative migratory aptitude of the
substituents.2c After coordination of the Lewis acid to the
oxygen atom, the torsional energy is released through the
formation of the most stable carbocation.

The highest electron-releasing power of aryl groups
causes invariably that aryl mono-substituted epoxides re-
arrange to the products in which carbonyl is far from the
phenyl ring (Table 2, entries 1–3). Mono-alkyl substituted
epoxides preferentially give the most substituted carbo-
cation, with subsequent 1,2-hydride shift to afford alde-
hydes (Table 2, entries 9–11), in comparable ratio and
yield with the best reported method, which employs much
more complex and expensive metalloporphyrin cata-
lysts.2d

Table 2 Rearrangement of Epoxides in the Presence of 1 mol% of 
Er(OTf)3 in Dichloromethane at Room Temperature (unless other-
wise noted)

Entry Epoxide Time Product Yield (%) 
(2/3)c

1

cis-1b

20 min

2b

3b

99 
(81/19)

2

trans-1b

45 min 2b >99

3

1c

2.5 h

2c

>997

4

cis-1d

3 h

3d

50b

5

trans-1d

3 h 3d 53b

O

Ph Ph Ph CHO

Ph

Ph
Ph

O

O

Ph Ph

O

Ph

O

Ph
Ph

O

Ph

OH

O

H3C CH3

O

O

H3C CH3

6

1e

5 ha

2e

>99

7

trans-1f

3 h

2f

3f

82 
(14/86)8,9

8

cis-1f

2.5 h 2f, 3f 87 
(20/80)8,9

9

1g

1 h

2g

8310

10

1h

4 ha

2h

3h

>99 
(97/3)11

11

1i

13 ha

2i

3i

>99 
(95/5)

12

1j

14 ha

2j

3j

>99 
(93/7)12

a These reactions were carried out at reflux temperatures.
b Reaction carried out in a sealed vial. Aldehyde was never detected. 
An unidentified carbonyl compound was responsible of the other 
50% of the reaction.
c All compounds gave satisfactory microanalyses, and their spectro-
scopic data were compared with literature (cited) or with true sample 
(empty cells).

Table 2 Rearrangement of Epoxides in the Presence of 1 mol% of 
Er(OTf)3 in Dichloromethane at Room Temperature (unless other-
wise noted) (continued)

Entry Epoxide Time Product Yield (%) 
(2/3)c
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The formation of a carbocation intermediate is also sup-
ported by the rearrangement of limonene oxide. Both iso-
mers led to similar mixtures of the rearranged products.
Moreover, both 13C NMR and 1H NMR spectra of the ke-
tones arising from the two reactions are super-imposable
and in agreement with formation of trans-3f.13 If the
rearrangement is a concerted process, two isomers should
be obtained (Scheme 1).

Scheme 1

The rearrangement a-pinene oxide leads to campholenic
aldehyde 2g (Table 2, entry 8), the key intermediate in the
synthesis of naturanol,14 in very high yields (only less than
10% of carveol was detected by GC/MS).

In conclusion, erbium triflate is a very useful catalyst for
the rearrangement of epoxides to carbonyl compounds.
The advantages of this catalyst include the observed
regioselectivity, the broad applicability and easy recover-
ability.
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