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Many synthetic methods exist for dibenzoquinoxalines but only a few for dibenzophenazines and their
aza derivatives and even less are ‘green’. Some dibenzophenazines and dibenzopyridoquinoxaline have
been efficiently obtained with good to excellent yield by a very simple method which does not require
use of solvent or catalyst. Solid phase synthesis using co-grinding presents thus many advantages in
developing greener synthetic organic pathways.

� 2011 Elsevier Ltd. All rights reserved.
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Introduction

The overall reduction of solvent use is a key goal in the chemical
industry, where more sustainable processes are needed and espe-
cially in the pharmaceutical industry in which solvent and process
greenness scoring methods are used for evaluating fine chemical
and drug production. It has become clear that the producers have
to reduce waste drastically. Environmental restrictions continue
to increase making unavoidable the use of greener chemistry.

Nowadays, a high percentage of the active pharmaceutical
ingredients produced are heterocyclic, with a majority of being
nitrogen heterocycles. Many such ingredients mimic the structure
of biologically active molecules like pyrimidine or purine bases of
nucleic acids, the main constituents of which are nitrogen hetero-
cycles. Natural products, such as aspergillic acid1,2 (antibiotic iso-
lated from Aspergillus flavus efficient on gram positive bacteria)
and echinomycin3 (antibiotic very efficient on gram-positive bacte-
ria like Streptococcus constituted of two quinoxaline rings) can also
be placed in this category. In fact, several quinoxaline based
molecules obtained synthetically showed biological activities4–6

in particular antitumor7–9 and antibacterial.10,11

Some quinoxaline based molecules such as dibenzophenazines
have other applications. They can be chemical moieties of mesoge-
neous liquid crystals (polymers)12,13 and some pyridophenazines
ll rights reserved.
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can be used as ligands for Re(I)14 with the complexes having inter-
esting luminescence properties.

For all these reasons, aromatic diaza compounds were chosen as
a synthetic target. These molecules are classically synthesized by a
solvent route in refluxing ethanol or acetic acid for several hours. A
plethora of methods exist and most of them that increase the yield
rely on the use of catalysts like common Lewis acids, I2,15 gal-
lium(III) triflate,16 or sulfated titania.17 Other procedures do not
use any catalyst but need microwave heating.18 The aim of this
work is to present another sustainable synthetic model. Co-grind-
NHHN

Scheme 1. Reactions between diamines and 1,2 or 1,3 dicarbonyls.
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ing with a vibrating ball-mill is used and allowed to avoid solvent
use and, in some cases, purification steps.19–22 This solid-state
synthetic pathway has been developed for only a few organic
molecules.23,24 Benzo[b]phenazine formation has been described
by Zefirov25 starting from unsubstituted reactants.

Solid phase components with high melting points are required
in order to avoid liquid formation during grinding (a phase change
may introduce other non-desirable products). The main advantage
with this kind of process is that the compounds do not need to be
soluble in any solvent to allow reaction.

In this Letter, reactions at atmospheric pressure and room tem-
perature in order to obtain diaza heterocycles, such as perimidines,
quinoxalines, dibenzophenazines, or dibenzopyrazines by a green-
er route are presented.
Table 1
Dibenzophenazines and aza analog observed
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a Based on default reactant.
Results and discussion

The reaction of a 1,2 or 1,3-dione with a 1,2 or 1,3-diamine clas-
sically leads to some perimidines,26 quinoxalines,18 or phena-
zines25 according to the equations in Scheme 1. A new approach
using solid–solid and solvent-free process was applied to these
well-known syntheses.

Concerning the reactions described in Scheme 1, the diamines
used are described in Table 1 with their melting points. In Scheme
1 (Eqs. 1 and 3), the 1,3-dione was 1,3-diphenyl-1,3-propanedione
(mp: 178–179 �C).

Some trials with the diamines were performed using pyrocate-
chol (mp = 101 �C) as the potential precursor of the 1,2-dione after
in-situ oxidation.
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Figure 1. UV absorbance spectra for the phenazine derivatives.
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Figure 2. Comparison by XRD analysis of hydrated and non-hydrated 11-
methyldibenzo[a,c]phenazine.
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In the literature, the selected 1,2-dione is usually benzil. In this
work, phenanthrene-9,10-dione has been chosen for its higher
thermal stability and higher melting point (209–210 �C) despite a
lower electrophilic character of the carbonyl carbon.27

The general procedure used for the experiments is developed in
the Note section.28 Only the reactions in which the phenanthrene-
9,10-dione and aromatic 1,2-diamines were involved, gave positive
results (Scheme 1, Eq. 2) leading to the formation of phenazine
derivatives. The results are summarized in Table 1.29 All products
were characterized by 1H NMR, IR, and UV spectroscopy. IR spectra
show the disappearance of the characteristic bands of primary
amines (a symmetrical doublet around 3350 cm�1 of medium
intensity) and of ketone (1674 cm�1 of very strong intensity due
to C@O stretching vibration and reveals the presence of an ortho-
quinone). All the desired compounds present the characteristic
bands of the phenazine structure that are observed at 3500–
3150 cm�1 (N–H stretching vibration) and 3070–3050 cm�1 (C–H
stretching vibration).

The UV spectra show mainly three bands. A red shift is observed
for the 11,110-bidibenzo[a,c]phenazine and can be explained by the
increase in conjugation in the product (Fig. 1).

The synthesis of benzodiazepines is not energetically favored
since the 6-member rings are more stable and easier to synthesize.
In the same way, even if a 1:1 molar ratio of reactants was used in
entry 5, only the totally cyclized product was observed.

Only the aromatic o-diamines allow us to obtain the quoted
products. In entry 2, none of the products is observed because
the diamine is not aromatic and the cyano group is strongly elec-
tron-withdrawing which disabled the nitrogen doublets.
In entry 4, an excellent yield was observed with a pure crude
product according to GC–MS and 1H NMR spectra. The presence
of another substituent group on the aromatic nucleus of the dia-
mine decreases the yield. The use of a pyrido electron acceptor het-
erocycle as the o-diamino aromatic reagent lowers the electronic
density of the amino groups and the yield of the reaction is de-
creased. The same phenomenon is found in entry 5.

Electron-donating groups favored the formation of the
dibenzo[a,c]phenazine to give quantitative yields. In contrast, elec-
tron-withdrawing groups gave slightly lower yields. In addition,
the reactant biphenyl-3,30,4,40-tetraamine or 3,30-diaminobenzi-
dine and the product have very low solubility. This method thus
gave us access to molecules with very low solubilities.

Further analyses were performed with the 11-meth-
yldibenzo[a,c]phenazine. XRD analysis and comparison between
products obtained by the classical solvent way (EtOH reflux then
evaporation under reduced pressure) and by grinding have allowed
us to determine that the product obtained by co-grinding is hy-
drated and is a pseudo-polymorph since the XRD shows some dif-
ferences between the products (hydrated and non-hydrated)
(Fig. 2).

Conclusion

We successfully developed a simple, efficient, and eco-friendly
synthetic pathway, which allows the use of poorly soluble mole-
cules and gives direct access to hydrates, which have a different
crystalline structure. This is particularly interesting since the pseu-
do-polymorphs, like salts, can modify the bioavailability of a phar-
maceutical product. Another synthetic step is thus avoided. This is
the first time that these dibenzophenazines were obtained in good
yield with a solvent-free method.

In conclusion, a green, atom-economical, and efficient approach
to the synthesis of pyrazines has been developed. This method can
be used as a quick screening synthesis method giving access to
new compounds sometimes not accessible directly with another
synthetic way.

The sample size allows initial pharmacological, biological,
chemical, and physical characterization of the product.
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