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Abstract
An efficient, mild and inexpensive synthesis of N-tert-butyl amides from the reaction of nitriles (aryl, benzyl and sec-alkyl 
nitriles) with tert-butyl benzoate catalyzed by the employment of 2 mol% Zn(ClO4)2·6H2O at 50 °C under the solvent-free 
conditions is described. The reaction with aryl nitriles was carried out well and afforded the N-tert-butyl amides in 87–97% 
yields after 1 h. The benzyl and sec-alkyl nitriles also proceeded well and produced the N-tert-butyl amides in 83–91% 
yields after 5 h.
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Introduction

The N-tert-butyl amide compounds have wide application in 
organic synthesis (Clayden et al. 2007) and drug synthesis 
(Mao et al. 2017). Especially, a lot of drug molecules con-
taining N-tert-butyl amide functionality have been explored 
to cure various diseases. For example, Finasteride (Ahmed 

and Al-Abd 2018) and Epristeride (Baine et al. 1994) have 
been developed for the treatment of benign prostatic hyper-
plasia. On the other hand, Indinavir (Rossen et al. 1995), 
nelfinavir (Sanchez et al. 2018) and Saquinavir (Ghosh et al. 
1997) have been used as a component to treat HIV, whereas, 
CPI-1189 (Hensley et al. 2000) is a candidate for neuro-pro-
tective therapy in humans with HIV-associated CNS disease.
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Scheme 1   Synthesis of N-tert-butyl amides by Ritter reaction
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Usually, the N-tert-butyl amide compounds were synthe-
sized by acylation of amines (Valeur and Bradley 2009). 
On the other hand, various alternative methodologies like 
Staudinger reaction (Gololobov and Kasukhin 1992), the 
Schmidt reaction (Lang and Murphy 2006), the oxidative 
amidation of aldehydes and alcohols (Chang et al. 2010; 
Krabbe et al. 2016), aminocarbonylation reaction (Wannberg 
and Larhed 2003), amidation of aryl halides (Jiang et al. 
2011), and oxidation of imines (Larsen et al. 1991) were 
also used to form amides. Although effective, the strategies 
often used highly hazardous reagents following a stoichio-
metric amount of and difficultly separated byproducts. In 
recent years, direct amides from nitriles via Ritter reaction 
have gained much attention for its atomic economy (Jiang 
et al. 2014). In general, tert-butanol was employed to react 
with nitriles to form N-tert-butyl amides in the presence of 
acids (Callens et al. 2006; Indalkar et al. 2017). Further-
more, some alternatives including tert-butyl acetate (Baum 
et al. 2009; Hazarika and Baishya 2014), tert-butyl bromide 
(Qu et al. 2012) and methyl tert-butyl ether (Tamaddon and 
Tavakoli 2011) also have been developed for this transforma-
tion. Despite convenient, some drawbacks like using solvents 
and acids, high reaction temperature, long reaction time and 
high catalyst loading led to restrict its application on large 
scale. For example, Milne et al. (Baum et al. 2009) used tert-
butyl acetate in acetic acid along with an excess amount of 
corrosive H2SO4 to synthesize N-tert-butyl amides. Hazarika 
et al. (2014) reported one-pot sequential Schmidt and Ritter 
reactions with tert-butyl acetate for the synthesis of N-tert-
butyl amides in acetic acid. Tamaddon’s group (Tamaddon 
and Tavakoli 2011) transformed methyl tert-butyl ether to 
N-tert-butyl amides in the presence of ZnCl2/SiO2 as a recy-
clable heterogeneous catalyst at 100 °C under solvent-free 
condition. Moreover, Qu et al. (2012) adopted tert-butyl bro-
mide to produce N-tert-butyl amides at 100 °C. Hence, the 
need for the development of a novel, mild, effective, Lewis-
catalyzed synthetic method for the synthesis of N-tert-butyl 
amides is in demand.

In this paper, we wish to report a new and efficient proce-
dure for the transformation of nitriles with tert-butyl benzo-
ate by the use of Zn(ClO4)2·6H2O as a catalyst under sol-
vent-free conditions (Scheme 1, path (e)). And our research 
expands the scope of the substrates and tert-butyl benzoate 
is first used in Ritter reaction to form N-tert-butyl amides.

Experimental

Materials and instruments

All reagents were purchased from commercial sources 
and used without further purification. Melting points 
were determined on a RY-1 hot stage microscope and 

are uncorrected. 1H NMR and 13C NMR spectra were 
recorded on a Bruker Avance DPX-400 MHz instrument in 
CDCl3; chemical shifts (δ) were given in part per million 
(ppm) relative to TMS as an internal standard. All reac-
tions were monitored by TLC on silica gel GF-254 glass 
plates (E.Merck) and viewed under UV light at 254 nm. 
The HRMS spectra were obtained on a Thermo Finnigan 
spectrometer, model MAT 95XP.

Typical experimental procedure for the reaction 
of nitriles and tert‑butyl benzoate

A mixture of nitrile (5  mmol), tert-butyl benzoate 
(5.5 mmol) and Zn(ClO4)2·6H2O (2 mol%) was placed in a 
round bottom flask. Then, the reaction mixture was heated 
at 50 °C for the given time. After completion of the reac-
tion monitored by thin layer chromatography (TLC), the 
reaction mixture was quenched with 5-ml water. Then the 
reaction system was added 10 ml aqueous NaOH solution 
(1 mol/L) and continued to be stirred 5 min and extracted 
with ethyl acetate (3 × 10 ml). The organic layers were 
collected, combined, washed with water (3 × 10 ml), dried 
over anhydrous Na2SO4, and concentrated under vacuum. 

Table 1   Optimization of reaction conditionsa 

a Tert-butyl benzoate (5.5 mmol) and benzonitrile (5 mmol) were used
b Isolated yields

Entry Catalyst (mol%) T °C Time (h) Yield (%)b

1 ZnCl2 (5) 60 12 41
2 Zn(OTf)2 (5) 60 6 84
3 Zn(OAc)2·2H2O (5) 60 12 36
4 ZnO (5) 60 12 NR
5 ZnBr2 (5) 60 12 44
6 Zn(ClO4)2·6H2O (5) 60 1 88
7 Zn(AcAc)2 (5) 60 12 NR
8 ZnSO4·H2O (5) 60 12 NR
9 Zn(ClO4)2·6H2O (1) 60 1 54
10 Zn(ClO4)2·6H2O (2) 60 1 86
11 Zn(ClO4)2·6H2O (10) 60 1 89
12 Zn(ClO4)2·6H2O (2) RT 1 Trace
13 Zn(ClO4)2·6H2O (2) 40 1 69
14 Zn(ClO4)2·6H2 (2) 50 1 94
15 Zn(ClO4)2·6H2O (2) 80 1 93
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Table 2   Reaction of nitriles and 
tert-butyl benzoatea

Entry R Time(h) Product Yield(%)b

1 C6H5 1

1a

94

2 4-NO2C6H4 1

1b

87

3 3-CH3C6H4 1

1c

95

4 2-CH3C6H4 1

1d

93

5 4-CH3OC6H4 1

1e

90

6 3-FC6H4 1

1f

95

7 4-CH3C6H4 1

1g

92

8 4-F3CC6H4 1

1h

97

9 3-BrC6H4 1

1i

94

10 C6H5CH2 5 89

1j
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Table 2   (continued)

11 4-ClC6H4CH2 5

1k

85

12 2-CH3C6H4CH2 5

1l

90

13 3,4-Cl2C6H4CH2 5

1m

84

14 4-NO2C6H4CH2 5

1n

87

15 4-BrC6H4CH2 5

1o

89

16 3-ClC6H4CH2 5

1p

91

17 2-FC6H4CH2 5

1q

83

18 3-FC6H4CH2 5

1r

87

19 C6H5CHCH3 5 86

1s

20 Cyclopentyl 5

1t

89

21 Cyclopropyl 5

1u

90

Entry R Time(h) Product Yield(%)b

a Tert-butyl benzoate (5.5mmol), nitriles (5mmol) and Zn(ClO4)2·6H2O (2 mol%) were used
b Isolated yields
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The pure product was obtained by directly passing through 
a silica gel (200–300 mesh) column using petroleum ether/
ethyl acetate and identified by 1H NMR and 13C NMR.

Characterization of new compound

N-(tert-butyl)-2-(3, 4-dichlorophenyl) acetamide (1  m) 
White powder. M.p. 148–150  °C. 1HNMR (400  MHz, 
CDCl3): δ 7.41–7.35(m, 2H), 7.12–7.10(m, 1H), 5.31(s, 
1H), 3.40(s, 2H), 1.32(s, 9H). 13CNMR (100 MHz, CDCl3): 
δ 168.89, 135.56, 132.66, 131.24, 131.16, 130.63, 128.60, 

Scheme 2   Tert-butyl 4-methylbenzoate and tert-butyl 4-chlorobenzoate reacted with benzonitrile

Scheme 3   The reaction of tert-
butyl acetate with benzonitrile

Scheme 4   Proposed mechanism 
for Zn(ClO4)2·6H2O-catalyzed 
Ritter reaction
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51.61, 43.53, 28.71. HRMS calcd. for C12H15Cl2NO[M + H]+ 
requires 259.0531, found 259.0533.

N-(tert-butyl)-2-(3-chlorophenyl) acetamide(1p) White 
powder. M.p. 127–129 °C. 1HNMR (400 MHz, CDCl3) δ: 
7.29–7.14(m, 4H), 5.28(s, 1H), 3.43(s, 2H), 1.31(s, 9H). 
13CNMR (100 MHz, CDCl3) δ: 169.36, 137.38, 134.55, 
130.04, 129.37, 127.39, 127.31, 51.48, 44.26, 28.70. HRMS 
calcd. for C12H16ClNO[M + H]+ requires 225.0920, found 
225.0922.

N-(tert-butyl)-2-(2-fluorophenyl) acetamide(1q) White 
powder. M.p. 102–103 °C. 1HNMR (400 MHz, CDCl3) δ: 
7.31–7.23(m, 2H), 7.11–7.04(m, 2H), 5.40(s, 1H), 3.48(s, 
2H), 1.30(s, 9H). 13CNMR (100 MHz, CDCl3) δ: 169.08, 
162.13(q, JC–F = 244 Hz), 131.59(q, JC–F = 4 Hz), 129.05(q, 
JC–F = 9 Hz), 124.48(q, JC–F = 4 Hz), 122.78(q, JC–F = 16 Hz), 
115.57(q, JC–F = 22 Hz), 51.34, 37.93, 28.66. HRMS calcd. 
for C12H16FNO[M + H]+ requires 209.1216, found 209.1217.

Results and discussion

To explore the procedure, benzonitrile was employed as a 
model compound for the reaction with tert-butyl benzoate to 
screen the reaction conditions (Table 1). The results are sum-
marized in Table 1. At the beginning, 5 mol% of ZnCl2 was 
first used in this transformation at 60 °C; fortunately, the cor-
responding N-(tert-butyl)benzamide(1a) was obtained with 
moderate yield in 41% after 12 h (Table 1, entry 1). Then, 
a range of Zn catalysts like Zn(OTf)2, Zn(OAc)2·2H2O, 
ZnO, ZnBr2, Zn(ClO4)2·6H2O, Zn(AcAc)2 and ZnSO4 were 
checked again for this reaction, in which Zn(ClO4)2·6H2O 
showed the best catalytic effect and afforded an excellent 
yield of the desired product N-(tert-butyl)benzamide(1a) 
(Table 1, entry 6). However, the catalysts like Zn(OTf)2, 
Zn(OAc)2·2H2O, and ZnBr2 produced the N-(tert-butyl)
benzamide(1a) in moderate–good yields (Table 1, entries 
2, 3 and 5). Whereas, ZnO, Zn(AcAc)2 and ZnSO4 did not 
work in this transformation (Table 1, entries 4, 7 and 8). 
The further optimization revealed that the yield was criti-
cally affected by the amount of catalyst employed. The yield 
decreased to 54% by employment of 1 mol% catalyst. By 
switching the amount of Zn(ClO4)2·6H2O to 2 mol% and 
10 mol%, the N-(tert-butyl)benzamide(1a) was obtained 
with 86% and 89% yield, respectively (Table 1, entries 10, 
11). Although yields by employment of 5 mol% (88%) and 
10 mol% (89%) catalyst were slightly increasing, 2 mol% 
catalyst was thought to be enough for this reaction. When 
the reaction was carried out at room temperature, only 
trace amount of N-(tert-butyl)benzamide(1a) was detected 
by TLC after 1 h. By raising the temperature to 40 °C, the 
reaction afforded a good yield of the product (1a) with 69% 
after 1 h (Table 1, entry 13). Moreover, it was worth noting 
that while operating at 50 °C, the yield of N-(tert-butyl)

benzamide(1a) was improved dramatically to 94% (Table 1, 
entry 14). When the reaction was conducted at 80 °C, a 
93% yield of N-(tert-butyl)benzamide(1a) was obtained 
(Table 1, entry 15). Therefore, 50 °C was sufficient for this 
transformation.

The generality of this Zn(ClO4)2·6H2O-mediated effec-
tive synthesis of N-tert-butyl amides with tert-butyl ben-
zoate and nitriles was subsequently investigated. The 
substrate scope for the nitriles is summarized in Table 2. 
The reaction was compatible with a variety of substituents 
on the nitrile substrates including aryl nitriles and benzyl 
nitriles and afforded the corresponding N-tert-butyl amides 
in good–excellent yields (Table 2, 1a–1s). Moreover, the 
substituents on the para, meta and ortho site of the aryl 
nitriles and benzyl nitriles could not influence the reaction 
and furnish the products with high yields. It was observed 
that the reaction of tert-butyl benzoate with 3-methylb-
enzonitrile, 4-methylbenzonitrile, 4-methylbenzonitrile 
afforded the N-(tert-butyl)-3-methylbenzamide(1c), 
N-(tert-butyl)-2-methylbenzamide(1d), and N-(tert-butyl)-
4-methylbenzamide(1g) in 95%, 93% and 92% yields, 
respectively. What is more, the reaction of benzyl nitriles 
prolonged the reaction time to 5 h for obtaining the best 
yield. On the other hand, sec-alkyl nitriles also could be 
carried out well and afforded the N-tert-butyl amides in 
excellent yields (Table 2, entries 20, 21).

This method was also suitable to other liquid tert-butyl 
benzoate. For example, tert-butyl 4-methylbenzoate and 
tert-butyl 4-chlorobenzoate were used to react with ben-
zonitrile and afforded the corresponding N-(tert-butyl)
benzamide(1a) in 92% and 94% yields, respectively 
(Scheme 2). It was noted that there were no remarkable 
electronic effects on this reaction.

Furthermore, the catalyst Zn(ClO4)2·6H2O was also 
used to check the reaction of tert-butyl acetate with benzo-
nitrile. It was found that a moderate yield of N-(tert-butyl)
benzamide(1a) was obtained at 50 °C after 5 h. Then rais-
ing the reaction temperature to 80 °C, an excellent yield of 
N-(tert-butyl)benzamide(1a) could also be obtained after 
5 h (Scheme 3).

The mechanism for this sequential reaction can be 
explained by the already established mechanisms of the 
Ritter reaction (Tamaddon and Tavakoli 2011), involved 
in this novel method (Scheme 4).

Conclusions

In summary, we devised an effective and mild protocol for 
the synthesis of N-tert-butyl amides from nitriles with tert-
butyl benzoate using Zn(ClO4)2·6H2O as a catalyst under 
solvent-free condition. The present work involves several 
practical advantages like the employment of mild reaction 
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conditions, short reaction time, under solvent-free condition, 
and an easy workup procedure.
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