

Use of dodecanoyl isothiocyanate as building block in synthesis of target benzothiazine, quinazoline, benzothiazole and thiourea derivatives

Magdy M. Hemdan*, Eman A. El-Bordany

Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Abbasia, Cairo, Egypt

Received 15 August 2015; Revised 7 December 2015; Accepted 16 December 2015

Dodecanoyl isothiocyanate (I) reacts additively with anthranilic acid to afford derivatives of thiourea II and benzothiazine III in a one-pot reaction. The cyclisation of thiourea II was achieved using acetic anhydride to form quinazoline derivative IV. The heating of quinazoline IV in acetic anhydride or butan-1-ol gave quinazoline derivatives V or VI, respectively. Benzothiazine III underwent trans-acylation to benzothiazine VII in boiling acetic anhydride. The treatment of IV with hydrazine hydrate, anthranilic acid or ethyl carbazate afforded derivatives of triazoloquinazoline VIII, quinazolinoquinazoline XI or thiosemicarbazide X, respectively. The reaction of I with 2aminophenol or 2-aminothiophenol afforded thiourea derivative XIII or benzothiazole derivative XIV, respectively. Most of the synthesised compounds bear a lauroyl (dodecanoyl) group (a hydrocarbon moiety). The structures of the synthesised compounds were confirmed by microanalytical and spectral data.

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Keywords: lauroyl isothiocyanate, thiourea, benzothiazine, quinazoline, thiosemicarbazide derivatives

Introduction

Many preparatory methods have been reported for the production of quinazolines (Kidwai et al., 2007; Barluenga et al., 1994; Raffa et al., 2004). Quinazolines and their ring-fused derivatives have attracted considerable attention due to the wide spectrum of their pharmacological activities such as antiinflammatory (Maggio et al., 2001), antimicrobial (Grover & Kini, 2006) antioxidant (Roopan et al., 2008), anticancer (Chandrika et al., 2008; Khalil et al., 2003), antihypertensive (Alagarsamy & Pathak, 2007) antiviral (Schleiss et al., 2008), diuretic (Hayao et al., 1965; Cohen et al., 1960), antiHIV (Alagarsamy et al., 2007), anticonvulsants (Laddha & Bhatnagar, 2008) and anti-tubercular agents (Mosaad et al., 2004). Moreover, the chemistry of thioxoquinazolines has considerable value and has gained increased interest in both synthetic and biological fields. Accordingly, methods for the syntheses and modification of such ring systems continue to be the focus of research (El-Hiti et al., 2011). Some triazologuinazolines have exhibited antibacterial activities (Ghorab et al., 2013). Further, 3,1-benzothiazine core moieties possess remarkable potential as anti-radiation agents (Yadav et al., 2009) and bioactive materials (Simerpreet & Cannoo, 2013; Gütschow et al., 2012) in addition to their applications in recording and photographic materials (Obayashi & Okawa, 2001; Canon, 1984). They are used in various organic syntheses and transformations as reaction intermediates (Yadav et al., 2009; Yavari et al., 2010; Ding et al., 2012). A number of effective approaches for their preparation have been reported in the literature (Ding et al., 2013; Gimbert & Vallribera, 2009; Butin et al., 2009). The thiourea backbone also represents a significant structural motif in pharmaceu-

^{*}Corresponding author, e-mail: mhemdan39@hotmail.com

tical agents (Balzarini et al., 2009; Bukvić Krajačić et al., 2011; Sharma et al., 2010) having antibacterial, antimalarial, antiviral and anti-tumour activities.

In recent years, the potentials of aroyl isothiocyanates (Fahmy et al., 2010; Hemdan, 2010; Hemdan et al., 2010; Hemdan & El-Sayed, 2015) and acyl isothiocyanates (Hemdan et al., 2008, 2012; Hemdan & Abd El-Mawgoude, 2015a, 2015b) have been explored in heterocyclic syntheses. In the present investigation, dodecanoyl isothiocyanate was used as a building block in the synthesis of quinazoline, 3,1-benzothiazine, benzothiazole and thiourea derivatives. Some of the synthesised target compounds were substituted by a lauroyl (dodecanoyl) group (a hydrocarbon moiety) in an attempt to enhance their biological activities.

Experimental

General

All reagents and solvents were purchased from Merck-Schuchardt (Germany) and used as received; commercially available solvents (Adwek-Egypt) were used for crystallisations. Melting points were determined in open capillary tubes on a Gallenkemp melting point apparatus and are uncorrected. Elemental analyses were carried out using a PerkinElmer 2400 CHN elemental analyser. FTIR spectra were recorded on a PerkinElmer Spectrum RXIFT-IR systems using the KBr disc technique. ¹H NMR spectra were measured in DMSO- d_6 on a Varian Gemini 300 MHz instrument with TMS as internal standard. Mass spectra were recorded on a Shimadzu GC-MS, QP 1000 EX instrument operating at 70 eV. The reactions and purity of the products were monitored by thin-layer chromatography using ethyl acetate/hexane ($\varphi_r = 2$: 1) as the eluent. Merck 60 F254 silica gel TLC plates (0.2 mm; Darmstadt, Germany) and visualisation by UV irradiation (254 nm) were used. Dodecanoyl isothiocyanate (I) was prepared following the published method (El-Bordany, 2012).

Preparation of 2-(3-dodecanoylthioureido) benzoic acid (II) and N-(4-oxo-4H-3,1benzothiazin-2-yl)dodecanamide (III)

Anthranilic acid (3 mmol) was added to a solution of isothiocyanate I (3 mmol) in acetonitrile (30 mL) and the reaction mixture was refluxed for 1 h followed by cooling to ambient temperature to afford a mixture of II and III as a solid precipitate. This mixture was suspended in boiling ethanol (2 × 20 mL). The combined filtrates were cooled to give III as yellow crystals (0.41 g, 38 %). The residue (0.69 g) was dissolved in 50 mL of boiling petroleum ether (80–100 °C) to give, upon cooling, colourless crystals of II (0.62 g, 55 %).

Preparation of 3-dodecanoyl-2-thioxo-2,3dihydroquinazolin-4(1H)-one (IV), 3-acetyl-2-thioxo-2,3-dihydroquinazolin-4(1H)-one (V) and N-(4-oxo-4H-benzo[d][1,3]thiazin-2yl)acetamide (VII)

Compound II(1 g) was refluxed in acetic anhydride (Ac₂O; 10 mL) for 1 h then the solid product was filtered and re-crystallised from EtOH to give colourless crystals of IV (0.83 g). Similarly, the refluxing of IIIor IV(0.5 g) in Ac₂O (10 mL) for 3 h afforded VII or V, respectively. The crystallisation of crude products from hot EtOH gave yellow crystals of VII (0.23 g) and colourless crystals of V (0.23 g).

Preparation of 2-thioxo-2,3-dihydroquinazolin-4(1H)-one (VI), 3-undecyl-[1,2,4]triazolo[3,4b]quinazolin-5(10H)-one (VIII), dodecanehydrazide (IX), 4-dodecanoyl-1ethoxycarbonylthiosemicarbazide (X), 6Hquinazolino[3,2-a]quinazoline-5,12-dione (XI), 1-dodecanoyl-3-(2-hydroxyphenyl)thiourea (XIII) and N-(benzo[d]thiazol-2-yl) dodecanamide (XIV)

Compound IV (1 g) in 10 mL of butan-1-ol was heated under reflux in the presence of a few drops of triethylamine for 6 h. The reaction mixture was concentrated to half its original volume, then cooled to ambient temperature and the solid product was filtered and re-crystallised from EtOH to afford VI as pale yellow crystals (0.37 g). A similar procedure, with the addition of hydrazine hydrate (3 mmol) or ethyl carbazate (IUPAC nomenclature: ethoxycarbohydrazide) (3 mmol) or anthranilic acid (3 mmol) or 2-aminophenol (3 mmol) or 2-aminothiophenol (3 mmol) and reaction time of 6–9 h (monitored by TLC) afforded compounds VIII-XIV, respectively. The following solvents were used for crystallisation: petroleum ether (60–80 °C) for VIII and X (colourless crystals); petroleum ether (40–60 $^{\circ}$ C) for IX (colourless crystals); petroleum ether $(80-100 \,^{\circ}\text{C})$ for XIII (colourless crystals) and XIV (pale vellow crystals); EtOH for XI (colourless crystals).

Results and discussion

In the present study, the reactions of dodecanoyl isothiocyanate (I) with different nucleophiles were investigated to obtain the target annulated heterocycles of known biological activity. Hence, the interaction of equimolar quantities of I with anthranilic acid in a dry acetonitrile afforded a mixture of 2-(3dodecanoylthioureido)benzoic acid (II) and N-(4-oxo-4H-3,1-benzothiazin-2-yl)dodecanamide (III). Heating of the thiourea derivative II in Ac₂O afforded 3dodecanoyl-2-thioxo-2,3-dihydroquinazolin-4(1H)one (IV) (Fig. 1). Further heating of compound IV in

Fig. 1. Synthesis of compounds II-VII. Reaction conditions: i) MeCN, reflux; ii) Ac₂O, reflux, 1 h; iii) Ac₂O; iv) Ac₂O, reflux, 3 h; v) butan-1-ol, triethylamine, reflux.

Ac₂O afforded 3-acetyl-2-thioxo-2,3-dihydroquinazolin-4(1*H*)-one (*V*) with a good yield. In addition, 2thioxo-2,3-dihydroquinazolin-4(1*H*)-one (*VI*) was obtained upon the heating of compound *IV* in butan-1-ol in the presence of a catalytic amount of triethylamine. On the other hand, N-(4-oxo-4*H*-benzo[*d*][1,3]thiazin-2-yl)acetamide (*VII*) was obtained upon the heating of benzothiazine derivative *III* in Ac₂O (Fig. 1).

The structures of compounds II-VII were confirmed from their microanalytical and spectral data. The IR spectra showed the absorption frequencies for N—H, C=O, C=N and C=S groups. ¹H NMR spectra displayed signals for aliphatic and aromatic protons as well as acidic OH, NH and SH protons in the downfield region that were exchangeable with D₂O. The structure of thiazine derivative *III* was based on the relatively high absorption value of the carbonyl group at 1721 cm⁻¹ and the appearance of the fragment ion at m/z 162 in the mass spectrum corresponding to the benzothiazine moiety. Inspection of the ¹H NMR spectrum of *III* revealed the presence of two signals for NH protons exchangeable with D_2O (integration ratio of 85 : 15) integrated to one proton; this observation endorses the existence of compound III in DMSO- d_6 as an equilibrium mixture of tautomers IIIa and IIIb, respectively, in a ratio of approximately 6:1 as shown in Fig. 2. The ¹H NMR spectrum of compound VI revealed two broad singlets δ 12.66 and 12.42 exchangeable with D₂O corresponding to two NH groups. Moreover, an extra signal at δ 4.06 exchangeable with D_2O , corresponds to the SH proton. This confirms the existence of compound VIin DMSO- d_6 solution as thione-thiol tautomers VIaand VIb in the ratio of 74: 26 (see Fig. 1). The mass spectra of the synthesised compounds revealed molecular ion peaks consistent with their proposed structures. The formation of the derivatives of thiazine III and quinazoline IV obviously proceeded via the cyclisation of thiourea derivative II by removing a molecule of water. Hence, the thiol tautomer of adduct II con-

Fig. 2. Proposed mechanism for formation of compounds *II* and *III*. Reaction conditions: *i*) Ac₂O (loss of water molecule); *ii*) MeCN, reflux (loss of water molecule).

Fig. 3. Synthesis of compounds VIII–XI. Reaction conditions: i) hydrazine hydrate, butan-1-ol; ii) anthranilic acid, butan-1-ol, triethylamine; iii) ethyl carbazate, butan-1-ol, triethylamine.

tributes largely to the formation of compound III; in addition, compound IV was obtained from the thione tautomer of compound II as shown in Fig. 2.

The treatment of compound IV with hydrazine hydrate in butan-1-ol afforded a mixture of 3-undecyl-[1,2,4]triazolo[3,4-b]quinazolin-5(10H)-one (VIII), dodecanehydrazide (IX) and quinazoline VI. A similar treatment of IV with ethyl carbazate produced VI as a major product besides a minor amount of 4-dodecanoyl-1-ethoxycarbonylthiosemicarbazide (X) as depicted in Fig. 3. The heating of quinazoline IV and anthranilic acid in butan-1-ol under reflux in the presence of a few drops of triethylamine afforded 6H-quinazolino[3,2-a]quinazoline-5,12-dione (XI). The formation of the isomeric 5H-quinazolino [2,3-b]quinazoline-11,13-dione (XII) is excluded on the basis of its melting point (m.p. > 300 °C; Butler & Partridge, 1959; Shestakov et al., 2015). The reaction was accompanied by the release of gaseous H₂S, as detected by the change in colour to black of a paper soaked in lead acetate solution.

The IR spectra of compounds VIII-XI showed absorption bands corresponding to the N—H and C=O groups. The ¹H NMR spectra exhibited signals characteristic of aromatic and aliphatic protons. In addition, NH protons exchangeable with D₂O were observed in the downfield region. Inspection of the ¹H NMR spectrum of *VIII* revealed its existence as a mixture of tautomers *VIIIa* and *VIIIb* in the ratio of 43 : 57. The relatively high ratio of *VIIIb* is in agreement with the

1120

Table 1. Characterisation data of newly prepared compounds

Compound	Formula	$M_{ m r}$	$w_{ m i}({ m calc.})/\% \ w_{ m i}({ m found})/\%$			Yield	M.p.
			С	Н	Ν	%	°C
II	$\rm C_{20}H_{30}N_2O_3S$	378.53	63.46	7.99	7.40	55	102–104
III	$\mathrm{C_{20}H_{28}N_2O_2S}$	360.51	66.63 66.42	7.81 7.83 7.65	7.12 7.77 7.46	38	208 - 210
IV	$\mathrm{C_{20}H_{28}N_2O_2S}$	360.51	66.63 66.29	7.83	7.77	88	153 - 155
V	$\mathrm{C_{10}H_8N_2O_2S}$	220.25	54.53 54.61	3.66	12.72 12.43	76	228-230
VI	$C_8H_6N_2OS$	178.21	53.92 53.99	3.39 3.33	15.72 15.65	76	$289 - 290^{a}$
VII	$\mathrm{C_{10}H_8N_2O_2S}$	220.25	54.53 54.28	3.66 3.44	12.72 12.61	78	268 - 270
VIII	$\mathrm{C}_{20}\mathrm{H}_{28}\mathrm{N}_{4}\mathrm{O}$	340.46	70.56 70.24	8.29 8.37	$16.46 \\ 16.12$	41	195 - 197
IX	$\mathrm{C_{12}H_{26}N_2O}$	214.35	$67.24 \\ 66.96$	$12.23 \\ 12.42$	$13.07 \\ 12.76$	26	$104 - 106^{b}$
X	$\mathrm{C_{16}H_{31}N_{3}O_{3}S}$	345.50	$55.62 \\ 55.47$	$9.04 \\ 8.77$	$12.16 \\ 11.87$	18	54 - 56
XI	$\mathrm{C_{15}H_9N_3O_2}$	263.25	$68.44 \\ 68.53$	$3.45 \\ 3.27$	$15.96 \\ 15.82$	72	$258 - 260^{c}$
XIII	$\mathrm{C_{19}H_{30}N_2O_2S}$	350.52	$65.10 \\ 64.84$	$8.63 \\ 8.41$	$7.99 \\ 7.68$	76	145–147
XIV	$\mathrm{C_{19}H_{28}N_2OS}$	332.50	$68.63 \\ 68.36$	$8.49 \\ 8.23$	$\begin{array}{c} 8.42\\ 8.11\end{array}$	78	108–110

a) Leistner et al. (1990) reported m.p. of 304–305 °C; b) El-Sayed and Khairou (2015) reported m.p. of 115–117 °C; c) Butler and Partridge (1959) reported m.p. of 255–255.5 °C.

Fig. 4. Synthesis of compounds XIII–XIV. Reaction conditions: i) 2-aminophenol, MeCN; ii) 2-aminothiophenol, MeCN (loss of hydrogen sulfide molecule).

aromatic structure of the triazole ring. The ¹H NMR spectrum of X revealed an extra signal at δ 3.28 corresponding to the SH proton. This suggests the presence of X in the DMSO- d_6 solution as an equilibrium mixture of thione-thiol tautomers Xa and Xb in the ratio of 46:54. The relatively high ratio of thiol from Xb may be attributed to its stabilisation by the H-bond as shown in Fig. 3. The extra signal at δ 152.91 in the $^{13}\mathrm{C}$ NMR spectrum corresponding to the C—N group is also supportive of thione-thiol tautomers Xa and Xb. Moreover, the mass spectral data of compounds VIII-XI are in accord with their proposed structures as they show the molecular ion peaks as well as some important fragmentation peaks. The formation of VIII and XI can be rationalised on the basis of the cyclocondensation of IV with hydrazine molecule or anthranilic acid, followed by the expulsion of dodecanoic acid with the latter. The formation of compound Xis achieved by pyrimidine-ring cleavage under the reaction conditions (reagent and the high-boiling point

butan-1-ol with triethylamine) (Okuda et al., 2010).

The reaction of I with 2-aminophenol and 2aminothiophenol was also studied (Uher et al., 1983). 1-Dodecanoyl-3-(2-hydroxyphenyl)thiourea (XIII) was obtained upon the treatment of I with 2-aminophenol. On the other hand, N-(benzo[d]thiazol-2yl)dodecanamide (XIV) was obtained when I was allowed to react with 2-aminothiophenol (Fig. 4). The formation of compound XIV was accompanied by the release of gaseous H₂S. The structures of XIII and XIV were assigned on the basis of the spectral data.

Conclusions

Dodecanoyl isothiocyanate was used in the synthesis of 3,1-benzothiazine, quinazoline, benzothiazole and thiourea derivatives bearing the dodecanoyl (lauroyl) group. The lipophilic character of this group (a hydrocarbon moiety) favours the permeation of these compounds through lipid barriers in the fungal cell

 Table 2. Spectral data of newly prepared compounds

Compound	Spectral data
II	IR, $\tilde{\nu}$ /cm ⁻¹ : 3413–2854 (br, O—H), 3242, 3138 (N—H), 3088, 3025 (H—C _{aryl}), 2921, 2852 (H—C _{alkyl}), 1713, 1683 (C=O), 1169 (C=S), 745 (δ_{4H} , benzene ring)
	¹ H NMR (DMSO- d_6), δ : 0.85 (t, 3H, CH ₃ , $J = 6.0$ Hz, $J = 6.9$ Hz), 1.16–1.25 (m, 16H, CH ₃ (C <u>H</u> ₂) ₈ CH ₂), 1.54–1.56 (m, 2H, (CH ₂) ₈ C <u>H</u> ₂ C), 2.44 (t, 2H, CH ₂ CO, $J = 7.5$ Hz, $J = 7.2$ Hz), 7.34 (t, 1H, $J = 7.5$ Hz, $J = 7.8$ Hz), 7.58 (t, 1H, $J = 8.1$ Hz, $J = 7.8$ Hz), 7.89 (dd, 1H, $J = 2.1$ Hz, $J = 1.8$ Hz), 8.09 (d, 1H, $J = 7.8$ Hz), 11.33, 12.94 (c) $J = 0.0$
	(2brs, each 2H, 2 × NH, exchangeable), 13.30 (brs, 1H, OH, exchangeable) 13 C NMR (DMSO- d_6), δ : 14.39, 22.53, 24.75, 28.86, 29.13, 29.15, 29.31, 29.42, 29.46, 31.73, 36.15, 125.07, 126.54, 127.82, 130.78, 132.27, 138.41, 167.46 (C=O), 174.92 (C=O), 179.88 (C=S)
	MS, m/z ($I_r/\%$): 378 (0) (M ⁺), 371 (0.4), 336 (0.3), 254 (0.7), 241(0.4), 198 (0.6), 183 (0.3), 155 (0.2), 138 (0.7), 128 (2), 114 (2.9), 72 (26), 59 (100)
III	IR, $\tilde{\nu}/cm^{-1}$: 3162 (N—H), 3068 (H—C _{aryl}), 2977, 2925, (H—C _{alkyl}), 1721 (C=O), 1630 (C=N), 757 (δ_{4H} , benzene ring)
	¹ H NMR (DMSO- d_6), δ : 0.85 (t, 3H, CH ₃ , $J = 6.5$ Hz), 1.18–1.24 (m, 16H, CH ₃ (C <u>H₂)</u> ₈ CH ₂), 1.56–1.57 (m, 2H, (CH ₂)_8C <u>H₂</u> C), 2.44 (t, 2H, CH ₂ CO, $J = 7.4$ Hz), 7.43 (t, 1H, $J = 7.8$ Hz, $J = 7.2$ Hz), 7.68 (t, 1H, $J = 7.2$ Hz, $J = 7.8$ Hz), 7.86 (d, 1H, $J = 7.8$ Hz), 7.91 (d, 1H, $J = 8.4$ Hz); for <i>IIIa</i> : 9.54 (brs, 1H, NH, exchangeable); for <i>IIIb</i> : 8.88 (brs, 1H, NH, exchangeable)
	$ \begin{array}{l} \text{MS, } m/z \; (I_{\text{r}}/\%): \; 360\; (0)\; (\text{M}^+), \; 267\; (93)\; ([\text{M}-\text{C}_6\text{H}_{13}]^+), \; 261\; (22)\; ([\text{M}-\text{C}_7\text{H}_{15}]^+), \; 247\; (4)\; ([\text{M}-\text{C}_8\text{H}_{17}]^+), \; 233\; (21)\; ([\text{M}-\text{C}_9\text{H}_{19}]^+), \; 219\; (27)\; ([\text{M}-\text{C}_{10}\text{H}_{21}]^+), \; 177\; (36)\; ([\text{M}-\text{C}_{11}\text{H}_{23}\text{CO}]^+), \; 162\; (100)\; ([\text{M}-\text{C}_{11}\text{H}_{23}\text{CONH}]^+), \\ 146\; (28)\; 134\; (26)\; 120\; (56)\; 90\; (49)\; 77\; (31) \end{array} $
IV	IR, $\tilde{\nu}/cm^{-1}$: 3228, 3197 (N—H), 3059, 3010 (H—C _{aryl}), 2918, 2848 (H—C _{alkyl}), 1701, (C=O), 752 (δ_{4H} , benzene ring)
	¹ H NMR (DMSO- d_6), δ : 0.84 (t, 3H, CH ₃ , $J = 5.4$ Hz, $J = 6.9$ Hz), 1.14–1.23 (m, 16H, CH ₃ (CH ₂) ₈ CH ₂), 1.54 (t, 2H, (CH ₂) ₈ CH ₂ CH ₂ , $J = 6.3$ Hz), 2.42 (t, 2H, CH ₂ CO, $J = 7.5$ Hz, $J = 7.2$ Hz), 7.51 (t, 1H, $J = 7.2$ Hz, $J = 7.5$ Hz), 7.59 (d, 1H, $J = 7.8$ Hz), 7.68 (t, 1H, $J = 7.8$ Hz, $J = 7.5$ Hz), 8.04 (d, 1H, $J = 7.8$ Hz), 11.81 (brs, 1H, NH, exchangeable)
	¹³ C NMR (DMSO- d_6), δ : 14.38, 22.52, 24.74, 28.83, 29.07, 29.15, 29.25, 29.41, 31.72, 35.82, 119.85, 124.78, 127.44, 129.31, 136.79, 148.08, 153.39 (C=O), 174.23 (C=O), 185.03 (C=S) MS. m/z ($I_r/\%$): 360 (44) (M ⁺), 345 (4) ([M ⁻ - CH ₃] ⁺), 331 (28) ([M ⁺ - C ₂ H ₅] ⁺), 317 (7) ([M ⁻ - C ₃ H ₇] ⁺), 303
	(6) $([M - C_4H_9]^+)$, 289 (11) $([M - C_5H_{11}]^+)$, 275 (8) $([M - C_6H_{13}]^+)$, 261 (4) $([M - C_7H_{15}]^+)$, 247 (12) $([M - C_8H_{17}]^+)$, 233 (46) $([M - C_9H_{19}]^+)$, 220 (68) $([M - C_{10}H_{20}]^+)$, 205 (14) $([M - C_{11}H_{23}]^+)$, 192 (33), 177 (100), 145 (35), 120 (90), 90 (46), 57 (98)
V	IR, $\tilde{\nu}/\text{cm}^{-1}$: 3211, 3197 (N—H), 3062 H—C _{aryl}), 2918 (H—C _{alkyl}), 1700, 1657 (C—O), 756 ($\delta_{4\text{H}}$, benzene ring) ¹ H NMR (DMSO- d_6), δ :2.14 (s, 3H, CH ₃ CO), 7.52 (t, 1H, $J = 7.2$ Hz, $J = 7.8$ Hz), 7.59 (d, 1H, $J = 8.4$ Hz), 7.87 (t, 1H, $J = 7.5$ Hz, $J = 8.4$ Hz), 8.04 (d, 1H, $J = 6.3$ Hz), 11.88 (brs, 1H, NH, exchangeable) MS, m/z ($I_r/\%$): 220 (40) (M ⁺), 221 (7) ([M + 1] ⁺), 205 (9) ([M - CH ₃] ⁺), 192 (23) ([M - CO] ⁺), 177 (100)
VI	$ ([{\rm M}-{\rm CHCO}]^+), 162 \ (93), 159 \ (55), 145 \ (31), 120 \ (64), 90 \ (42), 55 \ (88) \\ {\rm IR}, \ \tilde{\nu}/{\rm cm}^{-1}: 3218, \ 3122 \ ({\rm N-H}), \ 3078, \ 3035 \ ({\rm H-C}_{\rm aryl}), \ 2944 \ ({\rm H-C}_{\rm alkyl}), \ 1690, \ ({\rm C=O}), \ 1165 \ ({\rm C=S}), \ 761 \ (\delta_{4{\rm H}}, {\rm C}_{\rm aryl}), \ 1000 \ ({\rm C=O}), \ 1165 \ ({\rm C=S}), \ 761 \ (\delta_{4{\rm H}}, {\rm C}_{\rm aryl}), \ 1000 \ ({\rm C=O}), \ 1165 \ ({\rm C=S}), \ 761 \ (\delta_{4{\rm H}}, {\rm C}_{\rm aryl}), \ 1000 \ ({\rm C=O}), \ 1165 \ ({\rm C=S}), \ 761 \ (\delta_{4{\rm H}}, {\rm C}_{\rm aryl}), \ 1000 \ ({\rm C=O}), \ 1165 \ ({\rm C=S}), \ 761 \ (\delta_{4{\rm H}}, {\rm C}_{\rm aryl}), \ 1000 \ ({\rm C=O}), \ 1165 \ ({\rm C=S}), \ 761 \ (\delta_{4{\rm H}}, {\rm C}_{\rm aryl}), \ 1000 \ ({\rm C=O}), \ 1165 \ ({\rm C=S}), \ 761 \ (\delta_{4{\rm H}}, {\rm C}_{\rm aryl}), \ 1000 \ ({\rm C=O}), \ 1165 \ ({\rm C=S}), \ 761 \ (\delta_{4{\rm H}}, {\rm C}_{\rm aryl}), \ 1000 \ ({\rm C=O}), \ 1165 \ ({\rm C=S}), \ 1000 \ ({\rm C=O}), \ 1165 \ ({\rm C=S}), \ 1000 \ ({\rm C=O}), \ 10$
	benzene ring) ¹ H NMR (DMSO- d_6), δ : 4.06 (brs, 1H, SH, exchangeable); 7.51 (t, 1H, $J = 7.2$ Hz, $J = 7.5$ Hz), 7.36 (d, 1H, $J = 8.1$ Hz), 7.72 (t, 1H, $J = 8.4$ Hz, $J = 7.5$ Hz), 7.92 (d, 1H, $J = 7.8$ Hz), 12.42, 12.66 (2brs, each 2H, $2 \times NH$, exchangeable)
VII	$ \begin{array}{l} \text{MS, } m/z \ (\text{I}_{r}/\%): 178 \ (12) \ (\text{M}^{+}), 177 \ (100) \ ([\text{M} - \text{H}]^{+}), 145 \ (43) \ ([\text{M} - \text{SH}]^{+}), 118 \ (23), 117 \ (29), 104 \ (86), 88 \ (33) \\ \text{IR, } \tilde{\nu}/\text{cm}^{-1}: 3163 \ (\text{N}-\text{H}), 3063, 3005 \ (\text{H}-\text{C}_{arvl}), 2776 \ (\text{H}-\text{C}_{alkvl}), 1657 \ (\text{C}-\text{O}), 1582 \ (\text{C}-\text{N}), 765 \ (\delta_{4\text{H}}, \text{benzene}) \\ \end{array} $
	ring) ¹ H NMR (DMSO- d_6), δ : 2.14 (s, 3H, CH ₃), 7.51 (t, 1H, $J = 7.2$ Hz, $J = 7.8$ Hz), 7.59 (d, 1H, $J = 7.8$ Hz), 7.87 (t,
	1H, $J = 7.2$ Hz, $J = 7.8$ Hz), 8.04 (d, 1H, $J = 8.4$ Hz), 11.83 (brs, 1H, NH, exchangeable) MS, m/z ($I_r/\%$): 220 (97) (M ⁺), 221 (10) ([M ⁺ + 1] ⁺), 222 (4) ([M ⁺ + 2] ⁺), 205 (8), 192 (6), 178 (100) ([M ⁻ - CH ₂ CO] ⁺), 177 (11) ([M ⁻ - CH ₃ CO] ⁺), 162 (97) ([M ⁻ - CH ₃ CONH] ⁺), 150 (84), 145 (59), 120 (94), 90 (78), 63 (26)
VIII	(30) IR, $\tilde{\nu}/\text{cm}^{-1}$: 3384, 3281 (N—H), 3046 (H—C _{aryl}), 2951, 2920, 2851 (H—C _{alkyl}) 1714 (C=O), 1670, 1652 (C=N), 756 (δ_{444} benzene ring)
	¹ H NMR (DMSO- d_6), δ : 0.84 (t, 3H, CH ₃ , $J = 7.2$ Hz), 1.22–1.27 (m, 16H, CH ₃ (CH ₂) ₈ CH ₂), 1.57–1.60 (m, 2H, (CH ₂) ₈ CH ₂ CH ₂), 2.34 (t, 2H, CH ₂ CO, $J = 7.5$ Hz), 7.10 (t, 1H, $J = 7.8$ Hz, $J = 6.9$ Hz), 7.19 (d, 1H, $J = 8.7$ Hz), 7.58 (t, 1H, $J = 8.4$ Hz, $J = 7.2$ Hz), 7.86 (d, 1H, $J = 8.1$ Hz), for tautomer <i>VIIIa</i> : 12.32 (brs, 1H, NH, exchangeable); for tautomer <i>VIIIb</i> : 10.46 (brs, 1H, NH, exchangeable).
	$^{13}\mathrm{C}$ NMR (DMSO- d_6), $\delta:$ 14.40, 22.54, 24.80, 29.08, 29.18, 29.29, 29.38, 29.47, 29.48, 31.75, 33.80, 117.13, 121.80, 124.42, 129.94, 134.95, 150.85, 152.85 (C=N), 159.87 (C=N), 172.82 (C=S)
	$ \begin{array}{l} \mathrm{MS,} \ m/z \ (\mathrm{I_r}/\%): \ 340 \ (47) \ (\mathrm{M^+}), \ 341 \ (11) \ ([\mathrm{M}+1]^+), \ 325 \ (4) \ ([\mathrm{M}-\mathrm{CH_3}]^+), \ 311 \ (17) \ ([\mathrm{M}-\mathrm{C_2H_5}]^+), \ 297 \ (17) \ ([\mathrm{M}-\mathrm{C_3H_7}]^+), \ 283 \ (11) \ ([\mathrm{M}-\mathrm{C_4H_9}]^+), \ 269 \ (37) \ ([\mathrm{M}-\mathrm{C_5H_{11}}]^+), \ 255 \ (77) \ ([\mathrm{M}-\mathrm{C_6H_{13}}]^+), \ 241 \ (16) \ ([\mathrm{M}-\mathrm{C_7H_{15}}]^+), \ 227 \ (21) \ ([\mathrm{M}-\mathrm{C_8H_{17}}]^+), \ 213 \ (100) \ ([\mathrm{M}-\mathrm{C_9H_{19}}]^+), \ 187 \ (7), \ 145 \ (39), \ 130 \ (13), \ 76 \ (17) \ (1$
IX	IR, $\tilde{\nu}/cm^{-1}$: 3316, 3292, 3179 (N—H), 2957, 2920, 2850 (H—C _{alkyl}) 1698 (C=O) ¹ H NMR (DMSO- d_6), δ : 0.86 (t, 3H, CH ₃ , $J = 6.3$ Hz, $J = 6.9$ Hz), 1.24–1.27 (m, 16H, CH ₃ (CH ₂) ₈ CH ₂), 1.47–1.49 (m, 2H, (CH ₂) ₈ CH ₂ CH ₂), 1.97 (t, 2H, CH ₂ CO, $J = 7.2$ Hz, $J = 7.8$ Hz), 4.28 (brs, 2H, NH ₂ , exchangeable), 8.84
	(brs, 1H, NH, exchangeable) MS, m/z (I_r /%): 214 (48) (M ⁺), 200 (18), 183 (100), 176 (73), 165 (23), 145 (56), 123 (87)

Table 2. (continued)

Compound	Spectral data
X	IR, $\tilde{\nu}/cm^{-1}$: 3328, 3288, 3243 (N—H), 2954, 2921, 2851 (H—C _{alkyl}), 1760 (C=O _{ester}), 1692 (C=O _{amide}), 1244 (C=S)
	^(C-D) ¹ H NMR (DMSO-d ₆), δ : 0.86 (t, 3H, CH ₃ , $J = 5.7$ Hz, $J = 6.9$ Hz), 1.13 (t, 3H, CH ₃ CH ₂ O, $J = 5.4$ Hz, $J = 6.9$
	Hz), 1.19–1.24 (m, 16H, $CH_3(CH_2)_8CH_2$), 1.47–1.49 (m, 2H, $(CH_2)_8CH_2CH_2$), 2.06 (t, 2H, CH_2CO , $J = 7.8$ Hz,
	J = 7.5 Hz), 3.28 (brs, 1H, SH, exchangeable), 4.03 (q, 2H, CH ₃ CH ₂ O, $J = 7.8$ Hz, $J = 6.9$ Hz, $J = 7.5$ Hz), 8.86,
	9.49, 13.10 (brs, 3H, $3 \times NH$, exchangeable)
	¹³ C NMR (DMSO- d_6), δ : 14.38, 14.95, 22.54, 25.37, 25.43, 26.68, 28.67, 28.93, 28.96, 29.43, 31.73, 33.52, 60.79,
	152.91 (C=N), 156.68 (C=O), 166.35 (C=O), 172.28 (C=S)
	MS, m/z ($I_r/\%$): 345 (2) (M ⁺), 302 (7) ([M ⁻ - C ₃ H ₇] ⁺), 241 (22) (C ₁₁ H ₂₃ CONCS ⁺), 183 (100) (C ₁₁ H ₂₃ CO ⁺), 146 (97) 104 (96) 57 (94)
ΥI	140 (37), 104 (80), 37 (94) IR $\tilde{\nu}/cm^{-1}$, 2147 (N H) 2081 2043 (H C) 1713 1706 (C—O) 1628 1500 (C—N) 756 (δ_{rrr} benzene ring)
AI	¹ H NMR (DMSO- d_e) δ : 7 41 (t 1H $J = 7.2$ Hz $J = 7.5$ Hz) 7 48 (d 1H $J = 8.1$ Hz) 7.58 (t 1H $J = 7.2$ Hz
	J = 7.5 Hz), 7.78–7.87 (m, 2H, H _{arrd}), 8.19 (d, 2H, $J = 8.1$ Hz), 9.20 (d, 1H, $J = 9.0$ Hz), 12.30 (brs. 1H, NH,
	exchangeable)
	$MS, m/z (I_r/\%): 263 (3) (M^+), 235 (23), ([M^+ - CO]^+), 173 (16), 118 (58), 104 (86), 88 (33), 67 (79), 51 (100)$
XIII	$\mathrm{IR},\tilde{\nu}/\mathrm{cm^{-1}}:3432~(\mathrm{O-H}),3377,3213,3181~(\mathrm{N-H}),3045~(\mathrm{H-C_{aryl}}),2953,2920,2850~(\mathrm{H-C_{alkyl}}),1665~(\mathrm{C=O}),1000~\mathrm{C}$
	1185 (C=S)
	¹ H NMR (DMSO- d_6), δ : 0.85 (t, 3H, CH ₃ , $J = 6.0$ Hz), 1.20–1.25 (m, 16H, CH ₃ (C <u>H₂)</u> ₈ CH ₂), 1.53–1.56 (m, 2H, CH ₂) δ (t, 2H, C
	$(CH_2)_8CH_2CH_2)$, 2.44 (t, 2H, CH ₂ CO, $J = 7.8$ Hz), 6.80 (t, 1H, $J = 7.2$ Hz, $J = 8.7$ Hz), 6.91 (d, 1H, $J = 7.8$ Hz), 7.04 (t, 1H, $L = 8.1$ Hz, $L = 7.5$ Hz) 8.50 (d, 1H, $L = 7.8$ Hz), 10.10 and 11.07 (2hrs each 2H, 2) × NH
	ΠZ), 7.04 (t, ΠI , $J = 6.1 \Pi Z$, $J = 7.5 \Pi Z$), 8.30 (d, ΠI , $J = 7.8 \Pi Z$), 10.12 and 11.27 (2018, each 2 Π , 2 × N Π , exchangeable) 12.74 (brs. 1H OH exchangeable)
	MS. m/z $(I_x/\%)$: 350 (1.5) (M ⁺), 333 (0.7), 317 (24), 151 (15), 134 (100), 109 (23), 67 (33)
XIV	IR, $\tilde{\nu}/cm^{-1}$: 3254, 3211 (N-H), 3052 (H-C _{arvl}), 2918, 2851 (H-C _{alkvl}), 1695 (C=O), 754 (δ_{4H} , benzene ring)
	¹ H NMR (DMSO- d_6), δ : 0.84 (t, 3H, CH ₃ , $J = 6.9$ Hz, $J = 6.3$ Hz), 1.23–1.27 (m, 16H, CH ₃ (CH ₂) ₈ CH ₂), 1.59–1.64
	(m, 2H, (CH ₂) ₈ C <u>H₂</u> CH ₂), 2.45 (t, 2H, CH ₂ CO, $J = 7.2$ Hz), 7.29 (t, 1H, $J = 7.2$ Hz), 7.42 (t, 1H, $J = 6.9$ Hz),
	7.72 (d, 1H, $J = 7.8$ Hz), 7.95 (d, 1H, $J = 7.5$ Hz), 12.27 (brs, 1H, NH, exchangeable)
	13 C NMR (DMSO- d_6), δ : 14.38, 22.53, 24.95, 28.93, 29.11, 29.15, 29.29, 29.41, 29.43, 31.71, 35.55, 120.86, 122.07,
	123.84, 126.47, 131.85, 148.97, 158.33(C=N), 172.75 (C=S)
	$MS, m/z$ ($I_r/70$): 332 (0) (MI^+), 311 (34), 258 (43), 234 (60), 167 (43), 148 (37), 63 (46), 51 (100)

membrane, thereby appreciably altering the antimicrobial properties of the attached heterocycles (Hemdan et al., 2010). Moreover, as the chain-length of the acyl group is increased, the biological activity could be improved (Gažák et al., 2010; Hadj Salem et al., 2010).

References

- Alagarsamy, V., & Pathak, U. S. (2007). Synthesis and antihypertensive activity of novel 3-benzyl-2-substituted-3H-[1,2,4]triazolo[5,1-b]quinazolin-9-ones. Bioorganic & Medicinal Chemistry, 15, 3457–3462. DOI: 10.1016/j.bmc.2007.03. 007.
- Alagarsamy, V., Murugesan, S., Dhanabal, K., Murugan, M., & de Clercq, E. (2007). AntiHIV, antibacterial and antifungal activities of some novel 2-methyl-3-(substituted methylamino)-(3H)-quinazolin-4-ones. Indian Journal of Pharmaceutical Sciences, 69, 304–307. DOI: 10.4103/0250-474x.33167.
- Balzarini, J., Van Daele, I., Negri, A., Solaroli, N., Karlsson, A., Liekens, S., Gago, F., & Van Calenbergh, S. (2009). Human mitochondrial thymidine kinase is selectively inhibited by 3'-thiourea derivatives of β-thymidine: Identification of residues crucial for both inhibition and catalytic activity. *Molecular Pharmacology*, 75, 1127–1136. DOI: 10.1124/mol.108.053785.
- Barluenga, J., Tomás, M., Ballesteros, A., & López, L. A. (1994). A simple approach to pyrimidine and quinazoline derivatives by [4+2] cycloaddition of 1,3-diazadienes and enamines. *Heterocycles*, 37, 1109–1120. DOI: 10.3987/com-

93-s123.

- Bukvić Krajačić, M., Perić, M., Smith, K. S., Ivezić Schönfeld, Z., Žiher, D., Fajdetić, A., Kujundžić, N., Schönfeld, W., Landek, G., Padovan, J., Jelić, D., Ager, A., Milhous, W. K., Ellis, W., Spaventi, R., & Ohrt, C. (2011). Synthesis, structure– activity relationship, and antimalarial activity of ureas and thioureas of 15-membered azalides. *Journal of Medicinal Chemistry*, 54, 3595–3605. DOI: 10.1021/jm2001585.
- Butin, A. V., Tsiunchik, F. A., Abaev, V. T., Gutnov, A. V., & Cheshkov, D. A. (2009). Aryl ring migration reaction in the synthesis of 2,4-diaryl-4H-3,1-benzothiazines. Synthesis, 2009, 2616–2626. DOI: 10.1055/s-0029-1217399.
- Butler, K., & Partridge, M. W. (1959). Cyclic amidines. Part VIII. Derivatives of 12H-6:7:12a-triazabenz[a]anthracene and 5aH-5:6:11a-triazanaphthacene. Journal of Chemical Society, 1959, 1512–1521.
- Canon, K. K. (1984). Japan Patent No. JP59197051. Tokyo, Japan: Japan Patent Office.
- Chandrika, P. M., Yakaiah, T., Rao, A. R. R., Narsaiah, B., Reddy, N. C., Sridhar, V., & Rao, J. V. (2008). Synthesis of novel 4,6-disubstituted quinazoline derivatives, their antiinflammatory and anti-cancer activity (cytotoxic) against U937 leukemia cell lines. European Journal of Medicinal Chemistry, 43, 846–852. DOI: 10.1016/j.ejmech.2007.06.010.
- Cohen, E., Klarberg, B., & Vaughan, J. R., Jr. (1960). Quinazolinone sulfonamides. A new class of diuretic agents. Journal of the American Chemical Society, 82, 2731–2735. DOI: 10.1021/ja01496a020.
- Ding, Q., Liu, X., Yu, J., Zhang, Q., Wang, D., Cao, B., & Peng, Y. (2012). Access to functionalized 4-benzylidene-4*H*benzo[d][1,3]thiazines via tandem addition-cyclization/crosscoupling reactions. *Tetrahedron*, 68, 3937–3941. DOI: 10. 1016/j.tet.2012.03.098.

- Ding, Q., Lin, Y., Ding, G., Liao, F., Sang, X., & Peng, Y. Y. (2013). New simple synthesis of ring-fused 4-alkyl-4H-3,1-benzothiazine-2-thiones: Direct formation from carbon disulfide and (E)-3-(2-aminoaryl)acrylates or (E)-3-(2-aminoaryl)acrylonitriles. Beilstein Journal of Organic Chemistry, 9, 460–466. DOI: 10.3762/bjoc.9.49.
- El-Bordany, E. A. (2012). Addition-cyclization of lauroyl isothiocyanate with hydrazine derivatives as a source of 1,2,4triazoles. *Middle-East Journal of Scientific Research*, 11, 266–271.
- El-Hiti, G. A., Hussain, A., Hegazy, A. S., & Alotaibi, M. H. (2011). Thioxoquinazolines: synthesis, reactions and biological activities. *Journal of Sulfur Chemistry*, 32, 361–395. DOI: 10.1080/17415993.2011.601417.
- El-Sayed, R., & Khairou, K. S. (2015). Propoxylated fatty thiazole, pyrazole, triazole, and pyrrole derivatives with antimicrobial and surface activity. *Journal of Surfactants and Detergents*, 18, 661–673. DOI: 10.1007/s11743-015-1684-8.
- Fahmy, A. F., Ali, N., Abdelhamid, H., Shiba, S., & Hemdan, M. M. (2010). The utility of *p*-*N*-succinimidobenzoyl isothiocyanate in synthesis of benzoxazole, quinazoline, pyrimidine, 1,2,4-triazoline, 1,3-thiazolidine, and thiourea derivatives. *Phosphorus, Sulfur, and Silicon and the Related Elements*, 185, 1536–1542. DOI: 10.1080/10426500903127557.
- Gažák, R., Purchartová, K., Marhol, P., Živná, L., Sedmera, P., Valentová, K., Kato, N., Matsumura, H., Kaihatsu, K., & Křen, V. (2010). Antioxidant and antiviral activities of silybin fatty acid conjugates. *European Journal of Medicinal Chemistry*, 45, 1059–1067. DOI: 10.1016/j.ejmech.2009.11. 056.
- Ghorab, M. M., Ismail, Z. H., Abdalla, M., & Radwan, A. A. (2013). Synthesis, antimicrobial evaluation and molecular modelling of novel sulfonamides carrying a biologically active quinazoline nucleus. Archives of Pharmacal Research, 36, 660–670. DOI: 10.1007/s12272-013-0094-6.
- Gimbert, C., & Vallribera, A. (2009). A straightforward synthesis of benzothiazines. Organic Letters, 11, 269–271. DOI: 10.1021/ol802346r.
- Grover, G., & Kini, S. G. (2006). Synthesis and evaluation of new quinazolone derivatives of nalidixic acid as potential antibacterial and antifungal agents. *European Journal of Medicinal Chemistry*, 41, 256–262. DOI: 10.1016/j.ejmech.2005.09.002.
- Gütschow, M., Schlenk, M., Gäb, J., Paskaleva, M., Alnouri, M. W., Scolari, S., Iqbal, J., & Müller, C. E. (2012). Benzothiazinones: A novel class of adenosine receptor antagonists structurally unrelated to xanthine and adenine derivatives. *Journal of Medicinal Chemistry*, 55, 3331–3341. DOI: 10.1021/jm300029s.
- Hadj Salem, J., Humeau, C., Chevalot, I., Harscoat-Schiavo, C., Vanderesse, R., Blanchard, F., & Fick, M. (2010). Effect of acyl donor chain length on isoquercitrin acylation and biological activities of corresponding esters. *Process Biochemistry*, 45, 382–389. DOI: 10.1016/j.procbio.2009.10.012.
- Hayao, S., Havera, H. J., Strycker, W. G., Leipzig, T. J., Kulp, R. A., & Hartzler, H. E. (1965). New sedative and hypotensive 3-substituted 2,4(1H,3H)-quinazolinediones. Journal of Medicinal Chemistry, 8, 807–811. DOI: 10.1021/jm00330a 017.
- Hemdan, M. M., Fahmy, A. F., Ali, N. F., Hegazi, E., & Abd-Elhaleem, A. (2008). Synthesis of some new heterocycles derived from phenylacetyl isothiocyanate. *Chinese Journal of Chemistry*, 25, 388–391. DOI: 10.1002/cjoc.200890074.
- Hemdan, M. M. (2010). Synthesis and antimicrobial activities of some heterocyclic systems from 2-furoyl isothiocyanate. *Phosphorus, Sulfur, and Silicon and the Related Elements*, 185, 620–627. DOI: 10.1080/10426500902893209.

- Hemdan, M. M., Fahmy, A. F., & El-Sayed, A. A. (2010). Synthesis and antimicrobial study of 1,2,4-triazole, quinazoline and benzothiazole derivatives from 1-naphthoylisothiocyanate. Journal of Chemical Research, 34, 219–221. DOI: 10.3184/030823410x12707543946812.
- Hemdan, M. M., Fahmy, A. F. M., Aly, N. F., Hegazi, I. A., & El-Sayed, A. A. (2012). Utility of phthalimidoacyl isothiocyanate in synthesis of quinazolines, benzoxazoles, benzimidazoles, 1,2,4-triazoles, and oxatriazepines. *Phosphorus, Sulfur, and Silicon and the Related Elements*, 187, 181–189. DOI: 10.1080/10426507.2011.597804.
- Hemdan, M. M., & El-Sayed, A. A. (2015). Synthesis of some new heterocycles derived from novel 2-(1,3-dioxisoindolin-2-yl)benzoyl isothiocyanate. *Journal of Heterocyclic Chemistry.* DOI: 10.1002/jhet.2287. (in press)
- Hemdan, M. M., & Abd El-Mawgoude, H. K. (2015a). Uses of 1-(3-cyano-4,5,6,7-tetrahydrobenzo[b]-thiophen-2-yl)-3-dodecanoylthiourea as a building block in the synthesis of fused pyrimidine and thiazine systems. *Chemical and Pharmaceutical Bulletin*, 63, 450–456. DOI: 10.1248/cpb.c15-00047.
- Hemdan, M. M., & Abd El-Mawgoude, H. K. (2015b). Synthesis and antimicrobial evaluation of thieno[2,3-d]-pyrimidine, thieno[2',3':4,5]pyrimido[1,2-a][1,3,5]triazine, thieno[2,3-d]-1,3-thiazine and 1,2,4-triazole systems. Chemical and Pharmaceutical Bulletin, 63, 812–818. DOI: 10.1248/cpb.c15-00463.
- Khalil, A. A., Abdel Hamide, S. G., Al-Obaid, A. M., & El-Subbagh, H. I. (2003). Substituted quinazolines, part 2. Synthesis and in-vitro anticancer evaluation of new 2-substituted mercapto-3*H*-quinazoline analogs. Archiv der Pharmazie, 336, 95–103. DOI: 10.1002/ardp.200390011.
- Kidwai, M., Kukreja, S., Rastogi, S., & Singhal, K. (2007). Microwave accelerated multicomponent synthesis for a novel scaffold of monastrol analogues. *Letters in Organic Chemistry*, 4, 357–361. DOI: 10.2174/157017807781212085.
- Laddha, S. S., & Bhatnagar, S. P. (2008). Rapid microwaveassisted solution phase synthesis of 6,8-disubstituted 2phenyl-3-(substituted benzothiazol-2-yl)-4-[3H] quinazolinones as novel anticonvulsants. *Phosphorus, Sulfur, and Silicon and the Related Elements, 183, 2262–2273.* DOI: 10.1080/10426500801957766.
- Leistner, S., Michael Gütschow, M., & Stach, J. (1990). Mehrcyclische Azine mit Heteroatomen in 1- und 3-Stellung, 25. Mitt.: 2-Amino-4-oxo-4H-3,1-benzothiazine: Darstellung, Dimroth-Umlagerung zu 4-Oxo-2-thioxo-1,2,3,4-tetrahydrochinazolinen und MS/MS-Fragmentierung. Archiv der Pharmazie, 323, 857–862. DOI: 10.1002/ardp.19903231009. (in German)
- Maggio, B., Daidone, G., Raffa, D., Plescia, S., Mantione, L., Cutuli, V. M. C., Mangano, N. G., & Caruso, A. (2001). Synthesis and pharmacological study of ethyl 1-methyl-5-(substituted 3,4-dihydro-4-oxoquinazolin-3-yl)-1*H*-pyrazole-4-acetates. European Journal of Medicinal Chemistry, 36, 737–742. DOI: 10.1016/s0223-5234(01)01259-4.
- Mosaad, S. M., Mohammed, K. I., Ahmed, M. A., & Abdel-Hamide, S. G. (2004). Synthesis of certain new 6-iodoquin azolines as potential antitubercular agents. *Journal of Applied Sciences*, 4, 302–307 DOI: 10.3923/jas.2004.302.307.
- Obayashi, T., & Okawa, A. (2001). Japan Patent No. JP200125 3172. Tokyo, Japan: Japan Patent Office.
- Okuda, K., Zhang, Y. X., Ohtomo, H., Hirota, T., & Sasaki, K. (2010). Polycyclic N-heterocyclic compounds. Part 62: Reaction of N-(quinazolin-4-yl)amidine derivatives with hydroxylamine hydrochloride and anti-platelet aggregation activity of the products. *Chemical and Pharmaceutical Bulletin*, 58, 369–374. DOI: 10.1248/cpb.58.369.
- Raffa, D., Edler, M. C., Daidone, G., Maggio, B., Merickech, M., Plescia, S., Schillaci, D., Bai, R., & Hamel, E.

(2004). Synthesis, cytotoxicity, and inhibitory effects on tubulin polymerization of a new 3-heterocyclo substituted 2-styrylquinazolinones. *European Journal of Medicinal Chemistry*, 39, 299–304. DOI: 10.1016/j.ejmech.2003.12.009.

- Roopan, S. M., Maiyalagan, T., & Khan, F. N. (2008). Solvent-free syntheses of some quinazolin-4(3H)-ones derivatives. Canadian Journal of Chemistry, 86, 1019–1025. DOI: 10.1139/v08-149.
- Schleiss, M., Eickhoff, J., Auerochs, S., Leis, M., Abele, S., Rechter, S., Choi, Y., Anderson, Y., Scott, G., Rawlinson, W., Michel, D., Ensminger, S., Klebl, B., Stamminger, T., & Marschall, M. (2008). Protein kinase inhibitors of the quinazoline class exert anti-cytomegaloviral activity in vitro and in vivo. Antiviral Research, 79, 49–61. DOI: 10.1016/j.antiviral.2008.01.154.
- Sharma, S. K., Wu, Y., Steinbergs, N., Crowley, M. L., Hanson, A. S., Casero, R. A., Jr., & Woster, P. M. (2010). (Bis)urea and (bis)thiourea inhibitors of lysine-specific demethylase 1 as epigenetic modulators. *Journal of Medicinal Chemistry*, 53, 5197–5212. DOI: 10.1021/jm100217a.
- Shestakov, A. S., Prezent, M. A., Zlatoustovskaya, E. O., Shikhaliev, K. S., Falaleev, A. V., & Sidorenko, O. E. (2015). Alkylation of 1,3-benzothiazin-4-one 2-oxo-, 2-arylimino-, and 2-thioxo derivatives. *Chemistry of Heterocyclic Compounds*, 51, 370–376. DOI: 10.1007/s10593-015-1709-2.

- Simerpreet, & Cannoo, D. S. (2013). Synthesis and biological evaluation of 1,3-thiazines – a review. *Pharmacophore*, 4, 70– 88.
- Uher, M., Berkeš, D., Leško, J., & Floch, I. (1983). Reactions of carbonyl isothiocyanates with nucleophilic bifunctional reagents. Collection of Czechoslovak Chemical Communications, 48, 1651–1658. DOI: 10.1135/cccc19831651.
- Yadav, L. D. S., Rai, V. K., & Yadav, B. S. (2009). The first ionic liquid-promoted one-pot diastereoselective synthesis of 2,5-diamino-/2-amino-5-mercapto-1,3-thiazin-4-ones using masked amino/mercapto acids. *Tetrahedron*, 65, 1306–1315. DOI: 10.1016/j.tet.2008.12.050.
- Yavari, I., Nematpour, M., & Hossaini, Z. (2010). Ph₃Pmediated one-pot synthesis of functionalized 3,4-dihydro-2H-1,3-thiazines from N,N'-dialkylthioureas and activated acetylenes in water. Monatshefte für Chemie – Chemical Monthly, 141, 229–232. DOI: 10.1007/s00706-009-0247-y.