

Cyclization of 1-(2-Alkynylphenyl)-3,3-dialkyltriazenes: A **Convenient, High-Yield Synthesis of Substituted Cinnolines and Isoindazoles**

David B. Kimball, Timothy J. R. Weakley, and Michael M. Haley*

Department of Chemistry, University of Oregon, Eugene, Oregon 97403-1253

haley@oregon.uoregon.edu

Received April 2, 2002

A new route to isoindazoles and cinnolines through the cyclization of (2-alkynylphenyl)triazenes under neutral conditions is presented. The products that result from heating the starting triazenes depend on both the type of alkyne ortho to the triazene functionality and the temperature used. Butadiyne moieties ortho to dialkyltriazenes yield bis-isoindazole dimers when heated to 150 °C in MeI. A requirement for cyclization in MeI is that the (2-alkynylphenyl)triazene must contain a suitably electron-withdrawing substituent on the phenyl ring to deactivate the triazene toward methylation-induced decomposition to an iodoarene. Ethynyl moieties ortho to dialkyltriazenes yield both isoindazole dimers as well as 3-formylisoindazoles when subjected to the same conditions. Replacing MeI with 1,2-dichlorobenzene as solvent allows for the general cyclization of (2ethynylphenyl)dialkyltriazenes. Heating to 170 °C results in a mixture of isoindazole and cinnoline products, whereas the cinnolines are produced exclusively in high yield at 200 °C. Alternatively, the isoindazoles can be obtained in good to excellent yield by stirring a 1,2-dichloroethane solution of the starting triazene with CuCl overnight at 50 °C.

Introduction

Aryltriazenes¹ have been used extensively in the preparation of a large variety of phenylacetylene-based systems.^{2,3} Triazene preparation can be done efficiently from commercially available anilines, and heating in iodomethane at 100-150 °C produces the corresponding iodoarenes in high yield.⁴ Combined with Pd-catalyzed cross-coupling methodology,⁵ the ability to mask and unmask a reactive iodoarene provides great control over aromatic substitution patterns. The high-yielding conversion to such a versatile synthon makes aryltriazenes indispensable in the preparation of large phenylacetylene oligomers and polymers requiring multiple synthetic steps.²

Our group has used aryltriazenes with great success in the synthesis of numerous dehydrobenzoannulenes

(DBAs, e.g., 1), most of which would be difficult or impossible using other methods.^{2c,d,6} The success of our strategies has relied on the use of trimethylsilyl-protected 1-phenyl-1,3-butadiyne moieties (e.g., 2, Scheme 1), which are synthesized in good overall yield from commercially available anilines via triazene intermediates.

In cases where a strongly electron-withdrawing group is para to the triazene, decomposition to the iodoarene with iodomethane must be done at higher temperatures. Since nitro or cyano substituents on the phenyl ring pull electron density away from the distal dialkylamine, nucleophilic attack on iodomethane, the first step in decomposition, is less favored.⁷ In our experience, it has been necessary to heat cyanophenyltriazenes to ca. 150 °C for the aryl iodide to form in high yield in less than 24 h. In most instances, the phenylacetylene/triazene starting materials were stable at elevated temperatures and the iodoarenes could be generated in nearly quantitative vield.

Until recently, our research has focused on triazenes that were ortho to monoacetylenes protected by SiMe₃ or Sii-Pr₃ groups that rarely contained electron-with-

⁽¹⁾ Review of triazene chemistry: Kimball, D. B.; Haley, M. M. Angew. Chem., Int. Ed. 2002, 41, in press.

^{(2) (}a) Moore, J. S. Acc. Chem. Res. 1997, 30, 402-413. (b) Tour, J. M. Acc. Chem. Res. 2000, 33, 791-804. (c) Haley, M. M.; Pak, J. J.; Brand, S. C. In Topics in Current Chemistry (Carbon-Rich Compounds 11); de Meijere, A., Ed.; Springer-Verlag: Berlin, 1999; Vol. 201, pp 81–130. (d) Haley, M. M.; Wan, W. B. In *Advances in Strained and Interesting Organic Molecules, Volume 8*; Halton, B., Ed.; JAI Press: New York, 2000; pp 1-41.

New York, 2000; pp 1–41. (3) Inter alia: (a) Mongin, O.; Papamicaël, C.; Hoyler, N.; Gossauer, A. J. Org. Chem. **1998**, 63, 5568–5580. (b) Förster, B.; Bertran, J.; Teixidor, F.; Viñas, C. J. Organomet. Chem. **1999**, 587, 67–73. (4) (a) Moore, J. S.; Weinstein, E. J.; Wu, Z. Tetrahedron Lett. **1991**, 32, 2465–2466. (b) Bhattacharya, S.; Majee, S.; Mukherjee, R.; Sengupta, S. Synth. Commun. **1995**, 25, 651–657. (c) Wautelet, P.; Moroni, M.; Oswald, L.; Lemoigne, J.; Pham, A.; Bigot, J. Y.; Luzzati, S. Macromolecules **1996**, 29, 446–455. S. Macromolecules 1996, 29, 446-455.

^{(5) (}a) Tsuji, J. Palladium Reagents and Catalysts; Wiley: New York, 1995. (b) Metal-Catalyzed Cross-Coupling Reactions; Stang, P. J., Diederich, F., Eds.; VCH: Weinheim, 1997.

⁽⁶⁾ Inter alia: (a) Pak, J. J.; Weakley, T. J. R.; Haley, M. M. J. Am. Chem. Soc. **1999**, 121, 8182-8192. (b) Kehoe, J. M.; Kiley, J. H.; English, J. J.; Johnson, C. A.; Petersen, R. C.; Haley, M. M. Org. Lett. 2000, 2, 969–972. (c) Wan, W. B.; Brand, S. C.; Pak, J. J.; Haley, M. Z. (J) Wall, W. B.; Brand, S. C.; Pak, J. J.; Haley, M. M. *Chem. Eur. J.* 2000, *6*, 2044–2052. (d) Bell, M. L.; Chiechi, R. C.; Johnson, C. A.; Kimball, D. B.; Matzger, A. J.; Wan, W. B.; Weakley, T. J. R.; Haley, M. M. *Tetrahedron* 2001, *57*, 3507–3520. (e) Wan, W. B.; Haley, M. M. *J. Org. Chem.* 2001, *66*, 3893–3901.
 (7) For analogous decomposition

⁽⁷⁾ For analogous decomposition using reagents other than io-domethane, see: (a) Wu, Z.; Moore, J. S. *Tetrahedron Lett.* **1994**, *35*, 5539–5542. (b) Khalaj, A.; Beiki, D.; Rafiee, H.; Najafi, R. J. Label. Comput. Radiopharm. 2001, 44, 235-240.

SCHEME 1

drawing substituents. An attempt to react a triazene ortho to a 1,3-butadiyne moiety and para to a cyano group (3, Scheme 2), however, gave the desired aryl iodide 4 in very low yield (ca. 10%) along with an unexpected side product in 33% yield. ¹H NMR analysis of the new compound revealed that although the aromatic resonances had changed, the diethylamino signals were still present but were upfield relative to the starting material. Combining these results with evidence presented by the ¹³C NMR and mass spectra suggested that the chemical nature of both the butadiyne unit and the triazene had changed. An X-ray structure analysis (see the Supporting Information) revealed that concurrent cyclization and dimerization had produced a 2H-indazole (isoindazole) dimer, compound 5. A review of the literature revealed no examples of the formation of an isoindazole from a triazene ortho to an acetylene under neutral conditions. Although the majority of indazoles are synthesized using a similar type of ring closure (i.e., ring closure with bond formation between the 2-3 positions on the indazole), acidic conditions or more reactive functional groups (azides, electrophilic carbon functionalities) must be employed.⁸ Recent examples of indazole synthesis have utilized monoacetylenes,⁹ but the more reactive azide in place of the triazene was necessary for cyclization.

Inspired by the surprising formation of **5**, we decided to explore the cyclization reactions of (2-alkynylphenyl)triazenes. Our interest in such systems is 3-fold: (1) our extensive use of triazenes compels us to determine under what conditions the aryl iodide will form in preference to this new isoindazole dimer; (2) since this reaction is done under neutral conditions, establishing the presence of a novel cyclization mechanism could help develop new synthetic methods using acetylenes; (3) 2H-indazoles have received moderate attention in recent literature regarding their medicinal properties,¹⁰ and finding new

and versatile methods for their synthesis could gain increased importance. Since our initial report,¹¹ we have elucidated the complex mechanistic pathways for triazene cyclization.¹² The following report contains the full details of this new synthesis and represents our efforts to determine its scope.¹³

Results and Discussion

Cyclization of Diyne Triazenes. Our first task was to determine if this cyclization could be repeated with similar starting materials. Thus, unfunctionalized phenyltriazene 6 and 4-nitrophenyltriazene 7 (Scheme 2) were synthesized for comparison with **3**. The synthesis of 3 provides a representative example. 4-Aminobenzonitrile was iodinated using BTEA·ICl₂ and CaCO₃,¹⁴ the product of which was first treated with HCl and aqueous NaNO₂ at -5 °C and then quenched with Et₂NH and K₂-CO3 to generate triazene 8 in 89% yield. Triazene 9 was obtained similarly starting from 2-iodoaniline.^{6b} (Trimethylsilyl)butadiyne was then cross-coupled to 8 and 9 under Sonogashira conditions¹⁵ to produce **3** and **6** in 94% and 36% yield, respectively. Compound 7 followed similarly from triazene **10**, which had been synthesized previously for the study of donor-acceptor annulenes and was readily available.^{6a}

Since the nitro functionality has electron-withdrawing ability comparable to the cyano group, we expected 7 to cyclize/dimerize in the same fashion as 3. This proved to be the case as heating 7 in MeI at 145 °C for 48 h in a sealed glass pressure tube gave dimer 11 in 36% yield along with iodoarene 12 (27%, Scheme 2). In stark contrast, transformation to iodoarene 13 was rapid above 120 °C when triazene 6 was used and occurred in nearly quantitative yield.

Attempts to repeat these reactions at both lower and higher temperatures revealed an interesting temperature window. Using 3, 6, and 7, no reaction occurred below 110 °C. At 140-150 °C, 3 and 7 formed isoindazole dimers 5 and 11, respectively, along with the corresponding iodoarenes as a minor products. Cyclization/dimerization of 6 could not be accomplished in MeI since triazene decomposition occurred well below 145 °C. If 3 or 7 was heated above 160 °C, however, the iodoarenes were obtained in excellent yield. These results indicate that in order for cyclization/dimerization to occur in MeI, suitably electron-withdrawing substituents must be present to deactivate the dialkylamino nitrogen in the triazene toward nucleophilic attack.

Cyclization of Monoyne Triazenes. To determine whether monoalkynes could be used in place of butadiynyl moieties, 14 and 15 (Scheme 3) were synthesized for

^{(8) (}a) Elderfield, R. C. In *Heterocyclic Compounds*; Elderfield, R. C., Ed.; John Wiley & Sons: New York, 1957; Vol. 5, pp 162–181. (b) Behr, L. C.; Fusco, R.; Jarobe, C. H. In *Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings*, Wiley, R. H., Ed.; International Wiley Science: New York, 1967; pp 289-382.

^{(9) (}a) Prikhodko, T. A.; Vasilevsky, S. F. Mendeleev Cummun. 1996, 98-99. (b) Prikhodko, T. A.; Vasilevsky, S. F. Mendeleev Commun. 1998, 149-150. (c) Prikhodko, T. A.; Vasilevsky, S. F. Russ. Chem. Bull. Int. Ed. 2001, 50, 1268-1273.

^{(10) (}a) Dell'Erba, C.; Novi, M.; Petrillo, G.; Tavani, C. Tetrahedron **1992**, 48, 325–334. (b) Rodgers, J. D.; Johnson, B. L.; Wang, H.; Greenberg, R. A.; Erickson-Viitanen, S.; Klabe, R. M.; Cordova, B. C.; Rayner, M. M.; Lam, G. N.; Chang, C.-H. *Bioorg. Med. Chem. Lett.* 1996, 6, 2919-2924. (c) Sun, J.-H.; Teleha, C. A.; Yan, J.-S.; Rodgers, J. D.; Nugiel, D. A. J. Org. Chem. 1997, 62, 5627-5629.

⁽¹¹⁾ Kimball, D. B.; Hayes, A. G.; Haley, M. M. Org. Lett. 2000, 2, 3825 - 3827

⁽¹²⁾ Kimball, D. B.; Herges, R.; Haley, M. M. J. Am. Chem. Soc. 2002, 124, 1572-1573.

⁽¹³⁾ Complete mechanistic details of the triazene cyclizations will

⁽¹⁶⁾ Compare manufacture defaults of the tracking cyclications will be outlined in a forthcoming full paper.
(14) Kajigaeshi, S.; Kakinami, T.; Yamasaki, H.; Fujisaki, S.; Okamoto, T. *Bull. Chem. Soc. Jpn.* **1988**, *61*, 600–602.
(15) Sonogashira, K. In ref 5b, pp 203–229.

SCHEME 2^a

^{*a*} Reagents and conditions: (a) BTEA·ICl₂, CaCO₃, MeOH, THF; (b) (i) HCl, NaNO₂, (ii) Et₂NH or piperidine, K₂CO₃, H₂O, MeCN; (c) Me₃SiC=CC=CH, PdCl₂(PPh₃)₂, CuI, NEt₃; (d) MeI, 145 °C.

SCHEME 3^a

^a Reagents and conditions: (a) Me₃SiC≡CH, PdCl₂(PPh₃)₂, CuI, NEt₃; (b) K₂CO₃, MeOH, THF; (c) MeI, 145 °C.

comparison. Ethyne units are both readily available and easier to work with compared to butadiynes. The corresponding (2-iodophenyl)triazenes were first treated with (trimethylsilyl)acetylene under Sonogashira conditions, then cleavage of the trimethylsilyl group was accomplished with K_2CO_3 in MeOH/THF. Compounds **14** and **15** were stable under ambient conditions and could be kept on the benchtop for weeks without apparent decomposition.

Switching to a monoalkyne on the phenyltriazene produced slightly different results upon heating in MeI. When **14** was used in place of **3**, the 2*H*-indazole dimer was produced in 40% yield as a ca. 2:1 ratio of trans (**16**) and cis isomers (**17**), respectively (Scheme 3). Similarly,

cyclization of **15** gave a ca. 1:1 ratio of dimers **18** and **19**. Recrystallization from EtOH of both sets of dimers resulted in total conversion to the trans isomers, as confirmed for **16** by X-ray analysis (see the Supporting Information). Another unexpected side product, an isoindazole aldehyde (**20**, **21**), was also obtained in low yield in both reactions. This result suggested that the reactive intermediate, most likely a carbene,¹² could also be trapped by an oxygen atom source before dimerization occurred.

Solvent Studies. Since MeI as solvent severely limited the scope of this unusual transformation, we began exploring different media. Heating cyanophenyltriazene **3** to 160–170 °C for 48 h in several common solvents

SCHEME 4 NEt₂ SiMe₃ N^{⊊Ń} ODCB 165 °C 24 h 3 (R=CN) 6 (R=H) NEt₂ .SiMe₃ NEt₂ Me 'n (R=CN, 0%) 22 (R=CN, 96%) 23 (R=H, 31%) 24 (R=H, 18%)

resulted either in no reaction (EtOAc, CHCl₃, benzene, toluene, MeCN) or a complex mixture of byproducts (DMF, DMSO). Since the reaction consistently gave isoindazole products close to 145 °C, we then focused on solvents with boiling points above this temperature and with polarity similar to MeI. We found that heating 3 in o-dichlorobenzene (ODCB) successfully gave an isoindazole product, but not the expected dimer. Instead, acyl-2*H*-indazole **22** (Scheme 4) was produced in high yield. Repeating this experiment with compound 6 gave the corresponding indazole 23 along with the likely intermediate in the acylindazole formation, propioloylindazole 24 (Scheme 4). NMR and mass spectral analysis corroborated the structure of these acyl products. Although inclusion of oxygen in these molecules was consistent with the aldehydes obtained previously, loss of the SiMe₃ protecting group as well as one methine unit from 22 and 23 was curious; a reasonable mechanism for this transformation is not readily obvious.

Thermolysis Studies. The results using ODCB encouraged us to begin a systematic study of the thermal cyclization of (2-ethynylphenyl)triazenes. This type of system was used in preference to butadiynyl moieties as (trimethylsilyl)acetylene is more readily available than (trimethylsilyl)buta-1,3-diyne. Also, given the unusual formation of 22 and 23, monoyne-containing systems seemed to be the better choice. Compounds 25-32 (Scheme 5) were synthesized in four steps in moderate to excellent overall yield from the corresponding 4-substituted anilines via iodotriazenes 33-39. The parent (2ethynylphenyl)triazene (R = H) was prepared as previously described.^{6b} The reaction sequence shown in Scheme 5 is a remarkably efficient process in that purification needed after each step was minimal. The compounds formed are stable to ambient conditions, and 6-8 g quantities of 25-32 have been synthesized.

To study compounds with more electron-donating substituents on the phenyl ring, methoxy- and acetoxyphenyltriazenes **40** and **41**, respectively, were prepared from 4-amino-3-iodophenol¹⁶ (**42**, Scheme 6). After the phenol was converted to the methyl ether or the acetyl ester, the corresponding iodotriazenes **43** and **44** were prepared by the usual method in good yield. Subsequent cross-coupling with (trimethylsilyl)acetylene and desily-

(16) Kvalnes, D. E. J. Am. Chem. Soc. 1934, 56, 667-670.

^a Reagents and conditions: (a) BTEA·ICl₂, CaCO₃, MeOH, THF; (b) (i) HCl, NaNO₂, (ii) Et₂NH, K₂CO₃, H₂O, MeCN; (c) Me₃SiC≡CH, PdCl₂(PPh₃)₂, CuI, NEt₃; (d) K₂CO₃, MeOH, THF.

SCHEME 6^a

^a Reagents and conditions: (a) MeI, Cs_2CO_3 , DMF; (b) (i) HCl, NaNO₂, (ii) Et₂NH, K₂CO₃, H₂O, MeCN; (c) Me₃SiC≡CH, PdCl₂-(PPh₃)₂, CuI, NEt₃; (d) K₂CO₃, MeOH, THF; (e) Ac₂O, pyr; (f) Bu₄NF, EtOH, THF.

lation with K_2CO_3 in MeOH or Bu_4NF gave triazenes **40** and **41** in 84% and 36% overall yield, respectively.

Unlike their butadiynyl counterparts, the (2-ethynylphenyl)triazenes typically gave a mixture of two different heterocycles when heated to 170 °C in ODCB for 24 h (Table 1). In most cases, both 5-substituted 3-formyl-2-diethyl-2*H*-indazoles (**20**, **45–53**) and 6-substituted cinnolines (**56–65**) were isolated (Scheme 7). Two notable exceptions are the (2-ethynylphenyl)triazenes with electron-donating oxygen groups, i.e., **40** and **41**. No cinnoline products were observed after heating to 170 °C, and the isoindazole products were obtained in surprisingly high yield (Table 1, entries k and l).

Interestingly, the above conditions are atypical of traditional syntheses of cinnolines.¹⁷ Strong acids and polar solvents are usually necessary to produce a diazonium species susceptible to nucleophilic attack by an activated ortho-carbon nucleophile. Diazonium salts are either formed from anilines or regenerated from triazenes. Acyl groups are common nucleophiles (through enols), although the most prevalent syntheses involve an acetylene. The latter is known as a Richter cyclization and occurs by nucleophilic attack by an oxygen or halogen

TABLE 1. Yields of Isoindazoles and Cinnolines

entry	R	isoindazole ^{a,b}	cinnoline ^{a,c}
а	Н	45 , 55% [95%]	56 , 35% (99%)
b	Me	46 , 20% [90%]	57 , 51% (97%)
с	t-Bu	47, 22% [96%]	58, 61% (98%)
d	C≡CH	48 , 36% [91%]	59 , 39% (83%)
е	Br	49 , 15% [98%]	60 , 70% (98%)
f	Cl	50 , 14% [95%]	61, 58% (97%)
g	F	51 , 25% [94%]	62 , 35% (90%)
h	CO ₂ Me	52 , 63% [83%]	63 , 28% (96%)
i	CN	20 , 50% [85%] ^d	64 , 45% (98%)
i	NO_2	53 , 60% [78%] ^e	65, 25% (93%)
k	OMe	54 , 85% [98%]	66 , 0% (0%) ^f
1	OAc	55, 89% [86%]	67 , 0% (0%) ^f

^{*a*} Yield at 170 °C. ^{*b*} Yield of CuCl-promoted reaction in brackets. ^{*c*} Yield at 200 °C in parentheses. ^{*d*} Reaction run at rt; at 50 °C, the yield of **20** dropped to 60% and was accompanied by 34% yield of dimer **16**. ^{*e*} Reaction run at rt; at 50 °C, the yield of **53** dropped to 54% and was accompanied by 37% yield of dimer **18**' (Et₂N in place of piperidine). ^{*f*} Only isoindazole was generated under all reaction conditions.

SCHEME 7

source on the acetylene, inducing cyclization with the nearby electron-deficient diazonium species similar to a Michael addition.¹⁸ A similar mechanism is unlikely in our system since no strong proton donor is available to regenerate the diazonium salt. Also, the cinnolines formed do not incorporate oxygen or nitrogen nucleophiles even when these are present in reaction mixtures.¹³

For all triazenes, the isoindazole dimers seen in cyclizations performed in MeI were either not produced or obtained only in trace amounts. Examination of the ratio of cinnoline to isoindazole for each system showed a difference in the yield of each heterocycle depending on the electronic nature of the para substituent (Table 1). For most of the compounds, the cinnoline product was generated in preference to or in equal quantities to the isoindazole. The largest yields of isoindazole resulted from the starting phenyltriazenes with either strongly donating or strongly withdrawing groups on the benzene ring. The product ratio could be controlled with temperature. Heating the reaction to 195–205 °C furnished only

 TABLE 2. Cyclization of 26 in the Presence of Various

 Metal Salts^a

metal salt	yield of 47 ^a (%)	metal salt	yield of 47 ^a (%)
CuI	75	Cu ₂ O	71
CuCl	87	$Rh_2(OAc)_4$	32
CuCl ₂	71	ZnCl ₂	43
Cu(OAc) ₂	67		

 a Conditions: ${\bf 26}$ (1 equiv), metal salt (1 equiv), CH_2Cl_2 (25 mL), 48 h, rt.

the cinnoline for entries a-j. Under these conditions, the cinnolines were generated in excellent yield. Heating **40** or **41** (entries k and l) to 200 °C in ODCB, however, again did not give the cinnoline products in observable amounts. Interestingly, more than half of the 6-substituted cinnolines are new compounds despite their simple structures. Aside from the parent heterocycle, which is commercially available, our method permits much easier access to the known cinnolines (**60**,¹⁹ **61**,²⁰ **65**²¹) and in considerably higher overall yields. Compounds **63** and **64** reflect the versatility of this cyclization as their acid-sensitive functionalities would not survive the harsh conditions typical of previous cinnoline syntheses.¹⁷

Optimizing Isoindazole Formation. The above observations suggest that, of the two heterocycles that result from the thermal cyclization of (2-ethynylphenyl)-triazenes, the cinnoline is the thermodynamically favored product. Encouraged by the high yields of **56–65**, we sought to find conditions suitable for the facile production of the "kinetic" heterocycles **20** and **45–54**. Several factors pointed to a carbene mechanism for isoindazole formation,^{11–13} such as neutral conditions, relatively high temperatures, alkene dimers (e.g., **5**, **18**), and oxygentrapped products (e.g., **20**, **24**).

Copper salts have been known for some time to stabilize carbene intermediates and allow their reactions to be performed at lower temperatures.²² Thus, the cyclization of 14 in the presence of CuI was examined as a test case. Heating a solution of 14 in ODCB to 120-130 °C in the presence of CuI did produce a slightly higher yield of isoindazole 20; however, several new products were also generated.²³ Lowering the temperature further to 50 °C gave a higher yield of 20; more importantly, cinnoline 64 was no longer detected. Stirring **26** in the presence of copper salts resulted in isoindazole formation in good vield at room temperature (Table 2). Rhodium and zinc salts resulted in some isoindazole formation, but the material contained numerous other products. Whereas the reaction mixture would eventually become discolored as the isoindazole was generated over 16-30 h using copper salts, rhodium and zinc salts caused immediate discoloration, with the starting material consumed in less than 30 min (as monitored by NMR spectroscopy). Optimization of the conditions led to the

(21) Morley, J. S. J. Chem. Soc. 1951, 1971–1975.

^{(17) (}a) Simpson, J. C. E. In *The Chemistry of Heterocyclic Compounds. Condensed Pyridazine and Pyrazine Rings (Cinnolines, Phthalazines, and Quinoxalines)*; Weisberger, A., Ed.; Interscience Publishers: New York, 1953; pp 3–65. (b) van der Plas, H. C.; Bourman, D. J.; Vos, C. M. *Recl. Trav. Chim. Pays-Bas* **1978**, *97*, 50–51. (c) Dowlatshahi, H. A. *Synth. Commun.* **1985**, *15*, 1095–1110. (d) Vasilevsky, S. F.; Tretyakov, E. V. *Liebigs Ann.* **1995**, 775–779. (e) Tretyakov, E. V.; Knight, D. W.; Vasilevsky, S. F. *J. Chem. Soc., Perkin Trans. 1* **1999**, *24*, 3721–3726. (f) Bräse, S.; Dahmen, S.; Heuts, J. *Tetrahedron Lett.* **1999**, *40*, 6201–6203.

⁽¹⁸⁾ von Richter, V. Chem. Ber. 1883, 16, 677-683.

⁽¹⁹⁾ Schofield, K.; Swain, T. J. Chem. Soc. 1950, 392-395.

⁽²⁰⁾ Osborn, A. R.; Schofield, K. J. Chem. Soc. **1956**, 4207–4213.

⁽²²⁾ For use of copper as a carbene stabilizer, see: (a) Stechl, H.-H. *Chem. Ber.* **1964**, *97*, 2681–2688. (b) Nozaki, H.; Moriuti, S.; Takaya, H.; Noyori, R. *Tetrahedron Lett.* **1966**, 5239–5244.

⁽²³⁾ One of these products was isolated and a suitable crystal was grown for X-ray analysis. The compound was a multi-ring trimeric heterocycle that further implicated a carbene intermediate in isoin-dazole formation. This compound will be published in the full mechanistic paper.

use of 5 equiv of CuCl as the carbene (carbenoid) stabilizer, 1,2-dichloroethane as the solvent, and a reaction temperature of 50 °C for complete conversion to the isoindazole in 12-36 h. Excellent yields were obtained in most instances (Table 1). The exceptions were with strongly electron-withdrawing systems (20, 53), where dimer formation (16, 18') was a competitive side reaction at 50 °C; however, if the cyclization was conducted for 3 d at room temperature, the yields of 20 and 53 increased to 85 and 78%, respectively, along with trace amounts of dimer. Although using 5 equiv of CuCl gives complete, exclusive production of isoindazole, the reaction can be done in the presence of catalytic amounts of CuCl using longer reaction times. For example, stirring a mixture of 28 and 10 mol % CuCl for 3 d resulted in nearly quantitative formation of 49.

Conclusions

A novel route for the selective synthesis of 2*H*-indazoles and cinnolines from (2-alkynylphenyl)triazenes has been developed. Unlike previous methods, these cyclizations are done under neutral conditions that allow for greater versatility and functional group tolerance. The ability to generate both the isoindazole and the cinnoline from the same starting material under the same conditions is unique to our system. This reaction is also temperature sensitive, allowing for either heterocycle to be synthesized in excellent yield by increasing the reaction temperature or adding CuCl. We are currently working on extending this new methodology for the construction of other heterocyclic compounds.

Experimental Section

General Methods. Reagents and instrumentation used have been described previously. $^{\rm 6d,e}$

General Iodination Procedure A. The starting aniline (1 equiv), BTEA·ICl₂ (1.15 equiv), and CaCO₃ (1.5 equiv) were dissolved in 5:1 CHCl₃/MeOH (0.1 M) and either stirred at rt or heated to reflux under N₂ for 24 h. The resulting mixture was filtered, and the solvent was evaporated. The crude product was redissolved in Et₂O and washed successively with NaHSO₃ (5% by weight) and water. The combined organics were dried (MgSO₄), filtered, and concentrated to afford the desired product in sufficiently pure form for further use.

General Triazene Formation Procedure B. The iodoaniline (1 equiv) was dissolved in a minimum amount of MeCN, after which HCl (12 M, 8 equiv) and ice (~2 g) were added. The suspension was cooled to -5 °C, and a solution of NaNO₂ (2.2 equiv) in 3:1 water/MeCN (2 M) was added slowly such that the temperature remained between -5 and -2 °C. Once the addition was complete, the solution was stirred at -5 °C for 30 min, after which time it was transferred slowly via cannula to a quench solution of Et₂NH (10 equiv), K₂CO₃ (5 equiv), and 3:1 water/MeCN (0.1 M) cooled to 0 °C. Once the transfer was complete, the mixture was allowed to gradually warm to rt overnight. The mixture was diluted with water and extracted with Et₂O. The combined organics were dried (MgSO₄), filtered, and concentrated. Column chromatography on silica gel gave the desired product.

General Acetylene Coupling Procedure C. The (2iodophenyl)triazene (1 equiv), $PdCl_2(PPh_3)_2$ (0.04 equiv), CuI (0.07 equiv), and either (trimethylsilyl)-1,3-butadiyne or (trimethylsilyl)acetylene (TMSA, 1.5 equiv) were dissolved in NEt₃ (0.1 M solution based on triazene). The mixture was immediately degassed by three successive freeze-pump-thaw cycles, and the flask was charged with N₂. The mixture was heated to 50 °C and stirred under $\rm N_2$ overnight. After cooling, the solvent was evaporated and the crude product was redissolved in 10–50% $\rm CH_2\rm Cl_2$ in hexanes and vacuum filtered through a pad of silica gel. The solvent was evaporated to yield the product that was either purified by column chromatography on silica gel (butadiynes) or immediately desilylated as below (ethynes).

General Desilylation Procedure D. The [2-(trimethylsilyl)ethynylphenyl]triazene (1 equiv) and K_2CO_3 (10 equiv) were dissolved in THF/MeOH (5:1 v/v, 0.1 M) and the mixture was stirred at rt for 4 h. The reaction was diluted with Et_2O and washed with saturated NH₄Cl solution. The organic layer was dried (MgSO₄), filtered, and concentrated. Column chromatography on silica gel gave the desired product.

General Cinnoline Formation Procedure E. To a sealable glass pressure tube was added the (2-ethynylphenyl)triazene in 1,2-dichlorobenzene (0.05 M). The tube was sealed and heated to 200 °C with stirring overnight. After cooling, the solvent was evaporated and the crude product was purified by preparative TLC to yield the cinnoline.

General Isoindazole Formation Procedure F. The (2ethynylphenyl)triazene (0.2 mmol) was dissolved in 1,2dichloroethane (30 mL), and CuCl (1 mmol) was added. The mixture was heated to 50 °C for 12–36 h. After cooling, the metal salts were removed by vacuum filtration through a pad of silica gel, eluting with 1:1 hexanes/CH₂Cl₂. The solvent was evaporated, and the crude product was purified by preparative TLC to yield the isoindazole.

1-(4-Cyano-2-iodophenyl)-3,3-diethyl-1-triazene (8). Aminobenzonitrile (5 g, 42.3 mmol), BTEA·ICl₂ (30 g, 76.9 mmol), and CaCO₃ (8.5 g, 84.9 mmol) were reacted using general procedure A (done at reflux). The product was immediately combined with HCl (9 mL, 110 mmol), NaNO₂ (1.78 g, 25.8 mmol), Et₂NH (14 mL, 135 mmol), and K₂CO₃ (6.87 g, 52 mmol) using general procedure B. Concentration of the organic layer furnished 8 (3.62 g, 89%) as a brown solid in sufficiently pure form for further elaboration: mp 78.1-79.8 °C; ¹H NMR $(CDCl_3) \delta 8.09 (d, J = 1.8 Hz, 1H), 7.53 (dd, J = 7.8, 1.8 Hz, 1H)$ 1H), 7.41 (d, J = 7.8 Hz, 1H), 3.85 (q, J = 7.2 Hz, 4H), 1.37 (t, J = 7.2 Hz, 3H), 1.32 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃) δ 153.85, 142.62, 132.32, 118.07, 117.13, 108.91, 95.82, 49.87, 42.99, 14.38, 10.78; IR (KBr) 3083, 2224 cm⁻¹; HRMS calcd for C11H13IN4 329.0263, found 329.0263. Anal. Calcd for C11H13-IN₄ (328.15): C, 40.26; H, 3.99; N, 17.07. Found: C, 40.36; H, 3.83; N, 16.81.

1-[4-Cyano-2-[(4-trimethylsilyl)buta-1,3-diynyl]phenyl]-3,3-diethyl-1-triazene (3). Iodide **8** (1.67 g, 5.10 mmol), 1-(trimethylsilyl)-1,3-butadiyne (810 mg, 6.63 mmol), PdCl₂-(PPh₃)₂ (215 mg, 0.31 mmol), and CuI (136 mg, 0.71 mmol) were reacted using general procedure C. Chromatography on silica gel (6:1 hexanes/EtOAc, $R_f = 0.21$) gave **3** (1.54 g, 94%) as a dark red oil: ¹H NMR (CDCl₃) δ 7.72 (t, J = 0.9 Hz, 1H), 7.48 (d, J = 1.2 Hz, 2H), 3.85 (q, J = 7.2 Hz, 4H), 1.37 (t, J =7.5 Hz, 3H), 1.30 (t, J = 6.9 Hz, 3H), 0.23 (s, 9H); ¹³C NMR (CDCl₃) δ 157.17, 137.74, 132.74, 118.60, 117.65, 107.41, 91.78, 87.80, 79.39, 73.22, 49.84, 42.75, 14.35, 10.63, -0.42; IR (neat) 3069, 2226, 2201, 2101, 1593 cm⁻¹; HRMS calcd for C₁₈H₂₃N₄Si 323.1692, found 323.1695.

3,3-Diethyl-1-[2-[(4-trimethylsilyl)buta-1,3-diynyl]phenyl]-1-triazene (6). Iodide **9**^{6b} (1.02 g, 3.36 mmol), 1-(trimethylsilyl)-1,3-butadiyne (523 mg, 4.28 mmol), PdCl₂(PPh₃)₂ (144 mg, 0.21 mmol), and CuI (72 mg, 0.38 mmol) were reacted using general procedure C. Chromatography on silica gel (5:1 hexanes/CH₂Cl₂, R_f = 0.18) gave **6** (361 mg, 36%) as a tan oil: ¹H NMR (CDCl₃) δ 7.47 (dd, J = 7.8, 1.2 Hz, 1H), 7.37 (dd, J = 8.1, 0.9 Hz, 1H), 7.28 (td, J = 7.2, 1.5 Hz, 1H), 7.03 (td, J = 7.8, 1.5 Hz, 1H), 3.80 (q, J = 7.2 Hz, 4H), 1.32 (t, J = 6.6 Hz, 6H), 0.22 (s, 9H); ¹³C NMR (CDCl₃) δ 154.45, 133.85, 129.80, 124.55, 117.29, 116.02, 90.15, 88.59, 77.76, 75.91, 49.08, 41.88, 14.46, 10.78, -0.30; IR (neat) 3066, 2200, 2100 cm⁻¹; HRMS calcd for C₁₇H₂₄N₃Si 298.1740, found 298.1740.

1-[4-Nitro-2-[(4-trimethylsilylbuta-1,3-diynyl]phenyl]azopiperidine (7). Iodide **10**^{6a} (200 mg, 0.56 mmol), 1-(trimethylsilyl)-1,3-butadiyne (85 mg, 0.69 mmol), PdCl₂(PPh₃)₂ (23 mg, 0.03 mmol), and CuI (15 mg, 0.08 mmol) were reacted using general procedure C. Chromatography on silica gel (3:1 hexanes/CH₂Cl₂, $R_f = 0.33$) provided **7** (173 mg, 88%) as a bright yellow powder: mp 161.3–163.6 °C; ¹H NMR (CDCl₃) δ 8.36 (d, J = 2.7 Hz, 1H), 8.10 (dd, J = 9.3, 2.4 Hz, 1H), 7.57 (d, J = 9.0 Hz, 1H), 4.04 (br s, 2H), 3.90 (br s, 2H), 1.78 (br s, 6H), 0.24 (s, 9H); ¹³C NMR (CDCl₃) δ 158.61, 144.20, 130.23, 125.15, 117.39, 116.88, 92.37, 80.06, 79.70, 73.46, 53.99, 44.66, 26.75, 24.84, 24.34, -0.14; IR (KBr) 3080, 2200, 2098, 1600, 1571, 1332, 1097 cm⁻¹; HRMS calcd for C₁₈H₂₃N₄O₂Si 355.1590, found 355.1589.

Cyano Dimer 5. To a sealable glass pressure tube were added 3 (1.10 g, 3.41 mmol) and MeI (40 mL). The tube was sealed and heated overnight at 145 °C. After cooling, the solvent was evaporated, and the crude product was purified by chromatography on silica gel (5:1 hexanes/EtOAc, R_f = 0.31) to give 5 (363 mg, 33%) as a light yellow solid: mp 239.8-241.5 °C; ¹H NMR (CDCl₃) δ 8.22 (br s, 2H), 7.80 (d, J = 9.0 Hz, 2H), 7.48 (dd, J = 9.0, 1.5 Hz, 2H), 3.38 (q, J = 6.9 Hz, 8H), 1.02 (t, J = 6.6 Hz, 12H), -0.23 (s, 18H); ¹³C NMR (CDCl₃) & 146.16, 132.96, 129.49, 126.77, 123.13, 119.87, 119.39, 117.39, 108.88, 105.25, 101.23, 51.97, 12.21, -1.16; IR (KBr) 3068, 2226, 2155, 1629 cm⁻¹; HRMS calcd for C₃₆H₄₅N₈-Si₂ 645.3306, found 645.3308. Anal. Calcd for C₃₆H₄₄N₈Si₂ (644.96): C, 67.04; H, 6.88; N, 17.37. Found: C, 66.79; H, 6.86; N, 17.45. Isolation of an earlier band afforded iodide 4 (11 mg, 10%) as a white solid: mp 109.2-110.9 °C; ¹H NMR (CDCl₃) δ 7.89 (d, J = 8.2 Hz, 1H), 7.69 (d, J = 2.1 Hz, 1H), 7.26 (dd, J = 8.2, 2.1 Hz, 1H), 0.26 (s, 9H); ¹³C NMR (CDCl₃) δ 139.94, 136.48, 132.17, 130.23, 117.27, 112.46, 106.90, 94.72, 86.76, 79.86, 75.46, -0.54; IR (KBr) 3060, 2232, 2099 cm⁻¹; HRMS calcd for C14H13INSi 349.9862, found 349.9869. Anal. Calcd for C₁₄H₁₂INSi (349.24): C, 48.15; H, 3.46; N, 4.01. Found: C, 48.32; H, 3.51; N, 3.82.

4-Iodo-3-[(4-trimethylsilyl)buta-1,3-diynyl]benzonitrile (4). A solution of **3** (250 mg, 0.78 mmol) in MeI (10 mL) was heated at 160 °C overnight in a sealed glass pressure tube. After cooling, the solvent was evaporated and the residue purified by chromatography on silica gel (3:2 hexanes/CH₂Cl₂, R_f = 0.36) to give **4** (268 mg, 98%) as a white solid. The spectral data were identical to those given above.

Nitro Dimer 11. To a sealable glass pressure tube were added 7 (50 mg, 0.14 mmol) and MeI (5 mL). The tube was sealed and heated at 145 °C with stirring for 48 h. After cooling, the solvent was evaporated, and the crude product was purified by chromatography on silica gel (1:1 hexanes/CH₂Cl₂, $R_f = 0.05$) to give **11** (18 mg, 36%) as a pale yellow solid: mp 247–249 °C dec; ¹H NMR (CDCl₃) δ 8.93 (d, J = 2.1 Hz, 2H), 8.18 (dd, J = 9.6, 2.1 Hz, 2H), 7.81 (d, J = 9.3 Hz, 2H), 3.40 (br s, 8H), 1.97 (br s, 8H), 1.70 (br s, 4H), -0.22 (s, 18H); ¹³C NMR (CDCl₃) & 147.05, 143.03, 132.94, 121.95, 120.68, 120.37, 118.98, 116.88, 108.09, 100.44, 56.42, 26.01, 23.36, -1.07; IR (KBr) 3103, 2155, 1326 cm⁻¹; HRMS calcd for $C_{36}H_{45}N_8O_4Si_2$ 709.3102, found 709.3097. Anal. Calcd for C36H44N8O4Si2 (708.97): C, 60.99; H, 6.26; N, 15.81. Found: C, 60.88; H, 6.16; N, 15.97. Isolation of an earlier band afforded iodide 12 (14 mg, 27%) as a beige solid: mp 185.1-186.4 °C; ¹H NMR (CDCl₃) δ 8.27 (d, J = 2.6 Hz, 1H), 8.04 (d, J = 8.8 Hz, 1H), 7.84 (dd, J = 8.8, 2.6 Hz, 1H), 0.26 (s, 9H); ¹³C NMR (CDCl₃) δ 147.74, 139.97, 130.31, 128.16, 124.08, 109.11, 94.91, 86.71, 79.97, 75.54, $-0.55;\ IR$ (KBr) 3095, 2100, 1348 $cm^{-1}.$ Anal. Calcd for C13H12INO2Si (369.24): C, 42.29; H, 3.28; N, 3.79. Found: C, 42.34; H, 3.25; N, 3.68.

1-Iodo-4-nitro-2-[(4-trimethylsilyl)buta-1,3-diynyl]benzene (12). A solution of 7 (300 mg, 0.85 mmol) in MeI (10 mL) was heated to 160 °C overnight in a sealed glass pressure tube. After cooling, the solvent was evaporated and the residue purified by chromatography on silica gel (3:2 hexanes/CH₂Cl₂, $R_f = 0.25$) to give **12** (306 mg, 98%) as beige needles. The spectral data were identical to those given above.

1-Iodo-2-[(4-trimethylsilyl)buta-1,3-diynyl]benzene (13). To a sealable glass pressure tube were added **6** (400 mg, 1.34 mmol) and MeI (10 mL). The tube was sealed and heated to 125 °C overnight. After cooling, the solvent was evaporated and the residue purified by chromatography on silica gel (9:1 hexanes/CH₂Cl₂, $R_f = 0.30$) to give **13** (429 mg, 95%) as a yellow oil: ¹H NMR (CDCl₃) δ 7.83 (d, J = 7.9 Hz, 1H), 7.48 (d, J = 7.6 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.03 (t, J = 7.9 Hz, 1H), 0.25 (s, 9H); ¹³C NMR (CDCl₃) δ 138.81, 134.13, 130.26, 128.30, 127.80, 100.81, 92.56, 87.50, 77.79, 77.52, -0.43; IR (KBr) 3062, 2205, 2102 cm⁻¹.

1-(4-Cyano-2-ethynylphenyl)-3,3-diethyltriazene (14). Iodide **8** (250 mg, 0.76 mmol), TMSA (0.14 mL, 0.95 mmol), PdCl₂(PPh₃)₂ (43 mg, 0.06 mmol), and CuI (20 mg, 0.11 mmol) were reacted using general procedure C. The crude product was immediately treated with K₂CO₃ (1.3 g, 9.8 mmol) using general procedure D. Chromatography on silica gel (9:1 hexanes/EtOAc, $R_f = 0.35$) gave **14** (152 mg, 88%) as a yellow powder: mp 47.1–48.5 °C; ¹H NMR (CDCl₃) δ 7.76 (s, 1H), 7.51–7.49 (m, 2H), 3.84 (q, J = 7.0 Hz, 4H), 3.32 (s, 1H), 1.36 (t, J = 7.0 Hz, 3H), 1.28 (t, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃) δ 156.02, 137.52, 132.53, 118.76, 117.95, 117.49, 107.40, 82.62, 79.91, 49.72, 42.53, 14.36, 10.67; IR (neat) 3292, 3070, 2226, 2108 cm⁻¹; HRMS calcd for C₁₃H₁₅N₄ 227.1297, found 227.1298. Anal. Calcd for C₁₃H₄N₄ (226.28): C, 69.00; H, 6.24; N, 24.76. Found: C, 68.77; H, 6.07; N, 24.50.

1-(2-Ethynyl-4-nitrophenyl)azopiperidine (15). Iodide 10 (300 mg, 0.83 mmol), TMSA (0.15 mL, 1.08 mmol), PdCl₂- $(PPh_3)_2\ (35\ mg,\ 0.05\ mmol),\ and\ CuI\ (19\ mg,\ 0.10\ mmol)\ were$ reacted using general procedure C. The crude product was vacuum filtered through a pad of silica gel eluting with CH₂-Cl₂. The solvent was evaporated, and the residue was immediately treated with K₂CO₃ (1.65 g, 12.5 mmol) using general procedure D. Chromatography on silica gel (3:2 hexanes/CH₂Cl₂, $R_f = 0.24$) furnished **15** (154 mg, 72%) as a yellow solid: mp 96–98.5 °C; ¹H NMR (CDCl₃) δ 8.35 (d, J = 2.7Hz, 1H), 8.09 (dd, J = 9.3, 2.4 Hz, 1H), 7.57 (d, J = 9.0 Hz), 1H), 4.01 (br s, 2H), 3.87 (br s, 2H), 3.36 (s, 1H), 1.74 (s, 6H); 13 C NMR (CDCl₃) δ 157.53, 144.16, 129.69, 124.85, 117.63, 117.07, 83.21, 80.07, 53.90, 44.51, 26.69, 24.76, 24.33; IR (KBr) 3300, 3111, 2109, 1599, 1324 cm⁻¹; HRMS calcd for C13H15N4O2 259.1195, found 259.1201. Anal. Calcd for C13H14N4O2 (258.28): C, 60.45; H, 5.46; N, 21.69. Found: C, 60.27; H, 5.65; N, 21.78.

Cyano Dimer 16. To a sealable glass pressure tube were added 14 (50 mg, 0.22 mmol) and MeI (8 mL). The tube was sealed and stirred at 125 °C for 48 h. After cooling, the solvent was evaporated and the crude product was purified by preparative TLC (7:3 hexanes/EtOAc) to give a 2:1 mixture of 16 and 17 (20 mg, 40%) as a light yellow solid. Recrystallization of the mixture from EtOH yielded trans dimer 16 exclusively: mp 224.6–226.4 °C; ¹H NMR (CDCl₃) δ 8.41– 8.40 (m, 2H), 7.93 (s, 2H), 7.82 (dd, J = 8.7, 0.9 Hz, 2H), 7.53 (dd, J = 8.7, 1.5 Hz, 2H), 3.48 (s, 2H), 3.36 (s, 2H), 0.90 (t, J= 7.2 Hz, 6H); ¹³C NMR (CDCl₃) δ 146.66, 135.41, 128.08, 127.41, 120.02, 119.58, 118.16, 116.66, 106.03, 52.68, 12.15; IR (KBr) 3071, 2220, 1620 cm⁻¹; HRMS calcd for C₂₆H₂₈N₈ 452.2437, found 452.2437. Anal. Calcd for C₂₆H₂₈N₈ (452.55): C, 69.00; H, 6.24; N, 24.67. Found: C, 68.95; H, 6.16; N, 24.49. Isolation of a second band furnished aldehyde 20 (5 mg, 9%) as a yellow powder: mp 165.8–167.2 °C; ¹H NMR (CDCl₃) δ 10.41 (s, 1H), 8.66 (t, $\hat{J} = 1.1$ Hz, 1H), 7.88 (dd, J = 8.7, 0.9Hz, 1H), 7.56 (dd, J = 8.7, 1.5 Hz, 1H), 3.46–3.34 (m, 4H), 0.90 (t, J = 7.2 Hz, 6H); ¹³C NMR (CDCl₃) δ 180.99, 146.03, 133.62, 128.67, 128.22, 119.70, 118.75, 109.68, 52.81, 11.98; IR (KBr) 3077, 3026, 2227, 1670, 1627 cm⁻¹; HRMS calcd for C13H15N4O 243.1246, found 243.1245. Anal. Calcd for C13H14N4O (242.28): C, 64.18; H, 6.21; N, 23.03. Found: C, 64.20; H, 5.94; N, 22.91.

Nitro Dimer 18. To a sealable glass pressure tube were added 15 (52 mg, 0.20 mmol) and MeI (5 mL). The tube was sealed and stirred overnight at 150 °C. After cooling, the solvent was evaporated and the crude product was purified by preparative TLC (1:1 hexanes/CH₂Cl₂) to give a 1:1 mixture of 18 and 19 (26 mg, 52%) as an orange solid. Recrystallization of the mixture from EtOH yielded trans dimer 18 exclusively: mp 351-352 °C dec; ¹H NMR (CDCl₃) δ 9.12 (d, J = 2.4 Hz, 2H), 8.23 (dd, J = 9.6, 2.1 Hz, 2H), 8.11 (s, 2H), 7.82 (d, J =9.3 Hz, 2H), 3.39-3.35 (m, 8H), 2.06-1.98 (m, 8H), 1.72 (s, 4H); ¹³C NMR (CDCl₃) δ 147.65, 143.80, 134.05, 121.07, 119.67, 119.28, 118.03, 116.55, 56.90, 26.39, 23.57; IR (KBr) 3099, 3080, 1616, 1327 cm⁻¹; HRMS calcd for C₂₆H₂₈N₈O₄ 516.2234, found 516.2235. Anal. Calcd for C₂₆H₂₈N₈O₄ (516.55): C, 60.45; H, 5.46; N, 21.69. Found: C, 60.34; H, 5.38; N, 21.88. Isolation of a second band furnished aldehyde 21 (7 mg, 13% yield) as a dark orange powder: mp 172.9-173.7 °C; ¹H NMR (CDCl₃) δ 10.44 (s, 1H), 9.11 (d, J = 1.5 Hz, 1H), 8.19 (dd, J = 9.3, 2.1 Hz, 1H), 7.86 (d, J = 9.3 Hz, 1H), 3.39 (t, J = 5.7 Hz, 4H), 1.95–1.87 (m, 4H), 1.69–1.65 (m, 2H); $^{13}\mathrm{C}$ NMR (CDCl₃) δ 180.30, 146.53, 146.00, 131.45, 121.27, 119.44, 119.36, 118.49, 57.50, 25.70, 23.02; IR (KBr) 3099, 3084, 1668, 1624, 1339 cm⁻¹; HRMS calcd for $C_{13}H_{15}N_4O_3$ 275.1144, found 275.1143. Anal. Calcd for $C_{13}H_{14}N_4O_3$ (274.28): C, 56.93; H, 5.14; N, 21.69. Found: C, 56.48; H, 5.10; N, 21.88.

3-Acyl-5-cyano-2-diethylamino-2*H***-indazole (22).** To a sealable glass pressure tube were added **3** (50 mg, 0.16 mmol) and ODCB (5 mL). The tube was sealed and stirred at 165 °C overnight. After cooling, the solvent was evaporated and the crude product was purified by preparative TLC (4:1 hexanes/EtOAc, $R_f = 0.25$) to give **22** (26 mg, 96%) as a tan oil: ¹H NMR (CDCl₃) δ 8.70–8.69 (m, 1H), 7.79 (dd, J = 8.7, 0.9 Hz, 1H), 7.50 (dd, J = 8.7, 1.5 Hz, 1H), 3.39 (br d, 4H), 2.86 (s, 3H), 0.93 (t, J = 7.2 Hz, 6H); ¹³C NMR (CDCl₃) δ 189.35, 145.71, 134.24, 130.33, 127.76, 120.30, 119.42, 119.16, 108.93, 52.77, 30.78, 11.79; IR (neat) 3104, 3080, 2253, 2225, 1661, 1625 cm⁻¹; HRMS calcd for C₁₄H₁₇N₄O 257.1402, found 257.1403.

3-Acyl-2-diethylamino-2H-indazole (23) and 2-Diethylamino-3-(3-trimethylsilyl-2-propyn-1-oyl)-2H-indazole (24). To a sealable glass pressure tube were added 6 (63 mg, 0.21 mmol) and ODCB (5 mL). The tube was sealed and stirred at 155 °C for 48 h. After cooling, the solvent was evaporated and the crude product was purified by chromatography on silica gel (1:1 hexanes/CH₂Cl₂) to give 23 (15 mg, 31% yield, $R_f = 0.1$) as a yellow oil: ¹H NMR (CDCl₃) δ 8.25 (d, J = 8.7Hz, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.42–7.30 (m, 2H), 3.47 (br s, 2H), 3.31 (br s, 2H), 2.86 (s, 3H), 0.94 (t, J = 6.9 Hz, 6H); ¹³C NMR (CDCl₃) δ 189.68, 145.63, 133.22, 126.89, 125.72, 122.43, 121.39, 117.74, 52.63, 30.83, 11.86; IR (neat) 3072, 3056, 1659, 1625 cm⁻¹; HRMS calcd for C₁₃H₁₈N₃O 232.1450, found 232.1452. Isolation of an earlier band ($R_f = 0.18$) furnished 24 (12 mg, 18% yield) as an unstable tan oil: ¹H NMR (CDCl₃) δ 8.30 (d, J = 7.5 Hz, 1H), 7.79 (d, J = 7.8 Hz, 1H), 7.45-7.33 (m, 2H), 3.44 (br s, 2H), 3.28 (br s, 2H), 0.95 (t, J = 7.2 Hz, 6H), 0.32 (s, 9H); IR (neat) 3058, 2153, 1737, 1599, 846 cm⁻¹; HRMS calcd for C₁₇H₂₄N₃OSi 314.1689, found 314.1694.

3,3-Diethyl-1-(2-iodo-4-methylphenyl)-1-triazene (33). *p*-Toluidine (0.63 g, 5.88 mmol), BTEA·ICl₂ (2.63 g, 6.75 mol), and CaCO₃ (0.84 g, 8.41 mmol) were reacted using general procedure A (rt). The crude product was immediately treated with HCl (4 mL, 48 mmol), NaNO₂ (0.93 g, 13.4 mmol), Et₂-NH (6.21 mL, 60 mmol), and K₂CO₃ (4 g, 30 mmol) using general procedure B. Chromatography on silica gel (9:1 hexanes/CH₂Cl₂, R_f = 0.2) gave **33** (1.48 g, 79%) as a pale yellow liquit: ¹H NMR (CDCl₃) δ 7.68 (d, J = 1.3 Hz, 1H), 7.25 (d, J = 8.2 Hz, 1H), 7.08 (dd, J = 8.2, 1.3, 1H), 3.78 (q, J = 7.0 Hz, 4H), 2.29 (s, 3H), 1.32 (t, J = 7.0 Hz, 6H); ¹³C NMR (CDCl₃) δ 148.14, 139.22, 136.34, 129.46, 117.02, 96.45, 49.00 (br), 42.06 (br), 20.34, 14.10 (br), 11.09 (br); IR (neat) 3057, 3023 cm⁻¹; HRMS calcd for C₁₁H₁₇N₃I 318.0467, found 318.0470. **1-(4-***tert***-Butyl-2-iodophenyl)-3,3-diethyl-1-triazene (34).** 4-*tert*-Butylaniline (0.96 mL, 6.0 mmol) was reacted using general procedure A (rt) and general procedure B using the same quantities of reagents described for **33.** After workup, **34** (1.93 g, 89%) was obtained as a yellow oil in sufficiently pure form for further elaboration: ¹H NMR (CDCl₃) δ 7.81 (d, J = 1.7 Hz,1H), 7.29 (dd, J = 8.4, 1.7, 2H), 7.25 (d, J = 8.4 Hz, 1H), 3.76 (q, J = 7.2 Hz, 4H), 1.29 (t, J = 7.2 Hz, 6H), 1.28 (s, 9H); ¹³C NMR (CDCl₃) δ 149.80, 136.82, 135.86, 125.91, 116.91, 96.62, 49.15 (br), 41.96 (br), 34.29, 31.32, 14.54 (br), 11.22 (br); IR (neat) 3067 cm⁻¹; HRMS calcd for C₁₄H₂₃N₃I 360.0937, found 360.0938.

1-(4-Bromo-2-iodophenyl)-3,3-diethyl-1-triazene (35). 4-Bromoaniline (1.01 g, 5.88 mmol) was reacted using general procedure A (rt) and general procedure B using the same quantities of reagents described for **33**. After workup, **35** (2.06 g, 92%) was obtained as a red oil in sufficiently pure form for further elaboration: ¹H NMR (CDCl₃) δ 7.96 (d, J = 2.1 Hz, 1H), 7.38 (dd, J = 8.7, 2.1 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 3.79 (q, J = 7.2 Hz, 4H), 1.31 (br s, 6H); ¹³C NMR (CDCl₃) δ 149.52, 140.68, 131.54, 118.19, 118.13, 96.86, 49.29, 42.32, 14.49, 10.87; IR (neat) 3061 cm⁻¹; HRMS calcd for C₁₀H₁₃N₃⁷⁹-BrI 380.9338, found 380.9337.

1-(4-Chloro-2-iodophenyl)-3,3-diethyl-1-triazene (36). 4-Chloroaniline (0.75 g, 5.88 mmol) was reacted using general procedure A (rt) and general procedure B using the same quantities of reagents described for **33**. After workup, **36** (1.61 g, 81%) was obtained as a red oil in sufficiently pure form for further elaboration: ¹H NMR (CDCl₃) δ 7.81 (d, J = 2.1 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.24 (dd, J = 8.4, 1.2 Hz, 1H), 3.79 (q, J = 7.5 Hz, 4H), 1.32 (s, 6H); ¹³C NMR (CDCl₃) δ 149.12, 138.03, 130.45, 128.68, 117.69, 96.28, 49.25, 42.25, 14.49, 10.88; IR (neat) 3062 cm⁻¹; HRMS calcd for C₁₀H₁₃N₃³⁵- CII 336.9843, found 336.9838.

3,3-Diethyl-1-(4-fluoro-2-iodophenyl)-1-triazene (37). 4-Fluoroaniline (0.56 mL, 5.88 mmol) was reacted using general procedure A (rt) and general procedure B using the same quantities of reagents described for **33**. After workup, **37** (1.12 g, 59%) was obtained as a red oil: ¹H NMR (CDCl₃) δ 7.56 (dd, J = 7.9, 2.6 Hz, 1H), 7.31 (dd, J = 9.1, 5.9 Hz, 1H), 7.01 (ddd, J = 9.1, 7.9, 3.0 Hz, 1H), 3.79 (q, J = 7.1 Hz, 4H), 1.32 (t, J = 7.1 Hz, 6H); ¹³C NMR (CDCl₃) δ 159.90 (d, J = 248.8 Hz), 147.03, 125.34 (d, J = 24.1 Hz), 117.57 (d, J = 8.3 Hz), 115.62 (d, J = 22.2 Hz), 95.55 (d, J = 8.3 Hz), 49.11, 42.17, 14.53, 10.98; IR (neat) 3068 cm⁻¹; HRMS calcd for C₁₀H₁₄N₃-FI 322.0217, found 322.0226.

1-(4-Carbomethoxy-2-iodophenyl)-3,3-diethyl-1-triazene (38). Methyl 4-aminobenzoate (5.00 g, 33.1 mmol), BTEA· ICl₂ (22.1 g, 56.2 mol), CaCO₃ (5.00 g, 49.6 mmol), and CH₂Cl₂/ MeOH (300 mL, 2:1 v:v) were combined using general procedure A. The solvent volume was reduced in half by rotary evaporation, and the solution was washed with saturated Na₂S₂O₃ solution and dried (MgSO₄). Removal of the solvent yielded 9.16 g (\sim 99% yield) of product as a brown powder. The crude product (1.52 g, 5.5 mmol) was immediately dissolved in MeCN (5.0 mL) and treated with concd HCl (1.35 mL, 44.0 mmol), $NaNO_2$ (759 mg, 11.0 mmol), Et_2NH (5.7 mL, 55.0 mmol), and K₂CO₃ (4.60 g, 33.0 mmol) using general procedure B. This mixture was diluted with CH₂Cl₂, washed with saturated NaHCO₃ solution, dried (MgSO₄), and filtered. Concentration of the solution furnished **38** (1.67 g, 84%) as a yellow oil: ¹H NMR (CDCl₃) δ 8.52 (d, J = 1.8 Hz, 1H), 7.94 (dd, J = 8.7, 1.8 Hz, 1H), 7.39 (d, J = 8.7 Hz, 1H), 3.90 (s, 3H), 3.84 (q, J = 7.2 Hz, 4H), 1.37 (t, J = 7.5 Hz, 3H), 1.33 (t, J = 6.9 Hz, 3H); ¹³C NMR (CDCl₃) & 165.88, 153.87, 140.70, 140.67, 130.08, 127.54, 116.64, 95.75, 52.07, 49.60, 42.65, 14.43, 10.88; IR (neat) 3067, 1708 cm $^{-1};\ HRMS$ calcd for $C_{12}H_{16}N_3O_2I$ 361.0287, found 361.0289.

3,3-Diethyl-1-(2-iodo-4-nitrophenyl)-1-triazene (39). 4-Nitroaniline (0.94 g, 6.79 mmol), BTEA·ICl₂ (3.04 g, 7.79 mmol), and CaCO₃ (0.97 g, 9.71 mmol) were reacted using general procedure A (reflux). Chromatography on silica gel (2:1 hexanes/EtOAc, R_f = 0.4) gave the iodinated product (0.94 g). This compound was treated with HCl (2.4 mL, 29 mmol), NaNO₂ (0.56 g, 8.12 mmol), Et₂NH (3.5 mL, 34 mmol), and K₂CO₃ (2.4 g, 20 mmol) using general procedure B. Chromatography on silica gel (1:1 hexanes/CH₂Cl₂, R_f = 0.4) provided **39** (875 mg, 37%) as an orange solid: mp 71.8–73.4 °C; ¹H NMR (CDCl₃) δ 8.71 (d, J = 2.3 Hz, 1H), 8.14 (dd, J = 8.8, 2.3 Hz, 1H), 7.34 °C; ¹H NMR (CDCl₃) δ 15.71 (d, J = 7.3 Hz, 3H); ¹³C NMR (CDCl₃) δ 155.31, 144.50, 134.81, 124.17, 116.26, 95.02, 50.06, 43.20, 14.34, 10.73; IR (KBr) 3088, 3069, 1320 cm⁻¹; HRMS calcd for C₁₀H₁₄-IN₄O₂ 349.0162, found 349.0167.

3,3-Diethyl-1-(2-ethynyl-4-methylphenyl)-1-triazene (25). Iodide **33** (1.40 g, 4.41 mmol), TMSA (0.91 mL, 6.42 mmol), PdCl₂(PPh₃)₂ (235 mg, 0.34 mmol), and CuI (128 mg, 0.67 mmol) were reacted using general procedure C. The crude product was immediately treated with K₂CO₃ (10 g, 76 mmol) using general procedure D. Chromatography on silica gel (4:1 hexanes/CH₂Cl₂, $R_f = 0.15$) gave **25** (730 mg, 77%) as a deep red oil: ¹H NMR (CDCl₃) δ 7.31 (d, J = 2.3 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.09 (dd, J = 8.5, 2.1 Hz, 1H), 3.78 (q, J = 7.0 Hz, 4H), 3.23 (s, 1H), 2.30 (s, 3H), 1.30 (t, J = 7.0 Hz, 6H); ¹³C NMR (CDCl₃) δ 150.88, 134.15, 133.69, 130.29, 116.85, 116.61, 82.22, 80.35, 48.52 (br), 41.65 (br), 20.67, 14.03 (br), 10.78 (br); IR (neat) 3292, 3062, 3024, 2103 cm⁻¹; HRMS calcd for C₁₃H₁₈N₃ 216.1501, found 216.1500.

1-(4-*tert***-Butyl-2-ethynylphenyl)-3,3-diethyl-1-triazene (26).** Iodide **34** (1.93 g, 5.37 mmol), TMSA (1.9 mL, 13.6 mmol), PdCl₂(PPh₃)₂ (252 mg, 0.36 mmol), and CuI (137 mg, 0.72 mmol) were reacted using general procedure C. The crude product was immediately treated with K₂CO₃ (14 g, 100 mmol) using general procedure D. Chromatography on silica gel (4:1 hexanes/CH₂Cl₂, R_f = 0.13) gave **26** (720 mg, 52%) as a yellow oil: ¹H NMR (CDCl₃) δ 7.51 (br s, 1H), 7.32 (br s, 2H), 3.78 (q, J = 7.0 Hz, 4H), 3.23 (s, 1H), 1.31 (s, 9H), 1.30 (m, 6H); ¹³C NMR (CDCl₃) δ 150.79, 147.51, 130.17, 126.73, 116.68, 116.21, 82.69, 80.00, 48.66 (br), 41.71 (br), 34.29, 31.23, 14.09, 10.95; IR (neat) 3314, 3293, 3097, 3067, 3032, 2106 cm⁻¹; HRMS calcd for C₁₆H₂₄N₃ 258.1970, found 258.1977.

3,3-Diethyl-1-(2,4-diethynylphenyl)-1-triazene (27). Bromide **35** (500 mg, 1.3 mmol), TMSA (0.47 mL, 2.9 mmol), PdCl₂-(PPh₃)₂ (36 mg, 0.05 mmol), and CuI (35 mg, 0.18 mmol) were reacted using general procedure C. The crude product was immediately treated with K₂CO₃ (2.9 g, 22 mmol) using general procedure D. Chromatography on silica gel (3:1 hexanes/CH₂-Cl₂, $R_f = 0.21$) gave **27** (270 mg, 92%) as a yellow solid: mp 93.7–96.4 °C; ¹H NMR (CDCl₃) δ 7.64 (d, J = 1.2 Hz, 1H), 7.39–7.37 (m, 2H), 3.78 (q, J = 7.2 Hz, 4H), 3.26 (s, 1H), 3.07 (s, 1H), 1.29 (br s, 6H); ¹³C NMR (CDCl₃) δ 153.02, 137.21, 132.91, 117.92, 117.07, 116.85, 83.15, 81.26, 81.01, 77.12, 49.20 (br), 41.99 (br), 14.44 (br), 10.78 (br); IR (KBr) 3286, 3261, 3065, 3031, 2104 cm⁻¹; HRMS calcd for C₁₂H₁₆N₃ 202.1344, found 202.1341. Anal. Calcd for C₁₄H₁₅N₃ (225.29): C, 74.64; H, 6.71; N, 18.65. Found: C, 74.52; H, 6.47; N, 18.67.

1-(4-Bromo-2-ethynylphenyl)-3,3-diethyl-1-triazene (28). Bromide **35** (2.13 g, 5.58 mmol), TMSA (0.91 mL, 6.42 mmol), PdCl₂(PPh₃)₂ (186 mg, 0.26 mmol), and CuI (101 mg, 0.53 mmol) were reacted using general procedure C (stirred at rt after degassing). The crude product was immediately treated with K₂CO₃ (10 g, 76 mmol) using general procedure D. Chromatography on silica gel (4:1 hexanes/CH₂Cl₂, R_f = 0.15) gave **28** (780 mg, 50%) as a pale yellow oil: ¹H NMR (CDCl₃) δ 7.61 (d, J = 2.3 Hz, 1H), 7.37 (dd, J = 9.7, 2.2 Hz, 1H), 7.28 (d, J = 9.8 Hz, 1H), 3.78 (q, J = 7.5 Hz, 4H), 3.28 (s, 1H), 1.30 (br s, 6H); ¹³C NMR (CDCl₃) δ 152.07, 135.69, 132.33, 118.65, 118.41, 116.97, 81.90, 80.59, 49.16 (br), 41.85 (br), 14.47 (br), 10.77 (br); IR (neat) 3298, 3064, 2107 cm⁻¹; HRMS calcd for C₁₂H₁₅N₃⁷⁹Br 280.0449, found 280.0444.

1-(4-Chloro-2-ethynylphenyl)-3,3-diethyl-1-triazene (29). Chloride **36** (1.61 g, 4.77 mmol), TMSA (0.94 mL, 6.68 mmol), $PdCl_2(PPh_3)_2$ (201 mg, 0.29 mmol), and CuI (109 mg, 0.57 mmol) were reacted using general procedure C. The crude product was immediately treated with K₂CO₃ (12.6 g, 95 mmol) using general procedure D. Chromatography on silica gel (4:1 hexanes/CH₂Cl₂, R_f = 0.21) gave **29** (650 mg, 58%) as a yellow liquid: ¹H NMR (CDCl₃) δ 7.45 (d, J = 2.4 Hz, 1H), 7.35 (d, J = 9.0 Hz, 1H), 7.22 (dd, J = 8.7, 2.4 Hz, 1H), 3.79 (q, J = 7.2 Hz, 4H), 3.28 (s, 1H), 1.30 (s, 6H); ¹³C NMR (CDCl₃) δ 151.65, 132.78, 129.48, 129.39, 118.21, 118.12, 81.81, 80.73, 49.14, 41.82, 14.42, 10.79; IR (neat) 3300, 3067, 2108 cm⁻¹; HRMS calcd for C₁₂H₁₄N₃³⁵Cl 235.0876, found 235.0874.

3,3-Diethyl-1-(2-ethynyl-4-fluorophenyl)-1-triazene (30). Fluoride 37 (1.12 g, 3.49 mmol), TMSA (0.641 mL, 4.53 mmol), PdCl₂(PPh₃)₂ (147 mg, 0.21 mmol), and CuI (80 mg, 0.42 mmol) were reacted using general procedure C. The crude product was immediately treated with K₂CO₃ (5.0 g, 37.8 mmol) using general procedure D. After workup, chromatography on silica gel (4:1 hexanes/CH₂Cl₂, $R_f = 0.32$) gave **30** (0.64 g, 83%) as a dark red oil: ¹H NMR (CDCl₃) δ 7.36 (dd, J = 8.7, 5.6 Hz, 1H), 7.17 (dd, J = 9.1, 2.9 Hz, 1H), 6.99 (ddd, J = 9.0, 8.2, 3.0 Hz, 1H), 3.78 (q, J = 7.5 Hz, 4H), 3.27 (s, 1H), 1.30 (t, J = 7.2Hz, 6H); ¹³C NMR (CDCl₃) δ 159.59 (d, J = 243.2 Hz), 149.68, 119.35 (d, J = 24.1 Hz), 118.31 (d, J = 9.3 Hz), 117.96 (d, J = 9.3 Hz), 116.72 (d, J = 22.2 Hz), 81.66, 80.91, 48.96 (br), 41.68 (br), 14.74 (br), 10.72 (br); IR (neat) 3302, 3074, 2108, 1602, 1578 cm⁻¹; HRMS calcd for C₁₂H₁₅N₃F 220.1250, found 220.1247.

1-(4-Carbomethoxy-2-ethynylphenyl)-3,3-diethyl-1-triazene (31). Ester **38** (600 mg, 1.66 mmol), TMSA (0.33 mL, 2.33 mmol), PdCl₂(PPh₃)₂ (70 mg, 0.10 mmol), and CuI (38 mg, 0.20 mmol) were reacted using general procedure C. The crude product was purified by chromatography on silica gel (1:1 hexanes/CH₂Cl₂, R_r = 0.3) and subsequently treated with K₂-CO₃ (6.02 g, 46 mmol) using general procedure D. Chromatography on silica gel (1:1 hexanes/CH₂Cl₂, R_r = 0.13) gave **31** (170 mg, 40%) as a yellow oil: ¹H NMR (CDCl₃) δ 8.17 (d, J = 2.1 Hz, 1H), 7.91 (dd, J = 8.8, 2.1 Hz, 1H), 7.44 (d, J = 8.8 Hz, 1H), 3.87 (s, 3H), 3.79 (q, J = 6.9 Hz, 4H), 3.27 (s, 1H), 1.36– 1.22 (m, 6H); ¹³C NMR (CDCl₃) δ 166.30, 156.22, 135.23, 130.42, 125.77, 116.84, 116.56, 81.30, 81.06, 51.89, 49.37, 42.12, 14.31, 10.63; IR (neat) 3294, 3073, 2107, 1718 cm⁻¹; HRMS calcd for C₁₄H₁₈N₃O₂ 260.1399, found 260.1399.

3,3-Diethyl-1-(2-ethynyl-4-nitrophenyl)-1-triazene (32). Nitro 39 (800 mg, 2.30 mmol), TMSA (0.49 mL, 3.45 mmol), PdCl₂(PPh₃)₂ (65 mg, 0.09 mmol), and CuI (39 mg, 0.21 mmol) were reacted using general procedure C. The crude product was immediately treated with K₂CO₃ (4.56 g, 35 mmol) using general procedure D. Chromatography on silica gel (1:1 hexanes/CH₂Cl₂, $R_f = 0.35$) gave **32** (540 mg, 95%) as a yellow powder: mp 106.5–108.7 °C; ¹H NMR (CDCl₃) δ 8.36 (d, J =2.6 Hz, 1H), 8.10 (dd, J = 9.1, 2.6 Hz, 1H), 7.53 (d, J = 9.1 Hz, 1H), 3.87 (q, J = 7.3 Hz, 4H), 3.33 (s, 1H), 1.38 (t, J = 7.3 Hz, 3H), 1.30 (t, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃) δ 157.61, 143.72, 129.31, 124.56, 117.39, 116.85, 82.64, 79.89, 49.90, 42.75, 14.33, 10.64; IR (neat) 3295, 3101, 3082, 2111, 1603, 1326 cm⁻¹; HRMS calcd for $C_{12}H_{15}N_4O_2$ 247.1195, found 247.1194. Anal. Calcd for C₁₂H₁₄N₄O₂ (246.27): C, 58.53; H, 5.73; N, 22.75. Found: C, 58.41; H, 5.50; N, 22.58.

3,3-Diethyl-1-(2-iodo-4-methoxyphenyl)-1-triazene (43). To a mixture of 4-amino-3-iodophenol¹² (1.8 g, 7.7 mmol) and Cs₂CO₃ (6.2 g, 19 mmol) in DMF (50 mL) was added MeI (0.45 mL, 7.2 mmol) in ca. 75 μ L portions over 6 h. The mixture was stirred at ambient temperature for 48 h, diluted with water, and extracted with Et₂O. The combined organics were washed with water, dried (MgSO₄), filtered, and concentrated to give a light brown oil: ¹H NMR (CDCl₃) δ 7.21 (d, J = 2.6 Hz, 1H), 6.77 (dd, J = 8.8, 2.6 Hz, 1H), 6.70 (d, J = 8.8 Hz, 1H), 3.72 (s, 3H); ¹³C NMR (CDCl₃) δ 152.67, 140.77, 123.45, 116.09, 115.37, 84.24, 55.91.

The above methyl ether (1.72 g, 6.9 mmol) was immediately reacted with HCl (0.88 mL, 10.5 mmol), NaNO₂ (230 mg, 3.3 mmol), Et₂NH (1.57 mL, 15 mmol), and K₂CO₃ (992 mg, 7.5 mmol) using general procedure B. After workup, column chromatography on silica gel (3:1 hexanes/CH₂Cl₂, $R_f = 0.4$)

gave **43** (2.22 g, 87% from 4-amino-3-iodophenol) as a tan oil: ¹H NMR (CDCl₃) δ 7.38 (d, J = 2.6 Hz, 1H), 7.30 (d, J = 8.8 Hz, 1H), 6.87 (dd, J = 8.8, 2.6 Hz, 1H), 3.78 (s, 3H), 3.76 (q, J= 7.0 Hz, 4H), 1.31 (t, J = 7.0 Hz, 6H); ¹³C NMR (CDCl₃) δ 157.50, 144.38, 123.14, 117.53, 115.29, 96.65, 55.66, 48.00 (br), 42.22 (br), 12.00 (br); IR (neat) 3067, 1104, 1037 cm⁻¹; MS (ESI) m/z 334.0 (20, M⁺ + H), 261.0 (10, M⁺ - C₄H₁₀N).

3,3-Diethyl-1-(2-ethynyl-4-methoxyphenyl)-1-triazene (40). Iodoether **43** (430 mg, 1.3 mmol), TMSA (0.26 mL, 1.8 mmol), PdCl₂(PPh₃)₂ (36 mg, 0.05 mmol), and CuI (27 mg, 0.14 mmol) were reacted using general procedure C. The crude product was immediately treated with K₂CO₃ (859 mg, 6.5 mmol) using general procedure D. After workup, **40** (290 mg, 97%) was obtained as a dark oil: ¹H NMR (CDCl₃) δ 7.35 (d, J = 9.1 Hz, 1H), 7.01 (d, J = 2.9 Hz, 1H), 6.87 (dd, J = 9.1 Hz, 1H), 3.79 (s, 3H), 3.76 (q, J = 7.3 Hz, 4H), 3.25 (s, 1H), 1.29 (t, J = 7.3 Hz, 6H); ¹³C NMR (CDCl₃) δ 156.56, 147.23, 118.05, 117.45, 116.77, 116.69, 81.97, 80.71, 55.51, 48.00 (br s), 43.00 (br s), 13.00 (br s); IR (neat) 3287, 2104, 1037 cm⁻¹; MS (ESI) *m/z* 232.1 (100, M⁺ + H), 161.1 (70, M⁺ - C₄H₁₀N).

1-(4-Acetoxy-2-iodophenyl)-3,3-diethyl-1-triazene (44). 4-Amino-3-iodophenol¹² (705 mg, 3.0 mmol) was treated with Ac₂O (3.0 mL, 3.0 mmol) in pyridine (50 mL) according to the method of Theobold.²⁴ Evaporation of the solvent and purification by chromatography on silica gel (3:2 hexanes/EtOAc) gave the corresponding ester (650 mg, 73%) as an off-white solid: ¹H NMR (CDCl₃) δ 7.37 (d, J = 2.6 Hz, 1H), 6.89 (dd, J = 8.5, 2.6 Hz, 1H), 6.71 (d, J = 8.5 Hz, 1H), 4.05 (br s, 2H), 2.25 (s, 3H); ¹³C NMR (CDCl₃) δ 169.80, 144.84, 142.29, 131.34, 122.51, 114.26, 82.76, 20.92.

The above ester (370 mg, 1.3 mmol), HCl (0.55 mL, 6.6 mmol), NaNO₂ (138 mg, 2.0 mmol), Et₂NH (1.4 mL, 13.3 mmol), and K₂CO₃ (1.4 g, 10.6 mmol) were reacted using general procedure B. After workup, product **44** (330 mg, 69%) was obtained as a light yellow oil in sufficiently pure form for further elaboration: ¹H NMR (CDCl₃) δ 7.58 (d, J = 2.3 Hz, 1H), 7.35 (d, J = 8.8 Hz, 1H), 7.04 (dd, J = 8.8, 2.3 Hz, 1H), 3.79 (q, J = 7.0 Hz, 4H), 2.27 (s, 3H), 1.31 (t, J = 7.0 Hz, 6H); ¹³C NMR (CDCl₃) δ 169.30, 148.29, 147.82, 131.53, 121.89, 117.15, 95.59, 49.14 (br), 42.21 (br), 21.02, 14.53 (br), 10.99 (br); IR (neat) 3065, 1761, 1108 cm⁻¹; MS (ESI) MS *m*/*z* 362.0 (100, M⁺ + H), 320.0 (20, M⁺ - C₂H₂O), 246.9 (90, M⁺ - C₆H₁₂-NO).

1-(4-Acetoxy-2-ethynylphenyl)-3,3-diethyl-1-triazene (41). Iodoester 44 (315 mg, 0.87 mmol), TMSA (0.17 mL, 1.2 mmol), PdCl₂(PPh₃)₂ (24 mg, 0.035 mmol), and CuI (18 mg, 0.096 mmol) were reacted using general procedure C. The crude product was immediately treated with Bu₄NF (1.0 mL, 1.0 M in THF) and EtOH (0.5 mL) in THF. After the mixture was stirred for 24 h under N₂, the solvent was evaporated and the crude product was purified by chromatography (5:1 hexanes/EtOAc) to give **38** (160 mg, 71%) as a colorless oil: ¹H NMR (CDCl₃) δ 7.40 (d, J = 8.8 Hz, 1H), 7.22 (d, J = 2.6 Hz, 1H), 7.01 (dd, J = 8.8, 2.6 Hz, 1H), 3.77 (q, J = 7.3 Hz, 4H), 3.26 (s, 1H), 2.27 (s, 3H), 1.29 (t, J = 7.3 Hz, 6H); ¹³C NMR $(CDCl_3)$ δ 169.32, 150.89, 147.11, 125.81, 122.79, 117.69, 117.59, 81.46, 81.09, 49.02 (br), 41.68 (br), 21.02, 14.38 (br), 10.76 (br); IR (neat) 3289, 2580, 2106, 1764 cm⁻¹; MS (ESI) m/z 260.1 (100, M⁺ + H), 218.1 (40, M⁺ - C₂H₂O), 145.0 (90, $M^+ - C_6 H_{12} NO$).

2-Diethylamino-3-formyl-2*H***-indazole (45).** Obtained from 3,3-diethyl-1-(2-ethynylphenyl)-1-triazene^{6b} using general procedure F (yellow oil, 95%): ¹H NMR (CDCl₃) δ 10.42 (s, 1H), 8.22 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.53–7.36 (m, 2H), 3.39 (br s, 4H), 0.89 (t, J = 7.2 Hz, 6H); ¹³C NMR (CDCl₃) δ 181.42, 145.84, 132.81, 127.22, 126.40, 121.24, 119.85, 118.24, 52.68, 12.02; IR (neat) 3068, 1669, 1627 cm⁻¹; HRMS calcd for C₁₂H₁₆N₃O 218.1293, found 218.1294.

2-Diethylamino-3-formyl-5-methyl-2*H*-indazole (46). Obtained from 25 using general procedure F (tan solid, 90%): mp

(24) Theobold, D. W. Tetrahedron 1983, 39, 1605-1607.

27–28.5 °C; ¹H NMR (CDCl₃) δ 10.38 (s, 1H), 8.01 (s, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.27 (d, J = 8.8 Hz, 1H), 3.43 (br s, 2H), 3.30 (br s, 2H), 2.49 (s, 3H), 0.88 (t, J = 4.5 Hz, 6H); ¹³C NMR (CDCl₃) δ 181.46, 144.63, 136.67, 132.28, 129.94, 120.24, 119.63, 117.90, 52.64, 21.98, 12.02; IR (KBr) 3061, 3028, 1671, 1631 cm⁻¹; HRMS calcd for C₁₃H₁₈N₃O 232.1450, found 232.1448. Anal. Calcd for C₁₃H₁₇N₃O (231.29): C, 67.51; H, 7.41; N, 18.17. Found: C, 67.58; H, 7.37; N, 17.94.

5-*tert*-**Butyl-2**-**diethylamino-3**-*formyl-2H*-**indazole (47).** Obtained from **26** using general procedure F (colorless oil that solidifies on standing, 96%): mp 79–81.5 °C; ¹H NMR (CDCl₃) δ 10.40 (s, 1H), 8.15 (d, J = 1.2 Hz, 1H), 7.74 (d, J = 9.1 Hz, 1H), 7.55 (dd, J = 9.1, 1.7 Hz, 1H), 3.37 (br s br, 4H), 1.40 (s, 9H), 0.88 (t, J = 7.2 Hz, 6H); ¹³C NMR (CDCl₃) δ 181.52, 149.77, 144.51, 132.79, 126.76, 119.97, 117.76, 115.71, 52.64, 35.27, 31.22, 12.02; IR (neat) 3071, 3034, 1669 cm⁻¹; HRMS calcd for C₁₆H₂₄N₃O 274.1919, found 274.1916.

2-Diethylamino-5-ethynyl-3-formyl-2*H***-indazole (48).** Obtained from **27** using general procedure F (orange solid, 91%): mp 97–98.2 °C; ¹H NMR (CDCl₃) δ 10.39 (s, 1H), 8.42 (s, 1H), 7.73 (d, *J* = 8.8 Hz, 1H), 7.48 (d, *J* = 8.9 Hz, 1H), 3.36 (br s, 4H), 3.15 (s, 1H), 0.89 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (CDCl₃) δ 181.17, 145.13, 132.85, 130.47, 125.94, 120.12, 119.40, 118.38, 83.82, 77.89, 52.69, 12.00; IR (KBr) 3253, 3074, 2983, 2938, 2855, 2103, 1672, 1620; HRMS calcd for C₁₄H₁₆N₃O 242.1293, found 242.1295.

5-Bromo-2-diethylamino-3-formyl-2*H***indazole (49).** Obtained from **28** using general procedure F (tan oil, 98%): ¹H NMR (CDCl₃) δ 10.37 (s, 1H), 8.42 (d, J = 1.8 Hz, 1H), 7.68 (d, J = 9.2 Hz, 1H), 7.51 (dd, J = 9.2, 2.0 Hz, 1H), 3.39 (br s, 4H), 0.88 (t, J = 7.5 Hz, 6H); ¹³C NMR (CDCl₃) δ 181.09, 144.27, 132.30, 131.08, 123.62, 120.89, 120.55, 119.88, 52.72, 11.99; IR (KBr) 3073, 1667, 1620 cm⁻¹; HRMS calcd for C₁₂H₁₅N₃O⁷⁹Br 296.0399, found 296.0394.

5-Chloro-2-diethylamino-3-formyl-2*H***-indazole (50).** Obtained from **29** using general procedure F (tan oil that solidifies slowly on standing, 95%): mp 92–93.5 °C; ¹H NMR (CDCl₃) δ 10.37 (s, 1H), 8.23 (d, J = 2.1 Hz, 1H), 7.73 (d, J = 9.2 Hz, 1H), 7.37 (dd, J = 9.2, 2.1 Hz, 1H), 3.39 (br s, 4H), 0.88 (t, J = 7.2 Hz, 6H); ¹³C NMR (CDCl₃) δ 181.10, 144.15, 132.53, 128.72, 120.27, 119.73, 52.72, 12.00; IR (neat) 3086, 1671, 1624 cm⁻¹; HRMS calcd for C₁₂H₁₅N₃O³⁵Cl 252.0904, found 252.0898.

2-Diethylamino-5-fluoro-3-formyl-2*H***-indazole (51).** Obtained from **30** using general procedure F (light green oil, 94%): ¹H NMR (CDCl₃) δ 10.37 (s, 1H), 7.83 (dd, J = 8.5, 2.4 Hz, 1H), 7.78 (dd, J = 9.1, 4.4 Hz, 1H), 7.22 (dt, J = 8.9, 2.6 Hz, 1H), 3.42 (br s, 4H), 0.89 (t, J = 6.9 Hz, 6H); ¹³C NMR (CDCl₃) δ 181.13, 161.46 (d, J = 246 Hz), 143.01, 133.35 (d, J = 8.3 Hz), 120.50 (d, J = 9.3 Hz), 120.00 (d, J = 12 Hz), 118.54 (d, J = 27.8 Hz), 104.67 (d, J = 25 Hz), 52.70, 12.01; IR (neat) 3082, 1726, 1670, 1634 cm⁻¹; HRMS calcd for C₁₂H₁₅N₃OF 236.1199, found 236.1203.

5-Carbomethoxy-2-diethylamino-3-formyl-2*H***-indazole (52). Obtained from 31** using general procedure F (yellow solid, 83%): mp 90.1–90.8 °C; ¹H NMR (CDCl₃) δ 10.43 (s, 1H), 8.97 (t, J = 1.2 Hz 1H), 8.05 (dd, J = 9.1, 1.5 Hz, 1H), 7.80 (dd, J = 9.1, 0.9 Hz, 1H), 3.95 (s, 3H), 3.39 (br s, 4H), 0.89 (t, J = 7.2 Hz, 6H); ¹³C NMR (CDCl₃) δ 181.17, 166.94, 147.22, 134.16, 128.05, 127.28, 125.07, 118.99, 118.20, 52.72, 52.25, 12.00; IR (KBr) 3067, 3036, 1719, 1665, 1629 cm⁻¹; HRMS calcd for C₁₄H₁₈N₃O₃ 276.1348, found 276.1352; Anal. Calcd for C₁₄H₁₇N₃O₃ (275.30): C, 61.08; H, 6.22; N, 15.26. Found: C, 60.82; H, 6.23; N, 15.38.

5-Cyano-2-diethylamino-3-formyl-2*H***-indazole (20).** Obtained from **14** using general procedure F (60%) along with isoindazole dimer **16** (34%). The spectral data were identical to those given above. The yield of **20** could be improved to 85% using general procedure F for 3 d at rt.

2-Diethylamino-3-formyl-5-nitro-2*H***-indazole (53).** Obtained from **32** using general procedure F (yellow solid, 54%). The yield of **53** could be improved to 78% using general procedure F for 3 d at rt: mp 175.7–177.3 °C; ¹H NMR (CDCl₃)

 $\delta_{10.44}$ (s, 1H), 9.20 (d, J = 2.1 Hz, 1H), 8.25 (dd, J = 9.4, 2.3 Hz, 1H), 7.89 (d, J = 9.4 Hz, 1H), 3.46-3.37 (m, 4H), 0.91 (t, J = 7.0 Hz, 6H); ¹³C NMR (CDCl₃) $\delta_{-180.85}$, 147.03, 146.14, 135.39, 121.58, 119.74, 119.44, 118.17, 52.81, 11.96; IR (KBr) 3432, 3325, 3106, 1668, 1343 cm⁻¹; HRMS calcd for C₁₂H₁₅N₄O₃ 263.1144, found 263.1149. Anal. Calcd for C12H14N4O3 (262.26): C, 54.96; H, 5.38; N, 21.36. Found: C, 55.08; H, 5.34; N, 21.06. Isolation of a second band provided isoindazole dimer 18' (37%) as an orange solid: mp 271-272.4 °C; ¹H NMR (CDCl₃) δ 9.07 (d, J = 1.8 Hz, 2H), 8.22 (dd, J =9.9, 2.1 Hz, 2H), 8.06 (s, 2H), 7.81 (d, J = 9.3 Hz, 2H), 3.42 (br s, 8H), 0.96 (t, J = 6.9 Hz, 12H); ¹³C NMR (CDCl₃) δ 147.77, 143.65, 137.59, 120.98, 119.56, 119.05, 118.53, 115.94, 52.61, 12.15; IR (KBr) 3076, 1618, 1327 cm⁻¹; MS (ESI) m/z 493.2 (100, M^+ + H), 391.3.1 (30, M^+ - $C_4H_{11}N_3$). Anal. Calcd for C24H28N8O4 (492.53): C, 58.53; H, 5.73; N, 22.75. Found: C, 58.35; H, 5.77; N, 22.55.

2-Diethylamino-3-formyl-5-methoxy-2*H***-indazole (54).** Obtained from **40** using general procedure F (yellow oil, 98%): ¹H NMR (CDCl₃) δ 10.36 (s, 1H), 7.68 (d, J = 9.1 Hz, 1H), 7.48 (d, J = 2.3 Hz, 1H), 7.10 (dd, J = 9.1, 2.3 Hz, 1H), 3.90 (s, 3H), 3.40 (br s, 2H), 3.25 (br s, 2H), 0.88 (t, J = 6.9 Hz, 6H); ¹³C NMR (CDCl₃) δ 181.48, 159.04, 142.05, 132.54, 121.79, 120.86, 119.70, 97.87, 55.66, 52.60, 12.04; IR (neat) 3087, 1662, 1627, 1217 cm⁻¹; MS (ESI) *m/z* 270.1 (80, M⁺ + Na + H), 248.1 (100, M⁺ + H).

5-Acetoxy-2-diethylamino-3-formyl-2*H***-indazole (55).** Obtained from **41** using general procedure F (clear oil, 86%): ¹H NMR (CDCl₃) δ 10.37 (s, 1H), 7.91 (d, J = 2.1 Hz, 1H), 7.80 (d, J = 9.1 Hz, 1H), 7.16 (dd, J = 9.1, 2.1 Hz, 1H), 3.36 (br s, 4H), 2.34 (s, 3H), 0.88 (t, J = 7.0 Hz, 6H); ¹³C NMR (CDCl₃) δ 181.11, 169.75, 149.10, 143.88, 133.32, 123.37, 119.84, 119.66, 112.51, 52.69, 21.04, 11.96; IR (neat) 3079, 1761, 1669, 1632, 1211 cm⁻¹; MS (ESI) *m*/*z* 322.2 (100, M⁺ + 2Na), 276.1 (18, M⁺ + H).

Cinnoline (56). Obtained from 3,3-diethyl-1-(2-ethynylphenyl)-1-triazene^{6b} using general procedure E (dark oil, 99%): ¹H NMR (CDCl₃) δ 9.33 (d, J = 5.9 Hz, 1H), 8.56 (dd, J = 8.5, 0.9Hz, 1H), 7.92–7.83 (m, 3H), 7.80–7.74 (m, 1H); ¹³C NMR (CDCl₃) δ 150.91, 145.05, 131.18, 130.67, 129.93, 126.61, 126.06, 122.54. NMR data matched those of commercially available samples.

6-Methylcinnoline (57). Obtained from **25** using general procedure E (dark oil, 97%): ¹H NMR (CDCl₃) δ 9.23 (d, J = 5.9 Hz, 1H), 8.41 (d, J = 8.8 Hz, 1H), 7.75 (d, J = 5.9 Hz, 1H), 7.67 (dd, J = 8.8, 1.7 Hz, 1H), 7.57 (s, 1H), 2.58 (s, 3H); ¹³C NMR (CDCl₃) δ 149.98, 145.04, 141.92, 133.22, 129.51, 126.32, 124.93, 121.99, 22.08; IR (KBr) 3053, 1627 cm⁻¹; HRMS calcd for C₉H₉N₂ 145.0766, found 145.0768.

6-*tert*-**Butylcinnoline (58).** Obtained from **26** using general procedure E (dark oil, 98%): ¹H NMR (CDCl₃) δ 9.25 (d, J = 5.9 Hz, 1H), 8.45 (d, J = 9.1 Hz, 1H), 7.94 (dd, J = 9.1, 2.1 Hz, 1H), 7.82 (d, J = 5.6 Hz, 1H), 7.70 (d, J = 1.8 Hz, 1H), 1.43 (s, 9H); ¹³C NMR (CDCl₃) δ 154.53, 149.91, 145.10, 130.05, 129.28, 126.13, 122.70, 121.10, 35.48, 30.79; IR (neat) 3062, 1623 cm⁻¹; HRMS calcd for C₁₂H₁₅N₂ 187.1235, found 187.1233.

6-Ethynylcinnoline (59). Obtained from **27** using general procedure E (tan solid, 83%): mp 145–146 °C; ¹H NMR (CDCl₃) δ 9.34 (d, J = 5.6 Hz, 1H), 8.50 (d, J = 9.1 Hz, 1H), 7.99 (d, J = 1.5 Hz, 1H), 7.87 (dd, J = 8.8, 1.8 Hz, 1H), 7.81 (d, J = 5.5 Hz, 1H), 3.34 (s, 1H); ¹³C NMR (CDCl₃) δ 149.82, 145.66, 133.36, 130.68, 130.05, 125.65, 125.27, 121.94, 82.30, 81.17; IR (neat) 3453, 3152, 3040, 2095, 1618 cm⁻¹; HRMS calcd for C₁₀H₇N₂ 155.0609, found 155.0610.

6-Bromocinnoline (60). Obtained from **28** using general procedure E (yellow solid, 98%): mp 127–128.1 °C (lit.¹⁹ mp 129–130 °C); ¹H NMR (CDCl₃) δ 9.31 (d, J = 5.9 Hz, 1H), 8.40 (d, J = 9.1 Hz, 1H), 8.02 (d, J = 2.1 Hz, 1H), 7.90 (dd, J = 9.1, 2.1 Hz, 1H), 7.77 (d, J = 6.4 Hz, 1H); ¹³C NMR (CDCl₃) δ 149.33, 145.51, 134.49, 131.60, 128.71, 126.95, 126.13, 121.25; IR (KBr) 3071, 3057, 3028, 1606 cm⁻¹.

6-Chlorocinnoline (61). Obtained from **29** using general procedure E (yellow solid, 97%): mp 128.8–129.9 °C (lit.²⁰ mp 131–131.5 °C); ¹H NMR (CDCl₃) δ 9.30 (d, J = 6.2 Hz, 1H), 8.47 (dd, J = 9.1, 0.6 Hz, 1H), 7.82 (d, J = 2.1 Hz, 1H), 7.77 (d, J = 6.2 Hz, 1H), 7.76 (dd, J = 9.1, 2.1 Hz, 1H); ¹³C NMR (CDCl₃) δ 149.16, 145.50, 137.45, 131.97, 131.66, 126.59, 125.21, 121.44; IR (KBr) 3061, 3034 cm⁻¹.

6-Fluorocinnoline (62). Obtained from **30** using general procedure E (dark semisolid oil, 90%): ¹H NMR (CDCl₃) δ 9.29 (d, J = 5.9 Hz, 1H), 8.59 (q, J = 9.4, 5.3 Hz, 1H), 7.84 (d, J = 5.9 Hz, 1H), 7.64 (td, J = 8.6, 2.7 Hz, 1H), 7.44 (dd, J = 8.3, 2.6 Hz, 1H); ¹³C NMR (CDCl₃) δ 162.90 (d, J = 255.5 Hz), 148.59, 145.16, 133.41 (d, J = 9.3 Hz), 122.11 (d, J = 5.6 Hz), 121.89 (d, J = 26.8 Hz), 109.31 (d, J = 22.2 Hz); IR (neat) 3044, 1626 cm⁻¹; HRMS calcd for C₈H₆N₂F 149.0515, found 149.0516.

6-Carbomethoxycinnoline (63). Obtained from **31** using general procedure E (dark solid, 96%): mp 130.4–131.2 °C; ¹H NMR (CDCl₃) δ 9.41 (d, J = 5.9 Hz, 1H), 8.60 (d, J = 2.1 Hz, 1H), 8.59 (d, J = 9.1 Hz, 1H), 8.40 (dd, J = 9.1, 1.8 Hz, 1H), 7.96 (d, J = 5.9 Hz, 1H), 4.01 (s, 3H); ¹³C NMR (CDCl₃) δ 165.64, 151.29, 145.73, 132.16, 130.32, 129.99, 129.94, 125.15, 123.41, 52.84; IR (KBr) 3063, 1716 cm⁻¹; HRMS calcd for C₁₀H₉N₂O₂ 189.0664, found 189.0667.

6-Cyanocinnoline (64). Obtained from **14** using general procedure E (light orange oil that solidifies on standing, 98%): mp 129–131 °C; ¹H NMR (CDCl₃) δ 9.50 (d, J = 5.9 Hz, 1H), 8.70 (d, J = 8.8 Hz, 1H), 8.30 (d, J = 1.5 Hz, 1H), 7.99 (dd, J = 8.8, 1.8 Hz, 1H), 7.94 (dd, J = 5.9, 0.7 Hz, 1H); ¹³C NMR (CDCl₃) δ 149.98, 146.29, 133.52, 131.70, 130.95, 125.05, 122.20, 117.40, 115.11; IR (neat) 3449, 3070, 3040, 2224 cm⁻¹; HRMS calcd for C₉H₆N₃ 156.0562, found 156.0563.

6-Nitrocinnoline (65). Obtained from **32** using general procedure E (light tan powder, 95%): mp 194–195 °C (lit.²¹ mp 205–206 °C); ¹H NMR (CDCl₃) δ 9.54 (d, J = 6.2 Hz, 1H), 8.84 (d, J = 2.3 Hz, 1H), 8.77 (d, J = 9.1 Hz, 1H), 8.60 (dd, J = 9.4, 2.3 Hz, 1H), 8.09 (d, J = 5.9 Hz, 1H); ¹³C NMR (CDCl₃) δ 150.69, 146.29, 132.49, 124.96, 124.02, 123.93, 123.72; IR (KBr) 3447, 3101, 3035, 1526, 1347 cm⁻¹.

Acknowledgment. We thank the National Science Foundation, the Petroleum Research Fund, administered by the American Chemical Society, and The Camille and Henry Dreyfus Foundation (Teacher– Scholar Award 1998–2003 to M.M.H.) for financial support.

Supporting Information Available: ¹³C NMR spectra for compounds **5**, **11**, **14**, **16**, **18**, **20**, **25**–**32**, **40**, **41**, **45**–**55**, and **57-65**; X-ray structures of **5** and **16**, structure refinement details, tables of atomic coordinates, thermal parameters, bond lengths, bond angles, torsion angles, and mean planes. This material is available free of charge via the Internet at http://pubs.acs.org.

JO020229S