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Introduction

Cancer drug discovery has undergone a remarkable series 
of changes over the last decade. The first generation of 
anti-cancer drugs such as deoxyribonucleic acid (DNA)–
alkylating and cross-linking agents, anti-metabolites, 
topoisomerase inhibitors and anti-tubulin agents have 
been traditionally focused on targeting DNA processing 
and cell division and were almost all cytotoxic agents1,2. 
In an attempt to avoid unpleasant side effects (bone mar-
row suppression and gastrointestinal, cardiac, hepatic, 
and renal toxicities) associated with these conventional 
anti-cancer drugs, a new class of anti-cancer drugs known 
as molecularly targeted agents was being developed that 
work by targeting a biochemical pathway or protein that 
is unique to or upregulated in cancer cells3. Such agents 
are typically less toxic than drugs in the older classes and 
can be given for long-term oral therapy with the objective 
of treating cancer as a chronic disease. Among all these 
non-traditional (non-DNA-directed) cancer targets for 

which pharmacological intervention is feasible, there are 
none that have generated as much widespread interest, 
as have the protein tyrosine kinases (PTKs)4.

PTKs protein over expression or gene amplification, 
mutation, or rearrangement have been demonstrated 
in multiple malignancies including cancers of the head 
and neck, ovary, cervix, bladder, prostate, esophagus, 
stomach, brain, breast, endometrium, colon, and lung5,6. 
Therefore design of inhibitors toward PTKs is an attractive 
approach for development of new therapeutic agents7,8. 
Most of the tumours initially respond to PTKs but majority 
of them become resistant to the drug treatment9,10. The 
mechanism underlying acquired drug resistances are not 
well understood11.

Our interest have been focused on a special group of 
compounds containing a urea moiety in their structures, 
as urea derivatives were synthesized largely in recent 
years and have become of particular interest to chemists 
and biologists because of their wide range of biological 
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activities such as anti-convulsant activity12, colchicine-
binding antagonist13 and chemokine receptor CXCR

3
 

antagonist14. Some of urea derivatives exhibit cell growth 
inhibition on numerous cancer cell lines and are report-
ed to be potent inhibitors of the PTKs activity of a num-
ber of transmembrane growth factor receptors such as 
1, 3-disubstituted urea derivatives15,16, primaquine urea 
derivatives17, alkyl[3-(2-chloroethyl)ureido]benzene18, 
4,5-disubstituted thiazolyl urea derivatives19. Therefore, 
search for lead compound is still a continuous quest for 
the researchers working in this area.

Computational models are one of the powerful tools 
to design highly active molecules20,21 that are able to pre-
dict structures and the biological activities of anti-cancer 
compounds. Many QSAR studies22–26 were developed and 
published as screening methods for design of new chem-
ical entities (NCE′s). As shown in Figure 1, to further 
explore the structural requirements of selected series of 
benzyl urea derivatives for their anti-proliferative activity, 
two methods of QSAR, 2D-QSAR and 3D-QSAR were car-
ried out and NCEs were designed using results of QSAR 
model. 2D-QSAR and 3D-QSAR studies were performed 
using multiple linear regression (MLR) analysis27 and k-
nearest neighbour–molecular field analysis (kNN–MFA), 
respectively. The kNN–MFA methodology relies upon a 
simple distance learning approach. In this method an 
unknown member is classified according to the majority 
of its kNNs in the training set. The nearness is measured 
by an appropriate distance metrics (e.g. a molecular 
similarity measure calculated using field interactions of 
molecular structures). The standard kNN–MFA method28 
was implemented simply as follows: (i) the distances 
between an unknown object (u) and all other objects in 
the training set were calculated; (ii) the k objects were 
selected from the training set most similar to object u, 
according to the calculated distances; and (iii) the object 
u was classified with the group to which the majority of 
the k objects belong. An optimal k value is selected by 
optimization through the classification of a test set of 
samples or by leave-one-out (LOO) cross-validation. The 
variables and optimal k values were chosen using differ-
ent variable selection methods. Here we have used simu-
lated annealing (SA)29 as variable selection method.

Designed compounds were screened by two types of 
screening methods for finding of new compounds with 
anti-cancer activity: (i) Lipinski′s rule and prediction of 
activity using regression equation generated by 2D-QSAR 
studies and (ii) prediction of absorption, distribution, 
metabolism, excretion, and toxicity (ADMET) properties. 
Seven compounds were selected from results of molecu-
lar modeling studies and were synthesized. The com-
pounds were screened for examining their anti-cancer 
effect on human T-cell leukemia cell lines—Molt-4 and 
Jurkat J6, myelogenous leukemia cell line—K562 and 
breast cancer cell line—MCF 7.

Experimental part

QSAR studies
All QSAR studies were performed using V-Life Molecular 
Design Suite Software, version 3.530. Biological activ-
ity expressed in terms of IC

50
 was converted in to pIC

50
 

(pIC
50

 = log1/IC
50

). Both 2D- and 3D-QSAR models were 
generated using a training set of 20 molecules with var-
ied chemical and biological activities. Test set of four 
molecules with distributed biological activity was used to 
assess the predictive power of generated QSAR models. 
The sphere exclusion method31 was used for the selection 
of molecules in training and test sets.

Uni-Column statistics for training set and test set were 
generated to check correctness of selection criteria for 
trainings and test set molecules (Table 1). Selection of 
molecules in the training set and test is a key and impor-
tant feature of any QSAR model, therefore due care was 
taken in such a way that biological activities of all com-
pounds in test set lie within the maximum and minimum 
value range of biological activities of training set of com-
pounds (Table 1).

The maximum and minimum value in training and 
test set were compared in a way that

the maximum value of pIC1.	
50

 of test set should be less 
than or equal to maximum value of pIC

50
 of training 

set.
the minimum value of pIC2.	

50
 of test set should be higher 

than or equal to minimum value of pIC
50

 of training set.

Best
protocol

ADMET
prediction

Experimental
validation

Lipinski’s rule
& prediction of

activity

Design of
NCE’s3D QSAR

studies

2D QSAR
studiesDatabase

Figure 1.  Flowchart of screening methods for new lead compounds.
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This observation showed that test set was interpolative 
and derived within the minimum—maximum range of 
training set.

The mean and standard deviation pIC
50

 values of sets 
of training and test provide insights to relative difference 
of mean and point density distribution of two sets.

Mean in test set were found to be higher in test set 1.	
than mean in training set indicating that presence 
of relatively more active molecules as compared to 
inactive ones.
Higher standard deviation in training set indicated 2.	
that training set has widely distributed activity of 
molecules as compared to test set molecules.

The most widely used MLR analysis was used to correlate 
biological activities with physicochemical properties of 
the selected series of compounds. Molecules were opti-
mized by Merck Molecular Force Field (MMFF) energy 
minimization method. A total of 287 2D descriptors were 
computed using V-Life Molecular Design Suite Software, 
which include various physicochemical descriptors; Bau-
mann alignment-independent topological descriptors32 
and MMFF atom type count descriptor. After computa-
tion of all descriptors, invariable descriptors that have no 
variation in their values were removed. 2D-QSAR equa-
tions were generated by MLR analysis using SA variable 
selection method.

The 3D-QSAR studies were performed by kNN–MFA 
using SA variable selection method. kNN–MFA method 
requires suitable alignment of given set of molecules af-
ter optimization, alignment was carried out by template 
based alignment method (Figure 2). Molecular align-
ment was used to visualize the structural diversity in the 
given set of molecules. This was followed by generation 
of common rectangular grid around the molecules. The 
steric and electrostatic interaction energies were com-
puted at the lattice points of the grid using a methyl probe 
of charge +1. The resulting set of aligned molecules was 
then used to build 3D-QSAR models and information′s 
generated were used to predict activity of those designed 
molecules that have the similar template or set of atoms.

All generated QSAR models were evaluated and best 
model was selected using following statistical measures: 
n, number of molecules (>20 molecules); k, number of 
descriptors in a model (statistically n/5 descriptors in a 
model); df, degree of freedom (n − k − 1) (higher is bet-
ter); r2, square of regression (>0.7); q2, cross-validated r2 
(>0.5); pred_r2 − r2 for external test set (>0.5); SEE, stan-
dard error of estimate (smaller is better); F-test, F-test 
for statistical significance of the model (higher is better, 
for same set of descriptors and compounds); F_prob. 
Alpha—Error probability (smaller is better); Z score, 

—Z  score calculated by the randomization test (higher 
is better); best_ran_q2 highest q2 value in the randomiza-
tion test (as low as compared to q2); best_ran_r2 highest 
r2 value in the randomization test (as low as compared to 
r2); α-statistical significance parameter by randomization 
test (<0.01).

Validation of QSAR studies
Models generated by 2D and 3D-QSAR studies were cross-
validated using standard LOO procedure28. The cross-
validated r2 (q2) value was calculated using equation  1, 
where y

i
 and ŷi are the actual and predicted activities of 

the ith molecule, respectively, and y
mean

 is the average 
activity of all molecules in the training set. Both summa-
tions are over all molecules in the training set. Because 
the calculation of the pair-wise molecular similarities, 
and hence the predictions were based upon the current 
trial solution, the q2 obtained is indicative of the predic-
tive power of the current kNN–MFA model.

q
y y

y y
i i

i mean

2
2

21= 
 

 

( )

( )

^

�

(1)

All cross-validation studies were performed by consider-
ing the fact that a value of q2 is above 0.5 indicating high 
predictive power of generated QSAR models.

External validation29 of generated models was carried 
out by predicting the activity of test set of compounds. 
The predicted r2 (pred_r2) value was calculated using 
equation 2, where y

i
 and ŷi are the actual and predicted 

activities of the ith molecule in test set, respectively, and 
y

mean
 is the average activity of all molecules in the training 

set. Both summations are over all molecules in the test 
set. The pred_r2 value is indicative of the predictive power 
of the current kNN–MFA model for external test set.

pred

^

_r
y y

y y
i i

i mean

2
2

21= 
 

 

( )

( )
�

(2)

The statistical significance of the QSAR model for an 
actual data set was further evaluated by randomization 
test. The robustness of the QSAR models for experimen-
tal training sets was examined by comparing generated 
model with those derived for random data sets. Random 
sets were generated by rearranging biological activities 
of the training set molecules. The significance of the 
models hence obtained was derived based on calculated 
Z-score28,29.

ADMET prediction
ADMET properties were calculated using Discovery Stu-
dio (DS) 2.1, Accelrys software33. DS provides methods 

Table 1.  Uni-Column statistics for training and test set of compounds.

 Column name Average (mean) Max* Min* Std Dev Sum
Training set pIC

50
−1.1457 0.5690 −1.8760 0.6964 −22.9140

Test set pIC
50

−0.8125 −0.0790 −1.5490 0.6269 −3.2500

*Higher the value of pIC
50

 (Greater +ve value), higher is the potency.
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for assessing the disposition and potential toxicity of a 
ligand within an organism. The ADMET protocols in DS 
contain published models that are used to compute and 
analyze ADMET properties. In addition, DS apply spe-
cific rules to remove ligands that are not likely drug like, 
unsuitable leads, etc. based on the presence or absence 
and frequency of certain chemical groups.

Synthetic studies
All the reactions were carried out with dry, freshly distilled 
solvents under anhydrous conditions, unless otherwise 
noted. Fourier transform infrared (FTIR) spectra of the 
compounds were recorded using KBr on a Varian 640 FTIR 
spectrophotometer and are reported in cm−1. 1H NMR spec-
tra were recorded on a Varian Mercury YH300 (300 MHz 
FT NMR) spectrophotometer using tetramethylsilane 
as an internal reference (chemical shift represented in δ 
ppm). Mass spectra were recorded on GC-MS QP5050A 
System (benchtop quadrupole mass spectrophotometer). 
Purity of the compounds was checked on thin layer 
chromatography plates using silica gel G as stationary 
phase and was visualized in UV light at 254 nm.

Synthesis of secondary amines15,16 (4a-4g)
Aldehydes (1a-1g) (0.1 mol) were dissolved in 25 mL of 
ethanol and amines (2a-2g) (0.1 mol) were added to the 
solution. The reaction mixture was refluxed for 1–2 h. 
NaBH

4
 (0.05 mmol) was added to the reaction mixture 

solution slowly and stirred under 50°C for 2–3 h. The 
mixture was evaporated under vacuum and dissolved in 
ethylacetoacetate (30 mL). The solution was washed with 
20 mL water twice, dried over anhydrous sodium sulfate 
and evaporated.

Synthesis of benzyl urea derivatives15,16 (7a–7g)
The mixture of CH

2
Cl

2
 (15 mL), dry DMF (5) (3 mL, 40 

mmol) and SOCl
2
 (6) (7 mL, 0.10 mol) was stirred at 

70°C for 4 h and cooled for 24 h. The solvents and excess 
SOCl

2
 were then removed under reduced pressure. The 

residue dissolved in CH
2
Cl

2
 (15 mL). Dry pyridine (4 mL) 

and various amines (4a-4g) (40 mmol) were added to 
the reaction mixture and stirred at 50–60°C for 5–6 h. 
The reaction mixture was then added to 20 mL ice water, 
organic layer was separated, and the aqueous layer was 
extracted with ethyl acetate (2 × 10 mL). The organic layer 
was combined and washed with saturated NaHCO

3
, dried 

with anhydrous Na
2
SO

4
 for 0.5 h and concentrated under 

vacuum.

1-benzyl-1-(2-chlorobenzyl)-3,3-dimethylurea (7a)
Yield: 59.10% (Liquid), bp 113–115°C. FTIR (KBr) cm−1: 
3095 (Ar C–H), 2976 (Aliphatic C–H), 1712 (C=O), 1314 
(ter. C-N); 1081 (C-Cl). 1H NMR (300 MHz, DMSO, δ 
ppm): 2.82 (s, 6H, CH

3
), 4.58 (s, 4H, CH

2
), 7.26–7.72 (m, 

9H, Aromatic). Mass: m/z 302 (M+), 303 (M+1) +. 13C NMR 
(100 MHz, DMSO, δ ppm): 37.2 (-N(CH

3
)

2
), 50.7 (-CH

2
-N-

CH
2
), 127.2 (Ph C-4), 128.8 (Ph C-3,5), 129.8 (Ph C-2,6), 

130.2 (Cl-Ph C-3,4,5), 131.3 (Cl-Ph C-6), 132.8 (Cl-Ph 
C-2), 134.4 (Ph C-1), 137.3 (Cl-ph C-1), 168.1 (C=O). El-
emental Analysis calculated for C

17
H

19
ClN

2
O: C, 67.54; H, 

6.29; N, 9.27. Found: C, 67.46; H, 6.38; N, 9.35.

1-benzyl-3,3-dimethyl-1-(2-nitrobenzyl)urea (7b)
Yield: 90.13% (Liquid), bp 107–109°C. FTIR (KBr) cm−1: 
3041 (Ar C–H), 2815 (Aliphatic C–H), 1716 (C=O), 1533 
(N-O), 1345 (ter C-N), 863 (Ar C-N). 1H NMR (300 MHz, 
DMSO, δ ppm): 2.91 (s, 6H, CH

3
), 4.63 (s, 4H, CH

2
), 7.21–

782 (m, 9H, Aromatic). Mass: m/z 313 (M+), 314 (M+1) 
+. 13C NMR (100 MHz, DMSO, δ ppm): 37.3 (-N(CH

3
)

2
), 

50.9 (-CH
2
-N-CH

2
), 126.7 (NO

2
-Ph C-3,4), 127.3 (Ph C-4), 

128.8 (Ph C-3,5), 129.9 (Ph C-2,6), 130.3 (NO
2
-Ph C-6), 

132.5 (NO
2
-Ph C-5), 134.6 (Ph C-1), 137.4 (NO

2
-Ph C-1), 

144.1 (NO
2
-ph C-2), 168.7 (C=O). Elemental Analysis cal-

culated for C
17

H
19

N
3
O

3
: C, 65.15; H, 6.07; N, 13.41. Found: 

C, 65.09; H, 5.98; N, 13.53.

1-(2-chlorobenzyl)-3,3-dimethyl-1-(naphthalen-1-yl)
urea (7c)
Yield: 41.53% (Liquid), bp 118–120°C. FTIR (KBr) cm−1: 
3029 (Ar C–H), 2923 (Aliphatic C–H), 1722 (C=O), 1319 
(ter. C-N); 1085 (C-Cl). 1H NMR (300 MHz, DMSO, δ ppm): 
2.81 (s, 6H, CH

3
), 4.63 (s, 4H, CH

2
), 7.16–7.29 (m, 4H, Aro-

matic), 7.51–7.65 (m, 7H, Naphthyl). Mass: m/z 338 (M+), 
339 (M+1) +. 13C NMR (100 MHz, DMSO, δ ppm): 37.6 
(-N(CH

3
)

2
), 49.9 (-N-CH

2
), 108.1 (Naphthyl C-2), 120.3 

(Naphthyl C-4,9), 125.5 (Naphthyl C-3,6,7,8), 128.1 (Ph 
C-3,4,5,6), 131.7 (Ph C-2), 133.5 (Naphthyl C-5,10), 136.1 
(Naphthyl C-1), 138.1 (Ph C-1), 168.5 (C=O). Elemental 
Analysis calculated for C

20
H

19
ClN

2
O: C, 71.00; H, 5.62; N, 

8.28. Found: C, 72.02; H, 5.53; N, 8.37.

1-(2,3-dimethylphenyl)-3,3-dimethyl-1-(2-nitrobenzyl)
urea (7d)
Yield: 41.89% (Liquid), bp 114–115°C. FTIR (KBr) cm−1: 
3012 (Ar C–H), 2881 (Aliphatic C–H), 1721 (C=O), 1523 
(N-O); 1329 (ter C-N), 859 (Ar C-N). 1H NMR (300 MHz, 
DMSO, δ ppm): 2.20 (s, 3H, CH

3
), 2.33 (s, 3H, CH

3
), 2.80 

(s, 6H, CH
3
), 4.82 (s, 2H, CH

2
), 7.41–7.52 (m, 3H, Aro-

Figure 2.  Alignment of substituted benzyl urea derivatives using 
template based alignment method.
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matic), 7.57–7.73 (m, 3H, Aromatic). Mass: m/z 327 (M+), 
328 (M+1) +. 13C NMR (100 MHz, DMSO, δ ppm): 18.5 
(2,4 dimethyl), 37.1 (-N(CH

3
)

2
), 50.7(-N-CH

2
), 127.5 (di-

methyl Ph C-3,5,6), 128.7 (Ph C-3,4,5,6), 130.5 (dimethyl 
Ph C-2,4), 132.1 (Ph C-1), 136.6 (dimethyl Ph C-1), 144.3 
(Ph C-2), 169.5 (C=O). Elemental Analysis calculated for 
C

18
H

21
N

3
O

3
: C, 66.04; H, 6.47; N, 12.84. Found: C, 66.10; H, 

6.34; N, 12.76.

1-(2-ethylbenzyl)-3,3-dimethyl-1-(naphthalen-1-yl)
urea (7e)
Yield: 83.13% (Liquid), bp 122–124°C. FTIR (KBr) cm−1: 
3025 (Ar C–H), 2934 (Aliphatic C–H), 1717 (C=O), 1359 (ter 
C-N). 1H NMR (300 MHz, DMSO, δ ppm): 1.19–1.35 (t, 3H, 
CH

3
, J = 8.1 Hz), 2.58–2.74 (q, 2H, CH

2
, J = 8.1 Hz), 2.93 (s, 6H, 

CH
3
), 4.92 (s, 2H, CH

2
), 7.21–7.36 (m, 4H, Aromatic), 7.47–

7.76 (m, 7H, Naphthyl). Mass: m/z 332 (M+), 333 (M+1) +. 
13C NMR (100 MHz, DMSO, δ ppm): 14.3 (-CH

2
CH

3
), 26.3 

(-CH
2
CH

3
), 37.4 (-N(CH

3
)

2
), 49.8 (-N-CH

2
), 108.3 (Naphthyl 

C-2), 120.5 (Naphthyl C-4,9), 124.3 (Ph C-3,4,5,6), 125.8 
(Naphthyl C-3,6,7,8), 128.2 (Ph C-2), 132.9 137.1 (Naph-
thyl C-1), (Naphthyl C-5,10), 138.3 (Ph C-1), 168.4 (C=O). 
Elemental Analysis calculated for C

22
H

24
N

2
O: C, 79.51; H, 

7.22; N, 8.43. Found: C, 79.44; H, 7.10; N, 8.55.

1-(3-ethoxy-4-hydroxybenzyl)-3,3-dimethyl-1-
(naphthalen-1-yl)urea (7f)
Yield: 62.50% (Liquid), bp 103–105°C. FTIR (KBr) cm−1: 
3589 (Ar OH), 3098 (Ar C–H), 2859 (Aliphatic C–H), 1716 
(C=O), 1391 (ter C-N); 1329 (ter C-N), 1256 (C-O-C). 1H 
NMR (300 MHz, DMSO, δ ppm): 1.24–1.34 (t, 3H, CH

3
, 

J = 8.1 Hz), 2.76 (s, 6H, CH
3
), 4.03–4.17 (q, 2H, CH

2
, J = 8.2 

Hz), 4.77 (s, 2H, CH
2
), 5.59 (s, 1H, OH), 7.16–7.23 (m, 3H, 

Aromatic), 7.37–7.52 (m, 7H, Naphthyl). Mass: m/z 364 
(M+), 365 (M+1) +. 13C NMR (100 MHz, DMSO, δ ppm): 
15.1 (-CH

2
CH

3
), 37.2 (-N(CH

3
)

2
), 50.4 (-N-CH

2
), 66.2 

(-CH
2
CH

3
), 108.4 (Naphthyl C-2), 117.1(Ph C-2,5), 120.1 

(Naphthyl C-4,9), 127.3 (Ph C-3,6,7,8), 128.1 (Ph C-1), 
132.4 (Naphthyl C-5,10), 133.5 (Ph C-1), 136.8 (Naphthyl 
C-1), 147.5 (Ph C-3,4), 169.2 (C=O). Elemental Analy-
sis calculated for C

22
H

24
N

2
O

3
: C, 72.52; H, 6.59; N, 7.69. 

Found: C, 72.63; H, 6.49; N, 7.62.

1-(2,3-dimethylphenyl)-1-(2-ethylbenzyl)-3,3-
dimethylurea (7g)
Yield: 73.73% (Liquid), bp 124–125°C. FTIR (KBr) cm−1: 
2998 (Ar C–H), 2917 (Aliphatic C–H), 1693 (C=O), 1320 
(ter C-N). 1H NMR (300 MHz, DMSO, δ ppm): 1.14–1.26 
(t, 3H, CH

3
), 2.02 (s, 3H, CH

3
, J = 7.9 Hz), 2.21 (s, 3H, CH

3
), 

2.62-2.78 (q, 3H, CH
3
, J = 7.9 Hz), 2.29 (s, 6H, CH

3
), 4.84 

(S, 2H, CH
2
), 7.11–7.43 (m, 6H, Aromatic). Mass: m/z 310 

(M+), 311 (M+1) +. 13C NMR (100 MHz, DMSO, δ ppm): 
13.9 (-CH

2
CH

3
), 17.6 (2,4 dimethyl), 26.3 (-CH

2
CH

3
), 38.2 

(-N(CH
3
)

2
), 49.8 (-N-CH

2
), 126.2 (Ph C-2,4,5,6), 128.1 (di-

methyl Ph C-3,4,5), 133.2 (dimethyl Ph C-2,4), 136.1 (Ph 
C-1,3), 137.2 (dimethyl Ph C-1), 167.4 (C=O). Elemental 
Analysis calculated for C

20
H

26
N

2
O: C, 77.38; H, 8.44; N, 

9.02. Found: C, 77.23; H, 8.35; N, 9.09.

Anti-proliferative activity by MTT assay
The human T-cell leukemia cell lines (Molt-4 and Jurkat 
J6), myelogenous leukemia cell line (K562) and breast 
cancer cell line (MCF-7) were procured from ATCC 
(American type culture collection). Molt-4, Jurkat J6, and 
K562 were maintained in RPMI 1640 medium and MCF-7 
cell line in Eagle′s minimum essential medium supple-
mented with 10% fetal calf serum and 100 U of penicillin 
and streptomycin. The cell lines were cultured and main-
tained in a humidified atmosphere of 5% CO

2
 at 37°C.

The anti-proliferative activity of the compounds was 
determined by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) assay, using 5-flurouracil 
as reference drug. Cell lines were seeded at a density of 
25,000 cells/well/100 µL in a 96 well tissue culture plate 
for suspension cultures and 5000 cells /well in a 96 well 
tissue culture plate for adherent cultures. Suspension 
cells were treated with compounds 7a–7g within 1 h of 
seeding whereas adherent cells were allowed to adhere 
for 12 h and medium was replaced. The compounds at 
concentration of 25, 50, 100, and 200 µg/mL were used in 
the volume of 10 µL/well. After the incubation of 48 h, the 
cell survival was determined by addition of MTT solu-
tion (10 µL/well of 5 mg/mL MTT in phosphate-buffered 
saline) and incubated for 4 h at 37oC in 5% CO

2
. For sus-

pension cells, the formazon crystals were solubilized by 
adding 10% sodium dodecyl sulfate in 0.1N HCL, incu-
bated overnight and optical absorbance was measured 
at 570–650 nm. For adherent cells, the medium contain-
ing MTT was aspirated; DMSO (100 µL/well) was added 
and optical absorbance was measured after 10 min at 
570 nm.

Results and discussion

QSAR studies
A series of total 24 compounds for which absolute IC

50
 

values reported15 was used for correlating chemical com-
position (structure) with their anti-proliferative activity. 
Several 2D-QSAR and 3D-QSAR models were generated 
for training set of 20 compounds using MLR and SA 
kNN–MFA (SA kNN–MFA) method, respectively. The best 
QSAR model was selected on the basis of value of Statis-
tical parameters like r2 (square of correlation coefficient 
for training set of compounds), q2 (cross-validated r2), 
and pred_r2 (predictive r2 for the test set of compounds). 
All QSAR models were validated and tested for its pre-
dictability using an external test set of four compounds. 
Statistical results generated by both 2D and 3D-QSAR 
analysis showed that both QSAR model have good inter-
nal as well as external predictability (Table 2).

The generated QSAR models were evolved by repeating 
the MLR and kNN–MFA methods to check the accuracy 
and precision of both the methods. The frequency of use 
of a particular descriptor in the population of equations 
indicated the relevant contributions of the descriptors. 
The best 2D-QSAR model had five contributing descrip-
tors including constant (equation 3)
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pIC50 = 0.6694 chiv1  0.8569 MMFF_6 

 O.1222 T_C_O_7  

1.

  



11713 T_N_O_2  4.7880
�

(3)

Results of 3D-QSAR indicated the requirement of two 
electropositive groups and one steric group around ben-
zyl urea pharmacophore for anti-cancer activity (Table 2). 
The kNN–MFA QSAR method explores formally the active 
analogue approach, which implies that compounds dis-
play similar profiles of pharmacological activities. In this 
method, the activity of each compound is predicted as 
average activity of k most chemically similar compounds 
from that data set. The generated 3D-QSAR model 
showed a good correlation between the experimental ob-
tained and computationally predicted activity (Figure 3). 
Residual values obtained by subtraction of predicted 
activities from experimental biological activities were 
found to near to zero indicating the good predictability of 
selected QSAR Model (Table 3). The plots of observed vs. 
predicted activity for the optimal cross-validated kNN–
QSAR model are depicted in Figure 3.

Interpretation of QSAR studies
It is simple to interpret 2D-QSAR MLR equation where 
each descriptor′s contribution can be seen by the magni-
tude and sign of its regression coefficient. A descriptor′s 
coefficient magnitude shows its relative contribution 
with respect to other descriptors and sign indicates 
whether it is directly (+) or inversely (−) proportional to 
the activity. The developed MLR equation 2 indicated 
that the descriptor T_N_O_2 played most significantly 
important role (contribution ∼41% for biological activity) 
for anti-proliferative activity of benzyl urea derivatives 
(Figure 4A). T_N_O_2 is an alignment-independent de-

scriptor that specifies the count of number of nitrogen 
atoms (single, double, or triple bonded) separated from 
any oxygen atom (single or double bonded) by 2 bond 
distances in a molecule. This descriptor suggested the re-
quirement of urea molecule in benzyl urea pharmacoph-
ore for biological activity. The next influential descriptor 
was MMFF_6 (contribution ∼30% for biological activity) 
that was inversely proportional to the activity. This is an 
atom type count descriptor based on MMFF atom types 
and their count in each molecule and ‘6′ indicated num-
ber of times that atom type has been found in a given 
molecule.

The descriptor chiv1 (contribution ∼24% for biologi-
cal activity) was found to be directly proportional to the 
activity and showed the role of atomic valence connectiv-
ity index (order 1) that is calculated as the sum of 1/√v

i
v

j
 

over all bonds between heavy atoms i and j where i < j. 
Finally, the descriptor governing variation in the activity 
was T_C_O_7 (contribution approximately 5% for biolog-
ical activity) and was found to be inversely proportional 
to the activity, which indicated that the presence of sub-
stituents with direct attachment of oxygen on aromatic 
ring (e.g. OH) may be unfavorable or detrimental for the 
anti-cancer activity.

3D-QSAR was used to optimize the electrostatic and 
steric requirements around benzyl urea pharmacophore. 
3D data points were generated that contribute to SA kNN–
MFA 3D-QSAR model, are shown in Figure 4B. The range 
of property values for the generated data points helped 
for the design of potent NCEs. The range was based on 
the variation of the field values at the chosen points using 
the most active molecule and its nearest neighbour set. 
The points generated in SA kNN–MFA 3D-QSAR model 
are E_232 (-0.0255, 0.1432), S_715 (0.3304, 6.0782), 
and E_1064 (0.1346, 0.1345) i.e. electrostatic and steric 
interaction field at lattice points 232, 715, and 1064, re-
spectively. These points were suggested the significance 
and requirement of electrostatic and steric properties 
as mentioned in the ranges in parenthesis for structure-
activity relationship and maximum biological activity of 
benzyl urea derivatives.

Negative and positive values in electrostatic field 
descriptors indicated the requirement of nega-
tive and positive electrostatic potential respectively 
for enhancing the biological activity of benzyl 
urea derivatives. Therefore electronegative and 
electropositive substituents were preferred at the posi-
tion of generated data points E_232 (-0.0255, 0.1432) 
and E_1064 (0.1346, 0.1345) respectively around ben-
zyl urea pharmacophore.

Similarly the positive values of steric descriptors sug-
gested the requirement of sterically bulky groups at the 
position of generated data point S_715 (0.3304, 6.0782) 
around benzyl urea pharmacophore for maximum activ-
ity. Thus the KNN–MFA models leads to identification of 
various local interacting molecular features responsible 
for activity variation and hence provide direction for 
design of new molecules in a convenient way.

Table 2.  Statistical results of 2D-QSAR equation generated by 
MLR method and 3D-QSAR model generated by SA kNN–MFA for 
benzyl urea derivatives.

Sr. 
No.

Statistical 
parameter

Results
2D-QSAR 3D-QSAR

1. r2 0.8787 —
2. r2SE 0.2411 —
3. q2 0.7215 0.6276
4. q2SE 0.2378 0.2843
5. Pred_r2 0.5728 0.9106
6. Pred_r2SE 0.2162 0.2199
7. F-Test 19.914 —
8. α q2 0.0100 —

9. Best-Rand q2 0.2458 —
10. Z-score q2 2.6730 —
11 N 20 20
12 Nearest 

neighbour
— 4

11 Contributing 
descriptors

1. chiv1 (+ 0.6694)
2. MMFF_6 (−0.8569)
3. T_C_O_7 (−0.1222)
4.T_N_O_2 (+1.1713)

1. S_715(0.3304, 6.0782)
2. E_232 (-0.0255, 
0.1432) 
3. E_1064 (0.1346, 
0.1345)
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Figure 3.  Comparison of observed activity vs predicted activity for training set (A) and test set (B) of compounds.

Table 3.  Structure of training and test sets of compounds along with observed and predicted activity. 

R2

R3

R1

N
R

O N
CH3

CH3

Mol. No. R R
1

R
2

R
3

Observed activity SA kNN–MFA

IC
50

 (µM) PIC
50

Predicted activity Residual

1 -4-propylmorpholine NO
2

H H 0.42 0.3768 0.4596 −0.0828
2 -4-ethylmorpholine NO

2
H H 0.27 0.5686 0.5438 0.0248

3 -2-methylfuran NO
2

H H 40.7 −1.6095 −1.4756 −0.1339
4 -ethylpiperidine-1-carboxylate NO

2
H H 24.9 −1.3961 -1.7448 0.3487

5 -2-methylfuran Cl H OH 71.3 −1.8530 −1.5958 −0.2572

6* -4-ethylmorpholine Cl H OH 3.88 −0.5888 −0.7637 0.1754

7 -4-propylmorpholine Cl H OH 2.92 −0.4653 −0.7129 0.2476
8 -ethylpiperidine-1-carboxylate Cl H OH 33.5 −1.5250 −1.3619 −0.1631
9 -4-ethylmorpholine H OH H 11.8 −1.0718 −0.409 −0.662
10 -4-propylmorpholine H OH H 7.5 −0.8750 −1.074 0.199
11 -2-methylfuran H OH H 75.1 −1.8756 −1.5603 −0.3153
12 -ethylpiperidine-1-carboxylate H OH H 67.2 −1.8273 −1.6452 −0.1821
13 -4-ethylmorpholine H NO

2
H 2.24 −0.3504 −0.7603 0.4099

14* -4-propylmorpholine H NO
2

H 1.20 −0.0791 −0.4080 0.3289

15* -2-methylfuran H NO
2

H 35.4 −1.5490 −1.4951 −0.0539

16 -ethylpiperidine-1-carboxylate H NO
2

H 26.0 −1.4149 −1.048 −0.366
17 -2-methylfuran NO

2
H OH 28.6 −1.4563 −1.8394 0.3831

18* -4-ethylmorpholine NO
2

H OH 10.8 −1.0334 −1.0911 0.0577

19 -4-propylmorpholine NO
2

H OH 8.5 −0.9294 −1.3932 0.4638
20 -ethylpiperidine-1-carboxylate NO

2
H OH 38.4 −1.5843 −1.7281 0.1438

21 -2-methylfuran Br H OH 40.5 −1.6074 −1.7168 0.1094
22 -4-ethylmorpholine Br H OH 13.5 −1.1303 −1.7308 0.6005
23 -4-propylmorpholine Br H OH 18.6 −1.2695 −1.6762 0.4067
24 -ethylpiperidine-1-carboxylate Br H OH 41.8 −1.6211 −1.4703 −0.1514

*Compounds in test set.
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Design and screening of NCEs
The information obtained from 2D and 3D-QSAR studies 
were used to optimize the electrostatic and steric require-
ments around the benzyl urea nucleus for enhancing the 
anti-cancer activity (Figure 4C).

Descriptors generated in 2D-QSAR equation signified 
the importance of urea group for anti-cancer activity of 
compounds. Similarly electrostatic and steric points gen-
erated around common template or pharmacophore in 
3D-QSAR suggested substitution of sterically bulky group 
at N-R

2
 position around urea and electropositive group at 

R1 position around phenyl ring.
The NCEs were designed by CombiLib tool of V-Life 

Molecular Design Suite Software using pharmacophore 
shown in Figure 4C. CombiLib tool passed the designed 
compounds through Lipinski′s screen to ensure drug-
like pharmacokinetic profile of the designed compounds. 
The Lipinski′s screen parameters used as filters are:

number of Hydrogen Bond Acceptor (A) (<10)1.	

number of Hydrogen Bond donor (B) (<5)2.	
number of Rotatable Bond (R) (<10)3.	
XlogP (X) (<5)4.	
molecular weight (W) (<500 g/mol)5.	
polar surface area (S) is (<140 A6.	 0)

More than 100 molecules were generated using CombiLib 
tool that follows the Lipinski′s rule, but we have selected 
only 30 most active molecules on the basis of their activ-
ity, predicted using MLR equation (Table 4).

In Table 4, Compounds qualifying all required pa-
rameters set for Lipinski′s screen/filter are indicated by 
ADRXWS strings. The columns containing the Lipinski′s 
screen score and strings of alphabets, ADRXWS indicated 
that all six Lipinski′s screen parameters are satisfied by 
corresponding compound and depending on number of 
requirement satisfied, screen score varied in between 1 
and 6. It was concluded from predicted activity of de-
signed compound that presence of electropostive group 
at R1 position mainly at ortho and para position of phenyl 

−30%

−20%

−10%

0%

10%

20%

30%

40%

50%
Contribution of 2D descriptor

E_232 (-0.0255 , 0.1432)

E_1064 (0.1346 , 0.1385)

S_715 (0.3304 , 6.0782)

Urea required for activity

O

CH3

Sterically bulky groups
Electropositive groups and

no direct oxygen group attached

CH3

N N

R2

R1

−40%

(A) (B)

(C)

−30.46%

−4.57%

23.44%

41.53%

Chiv1 MMFF_6 T_C_0_7 T_N_0_2

Figure 4.  Results of QSAR studies. (A) Contributions of 2D descriptors for biological activity developed using MLR equation (2D-QSAR). 
(B) Contributions of electrostatic and steric 3D data points towards biological activity developed using kNN–MFA method (3D-QSAR). (C) 
Pharmacophore requirement around benzyl urea.
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ring and presence of sterically bulky group like benzyl, 
naphthyl at R2 position significantly enhanced the activ-
ity of compounds.

In next screening step, ADMET properties of all de-
signed compounds were predicted and compared with 
predicted ADMET properties of standard compounds us-
ing DS, Accelrys software (Table 5). Prediction of ADMET 
properties was used as last screen to sort out those com-
pounds that already followed Lipinski′s rule and showed 
good predicted activity. DS defined the prediction level 
for all ADMET properties. For ADMET Absorption, there 
are four prediction level: 0 – Good, 1 – Moderate, 2 – Poor, 
3 – Very Poor, for ADMET plasma protein binding (PPB) 
level: 0 – binding is <90%, 1 – binding is >90%, 2 – bind-
ing is >95%, for ADMET Cytochrome P450 2D6 (CYP2D6) 
Probability level: <0.5 – Unlikely to inhibit CYP2D6 en-
zyme (Non-inhibitors of CYP2D6), >0.5 – Likely to inhibit 
CYP2D6 enzyme (Inhibitors of CYP2D6) and for ADMET 
probability level: < 0.5 – Unlikely to cause dose-depen-
dent liver injuries (Non-toxic), >0.5 – Likely to cause 
dose-dependent liver injuries (Toxic).

All designed compounds showed good absorption, 
PPB level and found non-inhibitors of CYP2D6 enzyme. 
As shown in Table 5, Gefitinib and 5-flurouracil showed 

probability of heptotoxicity, whereas all designed com-
pounds were found to be non-toxic to liver.

Chemistry
The seven compounds (Table 5) that followed the all 
screening criteria were selected and synthesized. The 
synthetic route is outlined in Scheme 1. In the first step, 
condensation reaction of aldehydes (1a-1g) with various 
amines (2a-2g) gave the Schiff bases (3a-3g). Reduc-
tion of the latter with sodium borohydride afforded the 
corresponding secondary amines (4a-4g). In second 
step, Vilsmeier–Haack reaction was carried out, in which 
dry dimethyl formamide (5) in thionyl chloride (6) and 
dichloromethane was refluxed for 4 h and excessive 
SOCl

2
 was evaporated. The residue was then dissolved 

in dichloromethane, and stirred with various secondary 
amines (4a-4g) obtained in the first step dissolved in 
dry pyridine and CH

2
Cl

2
. As a result, benzyl urea deriva-

tives (7a–7g) were synthesized. The structures of various 
synthesized compounds were assigned on the basis of 
different chromatographic, spectral and qualitative and 
quantitative organic analytical studies. The physical data, 
FTIR, 1HNMR and mass spectral data for all synthesized 
compounds are reported in experimental protocols.

Table 4.  Structure of designed NCEs along with predicted activity obtained by MLR equation generated by 2D-QSAR.
Sr. No. Compound code R

1
R

2
Screen result Screen score Predicted activity

1 E5 2-NO
2

Benzyl ADRXWS 6 0.413
2 A1 2-CH

3
Nephthyl ADRXWS 6 0.356

3 J2 2-C
2
H

5
2,4-Dimethyphenyl ADRXWS 6 0.291

4 E2 2-NO
2

2,4-Dimethyphenyl ADRXWS 6 0.146
5 A5 2-CH

3
Benzyl ADRXWS 6 −0.0198

6 J8 2-C
2
H

5
1-Morpholine ADRXWS 6 −0.0921

7 A8 2-CH
3

1-Morpholine ADRXWS 6 −0.1992
8 C1 3-OCH

3
 4-OH Nephthyl ADRXWS 6 −0.2112

9 J1 2-C
2
H

5
Nephthyl ADRXWS 6 −0.2214

10 E1 2-NO
2

Nephthyl ADRXWS 6 −0.2256
11 E8 2-NO

2
1-Morpholine ADRXWS 6 −0.2318

12 H1 2-Cl Nephthyl ADRXWS 6 −0.2377
13 A6 2-CH

3
2-Furan ADRXWS 6 −0.2412

14 H5 2-Cl Benzyl ADRXWS 6 −0.2489
15 J7 2-C

2
H

5
2-Pyrrol ADRXWS 6 −0.2801

16 A2 2-CH
3

2,4-Dimethyphenyl ADRXWS 6 −0.3125
17 H8 2-Cl 1-Morpholine ADRXWS 6 −0.3890
18 E7 2-NO

2
2-Pyrrol ADRXWS 6 −0.4114

19 E6 2-NO
2

2-Furan ADRXWS 6 −0.4223
20 C2 3-OCH

3
 4-OH 2,4-Dimethyphenyl ADRXWS 6 −0.4569

21 C5 3-OCH
3
 4-OH Benzyl ADRXWS 6 −0.4987

22 D8 2-OH 1-Morpholine ADRXWS 6 −0.5239
23 C8 3-OCH

3
 4-OH 1-Morpholine ADRXWS 6 −0.5673

24 D1 2-OH Nephthyl ADRXWS 6 −0.6166
25 F1 3-NO

2
Nephthyl ADRXWS 6 −0.7709

26 D5 2-OH Benzyl ADRXWS 6 −0.9876
27 H2 2-Cl 2,4-Dimethyphenyl ADRXWS 6 −0.9943
28 D6 2-OH 2-Furan ADRXWS 6 −1.2319
29 F5 3-NO

2
Benzyl ADRXWS 6 −1.2879

30 J6 2-C
2
H

5
2-Furan ADRXWS 6 −1.1341
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Anti-proliferative activity
All synthesized compounds were evaluated for their ef-
fect on proliferation in Molt-4, Jurkat J6, MCF-7, and 
K562 cell lines by MTT colorimetric assay. Compounds 
were tested at 25, 50, 100, and 200 g/mL concentrations 
and their % decrease in cell proliferation were calculated 
by considering untreated controls as 100%. 5-Flurouracil 

was used as reference compound. The results are depict-
ed in Table 6 and Figure 5.

Molt-4 cell line did not respond to any of the seven 
compounds tested but in K562 cell line, all compounds 
showed anti-proliferative activity. In case of Jurkat J6, 
and MCF-7, only compound 7d exhibited significant 
anti-proliferative effect. Compound 7d showed 35% and 

Table 5.  Prediction of ADMET properties by using discovery studio, accelrys.
Sr. No. Compound code ADMET absorption level ADMET PPB level ADMET CYP2D6 probability ADMET hepatotoxicity probability
1 C-1 0 2 0.772 0.655
2 E-5 0 2 0.455 0.456
3 E-2 0 0 0.297 0.529
4 E-7 0 0 0.435 0.357
5 F-1 0 2 0.772 0.596
6 J-2 0 1 0.584 0.589
7 D-6 0 0 0.415 0.357
8 H-5 0 2 0.366 0.317
9 H-1 0 2 0.841 0.609
10 F-5 0 2 0.455 0.43
11 J-1 0 2 0.841 0.642
12 C-5 0 2 0.613 0.602
13 C-2 0 1 0.485 0.609
14 A-8 0 2 0.405 0.072
15 E-1 0 2 0.782 0.682
16 Imatinib 0 1 0.514 0.655
17 Gefitinib 0 2 0.663 0.973
18 5-Flurouracil 1 0 0.019 0.834
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Scheme 1.  Synthetic route for benzyl urea derivatives. Reagents & condition: (i) ethanol, reflux, 1–2 h (ii) NaBH
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17.7% decrease in cell proliferation in Molt-4 and Jurkat 
cell lines respectively at concentration of 100 µg/mL, and 
was comparable with positive control-5-flurouracil that 
showed 37%, and 21.59% decrease in cell proliferation, 
respectively. Compound 7d exhibited good anti-prolif-
erative activity (42.05%) as compared to that of 5-flurou-
racil (7.76%) at concentration of 100 µg/mL in K562 cell 
line. These results suggested that presence of NO

2
 group 

at ortho position of phenyl ring R1 position and 2,4-
dimethylphenyl at R2 position improved the cytotoxicity 
in MCF -7, Jurkat J6, and K562 cell line. This also indi-
cated that presence of –Cl, and C

2
H

5
 at ortho position of 

phenyl ring at R1 position and benzyl and naphthyl group 
at R

2
 position showed poor cytotoxic activity. From QSAR 

results, it was found that substituents at R1 position with 
direct oxygen substituents may decrease the cytotoxic 
activity but these compounds showed good binding af-
finity at EGFR receptor found by docking results, hence 
compound 7f containing OC

2
H

5
 at meta position and OH 

at para position of phenyl ring at R
1
 position was taken 

further for experimental validation, it show comparable 
cytotoxic activity with 5-flurouracil in MCF-7 but poor 

in vitro anti-tumour activity against Jurkat J6. Therefore, 
it was revealed that presence of oxygen group at phenyl 
ring at R1 position may decrease the activity. Also sub-
stituents at ortho position of phenyl ring at R1 position 
rather than meta and para position may help in increas-
ing the in vitro anti-proliferative activity.

Conclusion

In this study, we tested the possibility of developing 
NCE′s using QSAR and ADMET predicting studies. The 
proposed 3D and 2D-QSAR models, due to the high inter-
nal and external predictive ability, can therefore act as a 
useful aid to the costly and time consuming experiments 
for determining electrostatic and steric requirement 
around benzyl urea pharmacophore that is required to 
achieve better anti-proliferative activity and thus aided 
in generation of diverse combinatorial library. Prediction 
of ADMET properties of designed compound helped in 
selecting the compounds having drug-like properties. A 
screening approach has thus facilitated the identifica-
tion of suitable compounds from designed library for 

Table 6.  Anti-proliferative activity of compounds 7a–7g in cancer cell lines.

Compound code R
1

R
2

Conc (µg/mL)
% Inhibition

Molt-4 (%) Jurkat J6 (%) MCF-7 (%) K562 (%)
7a (H-5) -2-Cl -Benzyl 25 0 3.9 8.85 —

50 6.32 7.45 10.07 6.71
100 10.42 7.78 10.07 9.59
200 — — — 17.80

7b (E-5) -2-NO
2

-Benzyl 25 4.44 4.82 17.3 —
50 6.5 4.6 9.22 0

100 0.52 0.65 4.80 6.19
200 — — — 16.66

7c (H-1) -2-Cl -1-Naphthyl 25 0 2.08 7.50 —
50 4.66 3.61 5.54 14.92

100 0.30 5.5 2.11 12.91
200 — — — 7.94

7d (E-2) -2-NO
2

-2,4-dimethylphenyl 25 7.83 9.4 10.81 —
50 3.91 18 11.91 13.08

100 7.98 35 17.67 42.05
200 — — — 45.37

7e (J-1) -2-C
2
H

5
-1-Naphthyl 25 0 4.82 0 —

50 0.30 10.05 0 10.64
100 3.46 11.73 7.99 13.78
200 — — — 18.15

7f (C-1) -3-OC
2
H

5
-4-OH -1-Naphthyl 25 0 18.09 0.52 —

50 4.59 10.05 17.79 9.773
100 2.48 16.55 2.36 12.91
200 — — — 18.67

7g (J-2) -2-C
2
H

5
-2,4-dimethylphenyl 25 6.6 14.36 0 —

50 7.68 12.39 0 3.40
100 0 14.3 0 11.43
200 — — — 20.49

5-Flurouracil — — 25 65 40 4.93 —
50 64 41 15.71 13.35

100 61 37 21.59 7.76
200 — — — 8.55
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anti-cancer activity. Results of molecular modeling stud-
ies were cross verified by testing the cytotoxic activity of 
designed compounds in four cell line; Molt-4, Jurkat J6, 
MCF-7, and K562. Compound 7d was found to be the 
potent among the compounds tested. Therefore this was 
concluded that presence of electropositive group like NO

2
 

at phenyl ring at R
1
 position and sterically bulky group at 

R
2
 like 2, 4-dimethylphenyl position can help the benzyl 

urea pharmacophore for inhibiting the tumour cells.
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