Synthesis and Reactions of Perylenecarboxylic Acid Derivatives. VIII. Synthesis of N-Alkyl-3,4:9,10-Perylenetetracarboxylic Monoanhydride Monoimide

Yukinori Nagao* and Takahisa Misono

Department of Industrial Chemistry, Faculty of Science and Technology, Science University of Tokyo, Yamazaki, Noda 278 (Received August 6, 1980)

The condensations of 3,4:9,10-perylenetetracarboxylic dianhydride with alkylamines (isobutyl-, pentyl-, hexyl-, and octylamines) were spectroscopically determined. Under all of the reaction conditions employed, N-alkyl-3,4:9,10-perylenetetracarboxylic monoanhydride monoimide (2a—d) (alkyl=a; isobutyl, b; pentyl, c; hexyl, d; octyl) were obtained. As the reaction proceeded, the yield of 2a—d increased at an initial stage but decreased gradually after reaching a maximum. This maximum yield of 2a—d was: 2a; 85—88%, 2b; 85—89%, 2c; 78—84%, 2d; 79—85%. The kinetics of the reaction were also examined.

In general, 3,4:9,10-perylenebis(dicarboximide) derivatives are synthesized by the condensation of 3,4:9,10-perylenetetracarboxylic dianhydride (1) with amines, 1-4) and have excellent resistance to light, heat, and solvents. Some of them are used as dyes or pigments. In previous papers^{5,6)} we described the preparation of unsymmetrical 3,4:9,10-perylenebis(dicarboximide)s having different substituents on N and N' atoms by the reaction of 3,4:9,10-perylenetetracarboxylic monoanhydride monoimide (2), which was prepared by the condensation of 1 with an alkylamine, with arylamines. In the condensation of 1 with alkylamines, higher alkylamines appeared to be favorable for the formation of 2. This suggests a possibility of selective formation of 2 in the condensation of 1 with amines by using higher or branched alkylamines. In this paper, we report the formation of 2 from isobutyl-, pentyl-, hexyl-, and octylamines and the kinetical study of the reaction by spectroscopic techniques.

 $R = a; \ CH_2CH(CH_3)_2, \ b; \ (CH_2)_4CH_3, \ c; \ (CH_2)_5CH_3,$ $d; \ (CH_2)_7CH_3$

Experimental

1 was supplied by BASF. Isobutyl-, Materials. pentyl-, hexyl-, and octylamines were obtained commercially. Preparation of N-Alkyl-3,4:9,10-perylenetetracarboxylic Monoanhydride Monoimide (2a-d) and N,N'-Dialkyl-3,4:9,10-perylenebis(dicarboximide) (3a—d). 2a-d: Into a solution of an amine in an appropriate solvent was added 1 with stirring at a definite temperature. The mixture was stirred vigorously for an appropriate reaction time. The reaction conditions for each reaction are given in Table 1. The reaction mixture was acidified with 10% hydrochloric acid, and the precipitate formed was filtered, washed with water to remove amine, dissolved in 1% hot potassium hydroxide, and filtered to remove insoluble precipitates of 3a-d. The soluble material which remained in the precipitate was again dissolved in 1% hot potassium hydroxide. The combined filtrate was heated again to dissolved the precipitate which had formed in cooling, and filtered to remove the small amount of the floating

precipitate of **3a**—**d** which had passed through the filter. To the filtrate was added potassium chloride until 10% concentration, and the precipitated potassium salt of **2a**—**d** was filtered. The solid was dissolved in water and acidified with 10% hydrochloric acid, and the precipitate formed was filtered, washed with water, and dried to yield **2a**—**d**.

3a—d: 3a—d was prepared by the treatment of 1 with a corresponding amine solution at 200 °C for 10 h in an autoclave. Unreacted 1 and 2a—d were dissolved in hot 1% potassium hydroxide solution and removed from the precipitate of 3a—d.

IR, visible spectra, mass spectra, and analysis data are given in Table 2. Samples for elementary analysis were obtained by a sublimation at 300-350 °C/3-5 mmHg.

Condensation of 1 with Amines. To a flask containing 1 $0.50 \,\mathrm{g} \, (1.27 \times 10^{-3} \,\mathrm{mol})$ and 30 ml solvent (isobutyl- and pentylamines; water, hexyl- and octylamines; water: 1propanol=2:1 and 1:1), and maintained at the optimum temperature in a thermostat was added an amine solution 20 ml (optimum amine was dissolved in the same solvent) maintained at the same temperature with stirring. The reaction mixture showed a complicated suspension and not a homogeneous solution. This was stirred vigorously to maintain a homogeneous solution. Samples were collected at regular intervals and acidified with 10% hydrochloric acid. The precipitate was centrifuged, dried, and dissolved in 95% sulfuric acid, and the absorbances were measured. The composition of the reaction mixture were calculated from the absorbances. The optimum wavelengths (510 nm and λ_{max} of 2a-d and 3a-d) for the determination were decided from the standard 95% sulfuric acid solution of 1, 2a-d, and 3a-d.

Measurements and Calculations. Paper Chromatography: Samples were dissolved in 1% potassium hydroxide or DMSO, placed on the paper, and developed by a mixture of equal volumes of 1-butanol, pyridine, 28% ammonia, and water.

The composition and rate ratio (K) were calculated using an IBM 370 computer. Mass spectra were recorded on a Hitachi RMU-7M mass spectrometer. Visible spectra were recorded on a Hitachi 124 spectrometer for solutions in concd sulfuric acid, and IR spectra on a Nippon Bunko IR-E spectrometer.

Results and Discussion

Preparation of 2a—d and 3a—d. Table 1 gives the reaction conditions, and the yields of 2a—d and the by-product 3a—d. The analytical and spectral data for 2a—d and 3a—d are given in Table 2. λ_{max}

Table 1. Reaction conditions for the preparation of 3,4:9,10-perylenetetracarboxylic monoanhydride monoimide $(\mathbf{2a-d})$

R	Amine (RNH ₂)		1	Temp	Time	Yield/%			
	$\frac{\text{concn}}{\text{mol/l}}$	ml	g	°C	min	2a—	d	3a-	_d
	(0.204)	50ª)	0.500	60	220	80)		9 ,) 2-
CII CII/CII \	(0.304)	50ª)	0.500	60	210	80	2a	9	
$\mathrm{CH_2CH}(\mathrm{CH_3})_2$	(0.204)	100 ^{a)}	1.00	60	220	80		10	} 3a
	(0.306)	100 ^{a)}	1.00	60	210	80 J		10	J
	(0.204)	50ª)	0.500	60	210	85 ₁		11	} 3b
(011) 011	(0.306)	50ª)	0.500	60	180	84	01	13	
$(CH_2)_4CH_3$	(0.204)	100ª)	1.00	60	210	85	2b	9	
	(0.306)	100 ^{a)}	1.00	60	180	84		12	
$(CH_2)_5CH_3$	(0.306)	100 _p)	1.00	60	420	73	2c	15	3c
$(CH_2)_7CH_3$	(0.306)	100°)	1.00	60	420	75	2d	15	3d

a) Solvent; H_2O . b) Solvent; $H_2O: n$ -PrOH=2:1. c) Solvent; $H_2O: n$ -PrOH=1:1.

Table 2. Analytical and spectral data for 3,4:9,10-perylenetetracarboxylic monoanhydride monoimide ($2\mathbf{a}$ — \mathbf{d}) and 3,4:9,10-perylenebis(dicarboximide) ($3\mathbf{a}$ — \mathbf{d})

200	- d and 3a—d R	Found (Calcd) %			λ ^{H₂SO} ₄/nm	$IR(KBr)\nu_{C=0}/cm^{-1}$		MS/(m/e)
4a-		\mathbf{c}	Н	N	/max /IIIII	Anhydride	Imide	(\mathbf{M}^+)
2a	$\mathrm{CH_2CH}(\mathrm{CH_3})_2$	74.77 (75.16	3.65 3.83	3.09 3.13)	581	1767 1725	1693 1650	447
2 b	$\rm (CH_2)_4 CH_3$	75.41 (75.48	3.84 4.12	3.81 3.04)	580	1768 1727	1695 165 4	461
2c	$\rm (CH_2)_5 CH_3$	75.26 (75.78	4.19 4.45	3.06 2.98)	580	1765 1725	1690 1650	475
2d	$\rm (CH_2)_7 CH_3$	76.32 (76.33	4.99 5.00	2.98 2.78)	580	1765 1725	1690 1650	503
3a	$\mathrm{CH_2CH}(\mathrm{CH_3})_2$	76.41 (76.48	5.02 5.21	5.51 5.57)	599		1691 1652	502
3ь	$\rm (CH_2)_4 CH_3$	77.45 (76.96	5.60 5.70	5.11 5.18)	598		1693 1651	530
3c	$\rm (CH_2)_5 CH_3$	77.31 (77.40	5.98 6.13	4.96 5.01)	598		1695 1655	558
3d	$(\mathrm{CH_2})_7\mathrm{CH_3}$	`77.51 (78.15	6.50 6.89	4.70	598		1690 1650	614

Table 3. The maximum yields of 3,4:9,10-perylenetetracarboxylic monoanhydride monoimide (2a-d)

Amine (RNH ₂)	T		Mole ratio of amine; Amine/1						
R	$rac{ ext{Temp}}{{}^{\circ} ext{C}}$	The m	aximum 9	yields of 2 8	2a—d /% 10	(The read	ction time	e/min) 24	
$\mathrm{CH_2CH}(\mathrm{CH_3})_2$	40	83 (3600)	86 (1800)	85 (1380)	88 (1140)	82ª) (690)	87 (720)	88 (320)	
$\rm (CH_2)_4CH_3$	60	82 ['] (420)	85 ['] (260)	84 ['] (180)	88 ['] (180)	87 (180)	89 ['] (120)	69 (75)	
${\rm (CH_2)_5CH_3}$	60	84 (630)	84 (660)	81 (480)	78 (340)	78 (340)	77 (320)	71 (190)	
$(\mathrm{CH_2})_7\mathrm{CH_3}$	60	85 (480)	85 (540)	84 (480)	84 (350)	83 (300)	82 (300)	79 (210)	

^{1;} 1.27×10^{-3} mol/50 ml. a) The maximum yields have not been reached.

in visible spectra of 95% concd sulfuric acid solution is 580—581 nm for $2\mathbf{a}$ — \mathbf{d} and 598—599 nm for $3\mathbf{a}$ — \mathbf{d} . N-Alkyl substituents in $2\mathbf{a}$ — \mathbf{d} or $3\mathbf{a}$ — \mathbf{d} caused no significant difference in the λ_{max} . IR spectra indicate that $\nu_{\text{c=0}}$ of anhydride and imide both exist in $2\mathbf{a}$ — \mathbf{d} , and only $\nu_{\text{c=0}}$ of imide exists in $3\mathbf{a}$ — \mathbf{d} . Mass spectra

showed the corresponding molecular ion peak.

Condensation of 1 with Amine. In the reactions at 40—80 °C, the reaction mixture, after the amine was removed, has been proved to give no other products than the **2a**—**d** and **3a**—**d** by paper chromatography. The molar ratios, $C_{\Delta}/(C_{\Delta}+C_{M}+C_{I})$, $C_{M}/(C_{\Delta}+C_{M}+C_{I})$,

Fig. 1. Reaction of 3,4: 9,10-perylenetetracarboxylic dianhydride (1) with isobutylamine.
1; 1.27 × 10⁻³ mol/50 ml H₂O, temp; 60 °C, mole ratio (amine/1); 10. ○; 3,4: 9,10-Peryleneteracarboxylic dianhydride (1), △; N-Isobutyl-3,4: 9,10-perylenetetracarboxylic monoanhydride monoimide (2a), □; N,N'-Diisobutyl-3,4: 9,10-perylenebis(dicarboximide)(3a).

 $C_{\rm I}/(C_{\rm A}+C_{\rm M}+C_{\rm I})$, were determined by spectrometry, where $C_{\rm A}$, $C_{\rm M}$, and $C_{\rm I}$ are the concentrations of **1**, **2a**—**d**, and **3a**—**d**, respectively. Figure 1 shows a typical time-conversion curve showing that the reaction proceeded in successive manner. The maximum yields of **2a**—**d** on the time-conversion cuves, at the best temperature, are given in Table 3 for the reactions at 40—80 °C. Lower temperatures were favorable for selective preparation of **2c** and **2d**.

Plots of $\ln(C_{\mathbf{A}}/C_{\mathbf{A}0})$, where $C_{\mathbf{A}0}$ is the initial concentration of $\mathbf{1}$, vs. time were linear, and the rate constants k_1 for the reaction of $\mathbf{1}$ to $\mathbf{2a}$ — \mathbf{d} , were calculated from the slopes. Then the rate ratios $K(=k_2/k_1)$, where k_2 is the rate constant of $\mathbf{2a}$ — \mathbf{d} to $\mathbf{3a}$ — \mathbf{d} were calculated from Eq. 1.5) Most of the K values in each reaction were constant. These results indicated that the reaction followed a pseudo first order process of $\mathbf{1} \rightarrow \mathbf{2a}$ — $\mathbf{d} \rightarrow \mathbf{3a}$ — \mathbf{d} .

$$C_{M}/C_{AO} = \{1/(1-K)\}\{(C_{A}/C_{AO})^{K} - (C_{A}/C_{AO})\}$$
(1)

Figure 2 shows the variation of the maximum yield of $2\mathbf{a}$ — \mathbf{d} and K with the number of carbon atoms in amine. As the number of carbon atoms in amine increases, the maximum yields of $\mathbf{2}$ increase in the reaction of $\mathbf{1}$ with methyl-, ethyl-, propyl-, and butyl-amines.⁵⁾ Though there is an increasing of the maximum yields of $2\mathbf{a}$ — \mathbf{b} in isobutyl- and pentylamines, it is followed by an approximately constant in hexyl- and octylamines. It also indicate the pseudo first order reaction that the small K value increase the maximum yields of $2\mathbf{a}$ — \mathbf{d} .

Figure 3 shows the variation of k_1 with the number of carbon atoms. This result shows that k_1 decreases with an increasing of the number of carbon atoms in all amines except octylamine. The reactions with methyl, ethyl-, propyl-, and butylamines gave a similar results.⁵⁾ Lower k_1 in isobutylamine shows that the steric hindrance of alkyl group affects this reaction. The mixture

Fig. 2. Variation of the maximum yields of 3,4: 9,10-perylenetetracarboxylic monoanhydride monoimide (2a —d) and K with the number of carbon atoms in amine.
1; 1.27×10⁻³ mol/50 ml solvent, temp; 60 °C, mole ratio (amine/1); 4. The maximum yields of 2a—d: ○; butyl-, pentyl-, hexyl-, and octylamines, △; isobutylamine. K: ●; butyl-, pentyl-, hexyl-, and octylamines, ▲; isobutylamine.

Number of carbon atoms in amine

Fig. 3. Variation of k_1 with the number of carbon atoms in amine.

1; 1.27×10^{-3} mol/50 ml solvent, temp; 60 °C. Mole ratio (amine/1): 4: \bigcirc ; butyl-, pentyl-, hexyl-, octylamines, \blacksquare ; isobutylamine. 10: \triangle ; butyl-, pentyl-, hexyl-, octylamines, \blacksquare ; isobutylamine. 24: \square ; butyl-, dentyl-, hexyl-, octylamines, \blacksquare ; isobutylamine.

of water and propanol was used for the solvent in the reaction with hexyl- and octylamines because of their poor solubility in water. Then the solvent effects have to be considered in these amines: the increasing k_1 in octylamine is explained as the effect of the solvent.

References

- 1) M. Kordos, D.R.P., 276357, 276956 (1913).
- 2) T. Maki and H. Hashimoto, Kogyo Kagaku Zasshi, 54, 479, 544 (1951).

- 3) T. Maki and H. Hashimoto, Bull. Chem. Soc. Jpn., 25,
- 411 (1952); **27**, 602 (1954). 4) W. Bradley and F. W. Pexton, J. Chem. Soc., **1954**,
- 5) Y. Nagao, Y. Tanabe, and T. Misono, Nippon Kagaku Kaishi, 1979, 528.
- 6) Y. Nagao, N. Ishikawa, Y. Tanabe, and T. Misono, Chem. Lett., 1979, 151.