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Graphical Abstract 

 
A novel NIR xanthene fluorescence probe showed sensitive and selective response 
toward Cys, and was developed to detect endogenous Cys in vivo.  
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Abstract: Abnormal levels of the biological thiol cysteine (Cys) have been shown to 

be associated with growth retardation, skin lesions, and neurotoxicity in humans. In 

order to fully elucidate the role of Cys in biological systems, its levels must be 

monitored through in vitro assays as well as in living cells and animals. Herein, we 

designed and synthesized a novel near-infrared xanthene fluorescence probe (NOF1) 

with an acrylate group as a trigger moiety to detect Cys over homocysteine and 

glutathione. The NOF1 probe exhibited a good selectivity and a high sensitivity 

toward Cys, with a detection limit of 210 nM. Additionally, NOF1 retained good 

sensitivity and selectivity in human plasma, with a good recovery of Cys within the 

range 98% to 102%. Importantly, the NOF1 probe was successfully applied to the 

fluorescence imaging of Cys in living cells, zebrafish, and mice, showing great 

potential for applications involving the detection of Cys both in vitro and in vivo.  

Keywords: Cysteine, Xanthene fluorescence dye, Near-infrared, Fluorescence 

imaging 

1 Introduction  

Biological thiols such as cysteine (Cys), homocysteine (Hcy), and glutathione 

(GSH) play important roles in complex physiological systems[1,2], particularly in the 

maintenance of the appropriate redox status of proteins, cells, and organisms[3]. Cys 
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is an essential amino acid for metabolism and detoxification[4], and its abnormal 

levels in living systems have been associated with skin lesions, neurotoxicity, 

psoriasis, leucocyte loss, liver damage, and Parkinson’s disease[5-9], among other 

illnesses. Therefore, the highly selective and sensitive detection of Cys is of great 

significance in biochemistry and biomedicine. Currently available Cys detection 

methods include capillary electrophoresis[10,11], high-performance liquid 

chromatography, and optical detectors[12-14]. However, these methods require 

complicated sample preparation procedures or pretreatment and cannot be used for the 

in vivo detection of Cys or in living cells. Nevertheless, in order to fully elucidate the 

role of Cys in biological systems, Cys levels must be monitored both in vitro and in 

vivo in living cells and animals[15,16]. Thus, the development of convenient and 

inexpensive methods for the real-time in vivo monitoring of Cys levels is required.  

Fluorescence detection has been extensively studied due to its high sensitivity and 

selectivity, as well as its simplicity and facile application in biological sample 

assays[17-21]. To date, various fluorescent probes have been developed for the 

monitoring of Cys levels based on various mechanisms[3,22-27], and probes to 

dectect Cys over Hcy and GSH have been reported[28,29]. However, numerous 

probes with emission and absorption wavelengths in the ultraviolet or visible region 

cannot be applied in vivo imaging due to their shallow penetration depth and animal 

background autofluorescence. Near-infrared (NIR) light (650–900 nm) has a lower 

energy, deeper tissue penetration, and reduced optical damage to biological samples 

compared to visible light, as well as minimum background interference from 

autofluorescence[30-33]. Therefore, the development of novel NIR emission probes 

for the rapid, highly selective, and sensitive detection of Cys both in vitro and in vivo 

is warranted.  

Herein, we designed and synthesized a novel NIR emission xanthene fluorescence 

probe (NOF1) with acrylate groups acting as the trigger moiety probe that is able to 

sensitively and selectively detect Cys (Scheme 1). Furthermore, the NOF1 probe 

undergoes a rapid and selective response for Cys over Hcy and GSH with a lower 
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limit of detection (LOD) than the available techniques in vitro. Importantly, the NOF1 

probe could be applied for the in vivo imaging of Cys in living cells, zebrafish, and 

mice due to its NIR emission, indicating a significant potential for biological 

applications. 

2 Experimental sections 

2.1 Materials and Methods 

Materials. All commercial chemicals were purchased from commercial suppliers 

and used without further purification. All solvents were purified before use. 

2-(4-diethylamino-2-hydroxybenzoyl) beozoic acid, cyclohexanone and HClO4 (70%) 

were purchased from Shanghai Sain Chemical Technology Co., Ltd. Acryloyl 

chloride and potassium acetate were purchased from Adamas Regent Co., Ltd. 

4-Hydroxybenzaldehyde was purchased from Aladdin Technology Co., Ltd. Et3N was 

purchased from TCI (Shanghai) Chemical Industry Development Co., Ltd. 

Concentrated H2SO4 was purchased from Jiangsu Tong Sheng Chemical Reagent Co., 

Ltd. Anhydrous CH2Cl2 was purchased from J&K Scentific Ltd. MTT and PBS were 

purchased from Beyotime Biotechnology Co., Ltd (China). RPMI 1640 was 

purchased from Thermo Fisher Scientific Co., Ltd. N-ethylmaleimide (NEM) was 

also purchased from Adamas Regent Co., Ltd. 

Methods. 1HNMR (400 MHz) spectra was obtained on a BrukerDRX-400 

spectrometer, with tetramethylsilane (TMS) as an internal standard (0 ppm) 

substances. The high resolution mass spectra (HRMS) spectra were measured with 

Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). UV–vis 

absorption spectra were recorded on a Shimadzu UV-2007 spectrophotometer. 

Fluorescence measurements were carried out on an Edinburgh FS5 fluorescence 

spectrometer. Fluorescence imaging of HeLa cells were obtained using Olympus 

FV1000 confocal fluorescence microscope (Japan Olympus Optical Co., Ltd).The 

absorbance value was measured using a Thermo Varioskan LUX micro-plate reader 

(ThermoFisher Scientific) in the MTT assay. In vivo fluorescence imaging was 
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performed with an in vivo imaging system (IVScpoe 7550, Shanghai CLINX Science 

Instruments Ltd., China). 

2.2 Synthesis details 

The synthesis routine of NOF1 and NOF1-Cys are shown at Scheme S1. 

Synthesis of compound 1. Compound 1 was synthesized according to previous 

literature[34]. To a solution of 4-Hydroxybenzaldehyde (122 mg, 1 mmol) and Et3N 

(1.4 mL, 10 mmol) in 15 mL of anhydrous CH2Cl2, acryloyl chloride (180 mg, 2 

mmol) was added dropwise at 0 °C. After stirring at this temperature 90 min, the 

mixture was warmed to room temperature and stirred overnight. The solution was 

diluted with CH2Cl2 (30 mL), washed with H2O (15 mL × 3) and dried over 

anhydrous Na2SO4. The solvent was removed in rotavapor. The crude product was 

purified by silica gel chromatography (PE/EA) to afford 59 mg (34%) of compound 

1as colorless oily liquid. 1 H NMR (400 MHz, CDCl3) δ 10.00 (s, 1H), 7.98 – 7.90 (m, 

2H), 7.37 – 7.31 (m, 2H), 6.65 (dd, J = 17.3, 1.1 Hz, 1H), 6.34 (dd, J = 17.3, 10.4 Hz, 

1H), 6.08 (dd, J = 10.5, 1.1 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 191.08 (s), 

163.81 (s), 155.31 (s), 134.00 (s), 133.55 (s), 131.24 (s), 127.39 (s), 122.34 (s).  

Synthesis of compound 2. Compound 2 was synthesized according to previous 

literature[35]. Cyclohexanone (3.3 mL, 32 mmol) was added dropwise to 

concentrated H2SO4 (50 mL) and cooled down to 0 °C. Then, 

2-(4-diethylamino-2-hydroxybenzoyl) beozoic acid (5.01 g, 16 m mol) was added in 

portions with vigorous stirring. The reaction mixture was heated at 90 °C for 2 h, 

cooled down, and poured onto ice (200 g). Perchloric acid (70%; 3.5 mL) was then 

added, and the resulting precipitate was filtered off and washed with cold water (200 

mL). Compound 2 obtained as a red solid was used for the next step without further 

purification. HRMS (ESI) C24H26NO3
+ [M+H] +: calcd, 377.1991; found, 377.2046. 

Synthesis of NOF1. Into a 50 mL flask were added compound 3 (123 mg, 0.33 

mmol), Compound 2 (59.9 mg, 0.35 mmol), potassium acetate (48 mg, 0.7 mmol) and 

acetic acid (5 mL).The mixture was heated to 90 °C for 12 h under nitrogen protection, 
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and the solvent was removed by the evaporation under the reduced pressure. The 

crude product was purified by silica gel chromatography (CH2Cl2/MeOH=20:1) to 

afford 20 mg (11%) of NOF1 as purple solid. 1H NMR (400 MHz, CD3OD) δ 8.01 

(dd, J = 6.8, 2.2 Hz, 1H), 7.94 (s, 1H), 7.59 – 7.51 (m, 4H), 7.17 (d, J = 8.6 Hz, 2H), 

7.08 (dd, J = 6.4, 2.2 Hz, 1H), 7.01 (s, 3H), 6.51 (d, J = 17.4 Hz, 1H), 6.30 (dd, J = 

17.3, 10.4 Hz, 1H), 6.00 (d, J = 9.7 Hz, 1H), 3.59 – 3.53 (m, 4H), 2.86 (dt, J = 10.6, 

5.5 Hz, 2H), 2.23 (dt, J = 16.6, 5.8 Hz, 2H), 1.72 (d, J = 4.8 Hz, 2H), 1.21 (t, J = 7.1 

Hz, 6H). HRMS (ESI) C34H32NO5
+ [M+H]+: calcd, 534.2275; found, 534.2269. 

Synthesis of NOF1-Cys. This material was prepared according to the reported 

literature[31]. 4-hydroxybenzaldehyde (0.10 g, 0.82 mmol) and compound 3 (0.34 g, 

0.90 mmol) were reacted in 15 mL AcOH overnight, and then the work-up process 

was performed. NOF1-Cys was received as dark purple solid (0.10 g, 0.20 mmol), 

yield: 24%. 1 H NMR (400 MHz, MeOD) δ 8.13 (d, J = 24.6 Hz, 2H), 7.69 – 7.62 (m, 

2H), 7.57 (d, J = 8.3 Hz, 2H), 7.17 (s, 4H), 6.92 (d, J = 8.4 Hz, 2H), 3.70 (q, J = 7.1 

Hz, 4H), 2.98 (d, J = 6.9 Hz, 2H), 2.57 – 2.37 (m, 2H), 1.90 – 1.79 (m, 2H), 1.32 (t, J 

= 7.0 Hz, 6H). HRMS (ESI) C31H30NO4
+ [M] +: calcd, 480.2169; found, 480.2155. 

2.3 UV–vis absorption and fluorescence spectra  

Stock solutions of probe NOF1 (2 mM) was prepared in DMSO. Stock solutions of 

analyte (1–10 mM) were prepared in distilled water. The stock solutions of analyte 

were diluted to desired concentrations with distilled water when needed. For a typical 

optical measurements, probe NOF1 and NOF1-Cys were diluted to 10 µM in PBS (5 

mM, pH=7.4) with 50% DMSO (v/v), respectively and 2 mL of the resulting solution 

was placed in a quartz cell. The amino acids titration of probe NOF1 

spectrophotometric determination was carried out in PBS (5 mM, pH=7.4) with 50% 

DMSO (v/v). Various amino acids (20 µM) were titrated into a solution of probe 

NOF1 (10 µM), respectively. Before UV-vis absorption and photoluminescence 

spectra of the samples were measured, the solutions were kept at 37 °C for 10 min. 

For luminescence measurements, excitation was provided at 670 nm, and emission 

was collected from 685 to 850 nm. UV-visible spectra were recorded on 
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ShimadzuUV-2007 spectrometer and emission spectra were recorded on Edinburgh 

FS5 spectrometer. 

Human plasma (1 mL) was deproteinized using acetonitrile (3 mL) and centrifuging 

at 8,000 rpm for 30 min. The supernatant was diluted in PBS buffer (pH =7.4, 5 mM). 

The Cys content in the plasma sample was determined using the same procedure 

above and the standard calibration curves.  

2.4 Computational Details 

These two compound NOF1 and NOF1-Cys were optimized at the density 

functional theory (DFT) level using the Becke’s three-parameter hybrid exchange 

functional combined with the Lee-Yang-Parr correlation functional B3YLP[36] and 

the 6-31G(d,p) basis set[37]. Harmonic vibrational frequencies were calculated 

correspondingly at the same level to confirm each point corresponds to a minimum on 

the potential energy surface. Time-dependent DFT (TD-DFT) [38] calculations were 

performed to get the nature of the excited states based on the optimized structures. All 

calculations were performed with Gaussian 09 Rev. D. 01[39]. 

2.5 Cell culture and cytotoxicity of NOF1 

The HeLa cell lines (human cervical epitheloid carcinoma) were provided by the 

Institute of Biochemistry and Cell Biology (Chinese Academy of Sciences). HeLa 

cells were grown in culture media (RPMI 1640) at 37 °C under a humidified 

atmosphere containing 5% CO2 for 24 h. Cells were plated on 15 mm glass coverslips 

and allowed to adhere for 24 h. 

The in vitro cytotoxicity was measured using a standard methyl thiazolyl 

tetrazolium (MTT) assay in HeLa cell lines. Cells growing in a 96-well flat-bottomed 

microplate (1×104 cells well-1) in complete RPMI 1640 supplemented with 10% FBS 

(100 µL well-1) at 37 °C under 5% CO2. After 24h, the sample (100 µL well-1) was 

added to the wells of the test group at concentrations of 5, 10, 15, 20，25，30 µM, 

respectively. Added RPMI 1640 supplemented with 0.2 % DMSO (100 µL well-1) to 

control group. The cells incubated for 24 h. Thereafter, combined 20 µL MTT/PBS 
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solutions (5 mg mL-1) were added to every well and keep incubating at 37 °C under 5% 

CO2. After 5 h remove solution and added DMSO (150 µL well-1) to wells. The 

quantity of the formazan product formed as measured the amount of OD 490 

(absorbance value) of each well referenced at 690 nm (OD 690) is directly 

proportional to the number of living cells in the culture. Each experiment was done in 

quadruplicate. The relative viability (%) of cell growth related to control wells 

containing cell culture medium without NOF1 was calculated by 

[OD]expt/[OD]control×100, where [OD]expt is the absorbance of the test sample and 

[OD]control is the absorbance of control sample. 

2.6 Confocal imaging for living cells 

The cells were incubated for 24 h prior to the imaging experiments. The living cells 

were stained with 10 µM probe NOF1 for 30 min at 37 °C under 5% CO2. For control 

experiments, the cells were pretreated with thiol trapping reagent, N-ethylmaleimide 

(NEM, 100 µM) for 30 min at 37 °C, followed by washing with PBS buffer (2 mL × 3 

times), and incubated with probe NOF1 (10 µM) for 30 min at 37 °C under 5% CO2. 

Moreover, HeLa cells were pretreated with Cys (100 µM) for 120 min and then 

further incubated with NOF1 (10 µM) for 30 min at 37 °C under 5%. The cells were 

imaged under an Olympus FV1000 confocal luminescence microscope. For NOF1, 

excited at 635 nm, emission was collected by a range 670–770 nm equipped with a 

40×-oil immersion objective lens. 

2.7 Visualizing Cys in the living zebrafish 

4-day old zebrafishes were grew in E3 embryo media (15 mM NaCl, 0.5 mM KCl, 

1mM MgSO4, 1 mM CaCl2, 0.15 mM, KH2PO4, 0.05 mM Na2HPO4, 0.7 mM 

NaHCO3, pH 7.5). As the control group, the 4-day-old zebrafish was incubated with 

probe NOF1 (10 µM) for 30 min in E3 media at 28 °C. Other group, the 4-day-old 

zebrafish was pre-incubated with 200 µM NEM for 30 min and then incubated with 

10 µM NOF1 for 30 min. After washing with E3 media to remove the remaining 

NEM, the zebrafish was further incubated with 10 µM of probe NOF1 in E3 media for 

30 min at 28 °C. After washing with E3 media, the zebrafish was imaged by 
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fluorescence microscopy. The zebrafishes were anesthetized by Tricain, and the low 

melting point Agarose served as fixing reagent during imaging. 

2.8 Fluorescence imaging in vivo 

Animal procedures were in agreement with the guidelines of the Institutional 

Animal Care and Use Committee of Gannan Normal University and performed in 

accordance with the institutional guidelines for animal handling. In vivo fluorescence 

imaging was performed with a modified luminescence in vivo imaging system 

(IVScpoe 7550, Shanghai CLINX Science Instruments Ltd., China). In this system, 

two external 0−5 W adjustable CW 635nm lasers (Changchun Laser Optoelectronics 

Technology Ltd., China) and an Andor CCD (IKON-M934BV, Andor Technology 

Ltd., UK) were used as the excitation sources and the signal collector, respectively. 

Firstly, the mice was anaesthetized in advance with 100 µL chloral hydrate (4% wt. 

aqueous solution) and placed carefully into living animal imaging system. 

Furthermore, the mouse was subcutaneous injected with 50 µL of 25 µM probe NOF1 

in saline. NIR fluorescence images of the living mice were performed at different time. 

In addition, in vivo fluorescence imaging system, emission at 680–780 nm was 

collected with a pass filter (Semrock, INC) under excitation at 635 nm. Images of 

fluorescence signal were analyzed with Kodak Molecular Imaging Software.  

3 Results and Discussion 

3.1 Design and synthesis 

The NOF1 probe was constructed using a xanthene derivative as the NIR 

fluorophore and an acrylate moiety as the reaction site. Xanthene derivatives possess 

a large molar extinction coefficient, a high fluorescence quantum yield, and good light 

stability, among other properties[40,41]. Furthermore, the acrylate moiety has been 

shown to act as an efficient reaction site for biothiols through an addition-cyclization 

reaction mechanism[42,43], which generally leads to faster reaction kinetics with Cys 

than with Hcy or GSH[44-46]. The addition-cyclization reaction leads to the 

formation of a NOF1-Cys product with innate fluorescence. Masking of the phenolic 

OH with an acrylate group, an efficient electron acceptor, quenches NOF1-Cys 
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fluorescence, yet Cys fluorescence is selectively recovered by the removal of the 

masking group through addition-cyclization conjugation (Scheme 2). The NOF1 

probe was synthesized through the reaction of intermediate compounds 1 and 2 

(Scheme S1). Furthermore, the chemical structure of NOF1 was confirmed by 

1H-nucelar magnetic resonance (NMR) and high-resolution mass spectroscopy 

(HR-MS). The detailed synthetic procedures and structure characterization methods 

were provided in the Experimental Section and Supporting Information (see Figures 

S8-S14). 

3.2 UV-vis absorption and fluorescence spectra 

The absorption and emission spectra of compounds NOF1 and NOF1-Cys are 

shown in Figure S1. As expected, the NOF1 probe showed a weak fluorescence due to 

fluorophore quenching by the carbon–carbon double bond [34]. However, NOF1-Cys 

showed significant NIR fluorescence with a maximum absorption at 670 nm and an 

emission peak at 741 nm.  

UV-vis absorption and fluorescence spectral changes of NOF1 (10 µM) reacting 

with different Cys concentrations (from 0 to 1.4 eq.) in PBS (5 mM, pH =7.4) with 50% 

DMSO (v/v) at 37 °C for 10 min (Figure S3) were investigated. The 10 µM NOF1 

probe solution showed a major absorption peak at approximately 550 nm (Figure 1a). 

Upon Cys addition, the intensity of the 550 nm absorption band decreased along with 

an increase in the intensity of a new band at approximately 670 nm, leading to a 120 

nm red shift. The growth in absorption intensity at 670 nm was attributed to 

deacylation via the response of the NOF1 probe to Cys. Simultaneously, the solution 

color changed from purple to blue. Thus, this phenomenon suggests that it is feasible 

for Cys to be detected by the “naked-eye”. Furthermore, the absorption intensities of 

the NOF1 probe with different Cys concentrations showed a linear correlation in the 

range of 0–0.8 equivalents of Cys (Figure S2). 

Fluorescence titration experiments of the NOF1 probe with Cys showed a gradual 

increase in fluorescence intensity upon Cys addition (from 0 to 1.4 eq.) to the NOF1 

solution (Figure 1b), with maximum value reaching at 741 nm under excitation at 670 
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nm (Figure S3). The intensity of the emission peak at 741 nm was gradually enhanced 

by the removal of the masking group through the addition-cyclization conjugation to 

the acrylate moiety (Scheme 1). The plot of fluorescence intensities at 741 nm against 

Cys concentration in the range 2–10 µM (0.2−1.0 eq.) showed a linear fit (R2 = 0.992) 

(Figure S4), with a Cys LOD as low as 0.21 µM. The LOD was calculated using the 

formula LOD = 3r/S, where r is the standard deviation of blank measurements and S 

is the slope of the calibration curve. These results indicate the possibility of 

quantitative Cys detection within a good linear range. Furthermore, the excitation and 

emission of the NOF1 probe are both within the NIR range, thus allowing adequate 

sensitivity for the detection of Cys in biological systems.  

3.3 Selectivity of NOF1 for Cys 

A successful biological probe must have a suitably high selectivity. Therefore, we 

first confirmed the specific selectivity of the NOF1 probe to Cys as well as to other 

thiols with similar structures (Hcy and GSH). The time-dependent fluorescence 

response spectra were then determined by monitoring the fluorescence intensity 

changes in the reaction mixture. At 670 nm excitation, the NOF1 probe was almost 

non-emissive and stable for 0–10 min (Figure 2a). In contrast, following the addition 

of 2.0 eq. of Cys, the emission intensity at 741 nm showed an initial rapid increase, 

reaching a maximum within 10 min, suggesting a complete sensing response. Similar 

experiments using Hcy and GSH exhibited a minor increase in fluorescence, and 

required a longer time to reach the maximum intensity. Furthermore, the color change 

in the NOF1 solution in the presence of Cys, Hcy, and GSH could be optically 

observed (Figure 2a, inset). Moreover, changes in emission spectra were also 

examined, showing a similar trend (Figure 2b). Thus, the NOF1 probe can be used to 

effectively distinguish Cys from Hcy and GSH.  

The observed differences between Cys and both Hcy and GSH can be attributed to 

the kinetic rate of the intramolecular adduct-cyclization reactions. The intramolecular 

cyclization reaction with Cys leads to the formation of a seven-membered ring [4,47, 

48], whereas that with Hcy leads to the formation of an eight-membered ring; 
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therefore, the former is kinetically more favorable. In contrast, the intramolecular 

cyclization reaction with GSH is sterically hindered by the bulkiness of its tripeptide, 

leading to the formation of a conjugated thio-ether. 

To further assess the selectivity of NOF1 toward Cys, the sensory responses to the 

amino acids alanine (Ala), arginine (Arg), asparagine (Asn), aspartic acid (Asp), 

glutamic acid (Glu), glutamine (Gln), histidine (His), isoleucine (Ile), leucine (Leu), 

lysine (Lys), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), and 

tyrosine (Tyr) were also investigated. The absorption spectra changes of NOF1 after 

incubation with 10.0 eq. of the corresponding amino acid and Cys for 10 min at 37 °C 

showed that only Cys exhibited an obvious red-shift of maximum absorbance from 

552 to 670 nm (Figure 3a), corresponding to the color change from purple to blue 

(Figure 3b). In addition, fluorescence spectra showed that only Cys exhibited a 

marked off-on response with enhanced fluorescence at 741 nm when excited by 670 

nm light; the remaining amino acids revealed only a slight fluorescence enhancement 

(Figure S5). Thus, the NOF1 probe has a good selectivity toward Cys and could be 

used for its specific detection. 

The above results showed that the NOF1 probe undergoes NIR emission, enhanced 

fluorescence, and is highly sensitive and selective toward Cys. Therefore, its 

application in bio-samples was examined. Therefore, its application in bio-samples 

was examined. 

3.4 Reaction mechanism 

To verify the sensing mechanism proposed in Scheme S2, the UV-Vis and 

fluorescence spectra of NOF1 (10 µM), NOF1+Cys (10 µM NOF1 reacting with 2.0 

eq. Cys), and NOF1-Cys (10 µM) were obtained. The final UV-Vis and fluorescence 

spectra were the same for both the mixture of NOF1 reacting with Cys (2.0 eq.) and 

for NOF1-Cys, demonstrating that the reaction product from NOF1+Cys was 

NOF1-Cys. Thus, the transformation process from NOF1 to NOF1-Cys was 

confirmed by the spectra change (Figure 4). HR-MS analysis of NOF1 and the 

product of NOF1+Cys further confirmed the above mechanism (Figure 5). NOF1 
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showed a characteristic peak of m/z 534.2269 ([M+H]+ calculated value 534.2275). 

Additionally, the NOF1+Cys product exhibited a characteristic peak of m/z 480.2185 

([M+H] + calculated value m/z 480.2169). Based on these results and previous reports, 

we confirm that the reaction mechanism between NOF1 and Cys follows that 

indicated in Scheme 2. Namely, the NOF1 probe reacts with Cys through a 

conjugation addition and is followed by intramolecular cyclization to produce 

NOF1-Cys accompanied by a release of fluorescence. To better understand the 

photophysical properties of the NOF1and NOF1-Cys, theoretical calculations were 

also performed through the time-dependent density functional theory (TD-DFT) 

(Figure S6). The energies for the frontier MOs as well as their corresponding 

HOMO-LUMO gaps are listed in Table S1. For NOF1-Cys, the π electrons on the 

HOMO were essentially distributed in the xanthene backbone and Ar-OH group. In 

contrast, the π electrons on the HOMO were mostly distributed in the xanthene 

backbone and little on the Ar-O group of NOF1. The π electrons on the LUMO 

primarily resided on the xanthene backbone both for NOF1 and NOF1-Cys. Herein, 

the excitation from the LUMO to HUMO transition thus induced the strong 

fluorescence observed for NOF1-Cys. The above results therefore successfully 

demonstrate that the sensing mechanism of the NOF1 probe is responsive to Cys and 

formed the NOF1-Cys. 

3.5 Application of NOF1 in the detection of Cys in human plasma 

Despite the existence of fluorescent probes able to detect Cys, these have rarely 

been applied in the determination of Cys in human plasma. Herein, the NOF1 probe 

has been used to assess Cys in human plasma samples appropriately diluted to fit the 

linear detection requirements. The average concentration of Cys in human plasma was 

shown to be approximately 166.4 µM (Table 1), which is in agreement with the 

reported results (130 to 290 µM Cys in human plasmas)[49,50]. Furthermore, Cys 

was added to the plasma in different concentrations to determine the recovery using 

the proposed method. The Cys recoveries ranged from 98% to 102% (Table 1), with a 
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relative error of no more than 5%, suggesting that the proposed method has great 

potential for the determination of Cys in real samples. 

3.6 Cell cytotoxic assays and cell imaging 

In order to pursue its application in vivo, its cytotoxicity was assessed. HeLa cells 

were treated with different concentrations of NOF1 (up to 30 µM) and the toxicity 

was assessed (Figure S7). At a 10 µM NOF1 concentration, cell viability remained 

unchanged after 24 h incubation, with more than 95% of cells remaining viable. When 

the NOF1 concentration was increased to 30 µM, cell viability remained above 80%. 

Furthermore, no sub-cellular apoptotic changes or significant cell death were 

observed following incubation with working concentrations required for imaging (5 

µM for cell imaging and 10 µM for in vivo imaging), with cell viability remaining 

above 90%. In general, the NOF1 probe exhibited a low cytotoxicity when used 

within the concentrations and incubation periods required for imaging. 

In order to prove that the NOF1 probe has a practical utility for intracellular Cys 

detection in living cells, confocal luminescence imaging was performed. When HeLa 

cells were incubated with NOF1 (5 µM) for 30 min, an obvious intracellular NIR 

fluorescence was observed (Figure 6a). However, when HeLa cells were pretreated 

with N-ethylmaleimide (a known thiol trapping reagent) for 120 min, followed by 

incubation with NOF1 (5 µM) for 30 min, the cells showed a weaker fluorescence 

(Figure 6b). In addition, following HeLa cells pretreatment with Cys (100 µM) for 

120 min, followed by incubation with NOF1 (5 µM) for 30 min at 37 °C, a marked 

enhancement of NIR fluorescence was observed (Figure 6c). These results indicate 

that the probe NOF1 possesses good membrane permeability and is able to detect 

changes in intracellular Cys in living cells, holding great potential for biological 

applications. 

3.7 Visualizing Cys in living zebrafish 

We further investigated the ability of the NOF1 probe to visualize Cys in living 

zebrafish. The 4-day-old zebrafish incubated with 5 µM NOF1 for 30 min displayed 
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significant fluorescence (Figure 7a). Interestingly, the fluorescence in the zebrafish 

was not uniformly distributed, with the zebrafish yolk sac showing much stronger 

fluorescence. It is likely that the NOF1 probe was uniformly distributed in zebrafish, 

whereas Cys was not[51]; nevertheless, current evidence does not allow us to 

completely exclude the non-uniform distribution of the probe in zebrafish. Conversely, 

4-day-old zebrafish pre-incubated with 200 µM N-ethylmaleimide showed minimal 

fluorescence (Figure 7b), demonstrating that the NOF1 probe is tissue-permeable and 

that the fluorescence generation results from the NOF1 probe interacting with Cys in 

the living zebrafish. 

3.8 Fluorescence imaging in vivo  

On the basis of the probe’s NIR optical property, the NOF1 probe was explored as 

a tool for imaging of Cys in the living mouse. In vivo imaging of Cys using NOF1 

was performed in living BALB/c nude mice. Firstly, the living mice were 

subcutaneous injected with 50 µL of 25 µM NOF1. As shown in Figure 8a, weak 

emission signals of mice were detected 5 min after the injection of NOF1, and then 

the fluorescence was enhanced after 30 min (Figure 8b). This was induced by the 

interaction between NOF1 probe and endogenous Cys. Therefore, the above results 

demonstrate that the NOF1 probe possesses the ability to sense Cys in living animals.  

Conclusion  

In conclusion, a novel NIR xanthene fluorescent NOF1 probe for the highly 

selective and sensitive detection of Cys over Hcy, GSH, and other amino acids was 

synthesized. The addition-cyclization conjugation reaction of Cys toward the acrylate 

moiety in the NOF1 probe results in the cleavage of the acrylate moiety and release of 

a free phenolic OH, thereby inducing a significant enhancement of fluorescence. This 

was confirmed by spectral changes and HR-MS. Importantly, the NOF1 probe 

exhibited a high selectivity and sensitivity towards Cys with a low LOD of 210 nM in 

vitro, as well as allowing the imaging of Cys in living cells, zebrafish, and in vivo. 

Therefore, this novel probe has great potential for applications involving the detection 
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of Cys both in vitro and in vivo. The present results offer valuable information and 

create a new platform for the design of NIR-emitting probes based on xanthene 

derivatives for fluorescence detection and imaging in vivo. 
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Scheme 1. Chemical structure of NOF1, and the process of detection of Cys in vitro 

and in vivo 

Scheme 2. Proposed mechanism for sensing of NOF1 for Cys 

Figure 1. (a) UV-vis absorption and (b) fluorescence spectral changes of NOF1 (10 

µM) upon addition of different concentrations Cys (from 0 to1.4 eq.) in PBS(5 mM, 

pH=7.4) with 50 % DMSO (v/v) at 37 °C for 10 min. Inset: Color changes in NOF1 

upon addition of Cys (10 µM), λex=670 nm 

Figure 2. (a) Time course of the fluorescence response at 741 nm. Inset: color 

changes in NOF1 upon addition of Cys, Hcy, and GSH (2.0 eq.). (b) Emission 

spectral changes of NOF1 in the absence (blank) and presence of Cys, Hcy, and GSH 

(2.0 eq.) in PBS (5 mM, pH=7.4) with 50% DMSO (v/v). [NOF1] = 10 µM, λex = 670 

nm, 37 °C 

Figure 3. (a) Absorption spectra of probe NOF1 (10 µM) treated with various 

analytes (10.0 eq.). (b) Color change of probe NOF1 (10 µM) treated with 10.0 eq. of 

various analytes. All experiments were performed in PBS (5 mM, pH=7.4) with 50% 

DMSO (v/v) at 37 °C for 10 min 

Figure 4. (a) Absorption and (b) fluorescence spectra of NOF1 (10 µM) and the 

product of NOF1 (10 µM) reacted with Cys (1.0 eq.) and NOF1-Cys (10 µM) in PBS 

(5 mM, pH=7.4) with 50 % DMSO (v/v), λex= 670 nm  

Figure 5. HR-MS spectrum of NOF1 (left side) and NOF1+Cys (right side) 

Figure 6. Confocal luminescence images of living HeLa cells. (a) HeLa cells 

incubated with NOF1 (5 µM) for 30 min at 37 oC. (b) HeLa cells were pretreated with 

NEM (100 µM) for 120 min and then further incubated with NOF1 (5 µM) for 30 min 

at 37 °C. (C) HeLa cells were pretreated with Cys (100 µM) for 120 min and then 

further incubated with NOF1 (5 µM) for 30 min at 37 oC. Emission was collected by 

an NIR channel at 655−755 nm, under excitation with 635 nm laser. Scale bar = 30 

µm 
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Figure 7. In vivo images of zebrafish treated with NOF1. (a) 4-day-old zebrafish was 

incubated with 10 µM NOF1 for 30 min. (b) 4-day-old zebrafish was pre-incubated 

with 200 µM NEM for 30 min and then incubated with 10 µM NOF1 for 30 min 

Figure 8. Fluorescence imaging of endogenous Cys in living mice injected with 

NOF1 (25 µM, 50 µL) in saline at 5 min (a) and 30 min (b) after subcutaneous 

injection. Emission was collected by an NIR channel at 660−780 nm, under excitation 

with 635 nm laser. 

Table 1. Determination of Cys in human plasmas with probe NOF1 
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Table 1 Determination of Cys in human plasma with probe NOF1 

Analyte in plasmas Added  
(µM) 

founda 
(µM) 

Recoverya 
(%) 

Cys 0 1.04b±0.05 － 
 2 

4 
3.11±0.03 
5.05±0.03 

102±2.0 
 98±1.1 

 6 7.12±0.02 101±3.0 
a Mean of three determinations ± standard deviation 
b Mean of three determinations after human plasma diluted 160-fold 
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Scheme 1. Chemical structure of NOF1, and the process of detection of Cys in vitro 

and in vivo 
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Scheme 2. Proposed mechanism for sensing of NOF1 for Cys 
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Figure 1. (a) UV-vis absorption and (b) fluorescence spectral changes of NOF1 (10 

µM) upon addition of different concentrations Cys (from 0 to1.4 eq.) in PBS(5 mM, 

pH=7.4) with 50 % DMSO (v/v) at 37 °C for 10 min. Inset: Color changes in NOF1 

upon addition of Cys (10 µM), λex=670 nm 
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Figure 2. (a) Time course of the fluorescence response at 741 nm. Inset: color 

changes in NOF1 upon addition of Cys, Hcy, and GSH (2.0 eq.). (b) Emission 

spectral changes of NOF1 in the absence (blank) and presence of Cys, Hcy, and GSH 

(2.0 eq.) in PBS (5 mM, pH=7.4) with 50% DMSO (v/v). [NOF1] = 10 µM, λex = 670 

nm, 37 °C 
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Figure 3. (a) Absorption spectra of probe NOF1 (10 µM) treated with various 

analytes (10.0 eq.). (b) Color change of probe NOF1 (10 µM) treated with 10.0 eq. of 

various analytes. All experiments were performed in PBS (5 mM, pH=7.4) with 50% 

DMSO (v/v) at 37 °C for 10 min 
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Figure 4. (a) Absorption and (b) fluorescence spectra of NOF1 (10 µM) and the 

product of NOF1 (10 µM) reacted with Cys (1.0 eq.) and NOF1-Cys (10 µM) in PBS 

(5 mM, pH=7.4) with 50 % DMSO (v/v), λex= 670 nm  
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Figure 5. HR-MS spectrum of NOF1 (left side) and NOF1+Cys (right side) 

 
 
 
  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

Figure 6. Confocal luminescence images of living HeLa cells. (a) HeLa cells 

incubated with NOF1 (5 µM) for 30 min at 37 oC. (b) HeLa cells were pretreated with 

NEM (100 µM) for 120 min and then further incubated with NOF1 (5 µM) for 30 min 

at 37 °C. (C) HeLa cells were pretreated with Cys (100 µM) for 120 min and then 

further incubated with NOF1 (5 µM) for 30 min at 37 oC. Emission was collected by 

an NIR channel at 655−755 nm, under excitation with 635 nm laser. Scale bar = 30 

µm 
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Figure 7. In vivo images of zebrafish treated with NOF1. (a) 4-day-old zebrafish was 

incubated with 10 µM NOF1 for 30 min. (b) 4-day-old zebrafish was pre-incubated 

with 200 µM NEM for 30 min and then incubated with 10 µM NOF1 for 30 min 
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Figure 8. Fluorescence iamging of endogenous Cys in living mice injected with 

NOF1 (25 µM, 50 µL) in saline at 5 min (a) and 30 min (b) after subcutaneous 

injection. Emission was collected by an NIR channel at 660−780 nm, under excitation 

with 635 nm laser. 
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Highlights 

► A simple strategy to synthesize a novel near-infrared xanthene fluorescence sensor 

for Cys detection.  

►Powerful selectivity and sensitivity for Cys was achieved to differentiate similar 

bio-thiols (Hcy and GSH). 

► Practical applicability of our sensor for accurately quantifying Cys levels in the 

human plasma with a good recovery rate.  

► The sensor as a versatile probe was introduced to detect or image Cys in living 

cells, zebrafish, and mice.  

 


