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ABSTRACT: The direct decarboxylative meta-selective C−H 
acylation of a wide range of arenes is established via the 
ruthenium-catalyzed ortho-metalation strategy. This 
procedure, using Ru3(CO)12 as the catalyst and α-oxocarboxylic 
acids as the acylation source, featured broad substrate scope, 
good functional group tolerance, and high regioselectivity. 
Mechanistic studies demonstrated that a radical process and an 
18e-octahedral ruthenium species were involved in this 
reaction. The present work provides a new strategy for the 
regioselective meta-acylation reactions and will be a powerful 
tool for the development of pharmaceutical and materials 
science.

KEYWORDS: meta selectivity, decarboxylative acylation, ruthenium catalysis, ortho-metalation, α-oxocarboxylic acids, 
radical process

INTRODUCTION
Aromatic ketones have practical applications in 
pharmaceuticals, agrochemicals, fragrances, flavors, dyes, 
and photosensitizers,1 and substantially act as structural 
motifs or precursors of many natural products. The site-
selective C−H bond functionalization of aromatic 
compounds is of crucial importance to synthetic organic 
chemistry and has versatile applications in drug discovery 
and materials science.2 Therefore, regioselective 
introduction of carbonyl groups to the ortho-, meta-, and 
para-positions of aromatic ring to access distinctly 
substituted aryl ketones is extremely valuable in organic 
synthesis. The classic Friedel−Crafts acylation reactions 
usually give a mixture of products with poor ortho/para 
regioselectivity (Scheme 1a),3 and generally suffer from the 
limitation of substrate scope to arenes bearing electron-
donating groups (EDGs) as well as the requirement of a 
stoichiometric amount of Lewis acid. In addition, the 
associated disadvantages arising from the hydrolysis of the 
strong complex formed between the ketone product and the 
Lewis acid such as AlCl3 during the workup process would 
result in the loss of the catalyst, substantial amount of waste, 
and corrosion problems. The past decade has witnessed 
tremendous development of the transition-metal-catalyzed 
directing group (DG)-assisted ortho-C−H acylation of 
aromatic compounds with various acyl sources.4 Among 
them, the palladium-catalyzed decarboxylative ortho-

acylation reactions with α-oxocarboxylic acids have 
emerged as valid tools to construct aromatic ketones for 
their efficient and environment-friendly advantages5 
(Scheme 1b). In stark contrast, the meta-selective C−H acyl-

Scheme 1. Regioselectivity Control in Acylation 
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ation of arenes is still limited and remains a challenging task. 
In 1998, the Buchwald group reported a directed meta-
selective acylation of aromatic compounds by combining an 
ortho-lithiation procedure with zirconocene−benzyne 
chemistry to afford a series of 3-acyl-1-substituted benzene 
derivatives.6 However, this method is limited in organic 
synthesis due to its multi-step process and requirement of 
tedious preparation of organometallic intermediates. 3-
Acyl-1-substituted aromatic compounds represent an 
important class of subunits in many natural products and 
drugs, such as Ketoprofen,7 Rubialatins B,8 and Nepafenac.9 
Therefore, it is highly desirable to develop more efficient 
methodologies for the meta-selective C−H acylation of 
aromatic compounds with high regioselectivities.

Recently, the ruthenium-catalyzed σ-activation was 
utilized to realize the meta-C−H functionalization of arenes, 
in which the ortho-cycloruthenation was exploited to 
influence the aromatic ring electronically and to enable 
para-sulfonation to the Ru−C bond.10 This protocol 
demonstrates advantages of obviating complex 
templates/ligands or additional transient mediators and 
cheaper ruthenium catalysts for remote C−H 
functionalizations.11 As a consequence, many other meta-

selective functionalizations using the Ru-catalyzed ortho-
metalation strategy have been developed to date, including 
alkylation,12 halogenation,13 nitration,14 difluoro- and 
monofluoroalkylation15 and benzylation.16 It is noteworthy 
that the Ru-catalyzed indirect meta-carboxylation with 
carbon tetrabromide (CBr4) as the C1 source was described 
very recently.17 The CO2Me group was introduced via 
further methanolysis of the incipient tribromomethyl 
adduct, which was essentially an alkylation process with 
CBr4. Despite of these indisputable advances, many other 
new types of functional groups remain to be introduced to 
the meta-position of arenes with this powerful Ru-catalyzed 
meta-selective functionalization regime.

Inspired by the above-mentioned ruthenium-catalyzed 
meta-C−H functionalizations, we envisioned that the switch 
of regioselectivity from the ortho- to meta-position might be 
realized by changing the Pd catalyst to a Ru species. Herein, 
we disclose the first ruthenium-catalyzed direct 
decarboxylative meta-selective acylation of arenes with α-
oxocarboxylic acids (Scheme 1c). In this strategy, the 
decarboxylative CAr−H acylation occurred at the meta-
position of arenes exclusively, and a variety of common 
functional groups, such as halogen (F, Cl, Br, and I), cyano, 
trifluoromethyl, ether, and thioether, were well tolerated.

RESULTS AND DISCUSSION

In our initial investigation, we chose 2-phenylpyridine (1a) 
as the model substrate and phenylglyoxylic acid (2a) as the 
acylation reagent to identify the optimal reaction conditions, 
and selected results are summarized in Table 1 (For details, 
see Table S1 in the Supplemental Information). At first, the 
commonly used [RuCl2(p-cymene)]2 was employed as the 
catalyst, but no desired product was detected (entry 1). 
Screening of alternative ruthenium catalysts showed that 
the desired meta-acylated product 3aa was obtained in 
27% yield in the presence of Ru3(CO)12 (entry 2). To our 
delight, when Na2S2O8 was added, the yield of 3aa was 
increased to 48%, along with a small amount of di-meta-
acylated product 3aa' (the structure of 3aa' was confirmed 
by the single-crystal X-ray diffraction, for details, see Figure 
S134 and Table S2 in the Supplemental Information) (entry 
3). Several additives such as D-camphorsulfonic acid (D-
CSA), trifluoacetic acid (TFA), CH3SO3H, and p-
toluenesulfonic acid (PTSA) were examined, and it was 
found that the addition of D-CSA led to a higher isolated 

Table 1. Optimization of the Reaction Conditionsa

+

O

O

OH
catalyst

oxidant, Ag salt
additive

solvent, 100 oC, 48 h

1a 2a 3aa

N
N

Ph

O

N

Ph

O

Ph

O

+

3aa'

HH

Entry Catalyst Oxidant Ag salt Additive Solvent
Yield, %b

(3aa/3aa')

1 [RuCl2(p-cymene)]2 - Ag2CO3 - DCM 0
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2 Ru3(CO)12 - Ag2CO3 - DCM 27/trace

3 Ru3(CO)12 Na2S2O8 Ag2CO3 - DCM 48/<5

4 Ru3(CO)12 Na2S2O8 Ag2CO3 D-CSA DCM 55/<5

5c Ru3(CO)12 Na2S2O8 Ag2CO3 D-CSA DCM 72/6

6c - Na2S2O8 Ag2CO3 D-CSA DCM 0

7c Ru3(CO)12 Na2S2O8 - D-CSA DCM 0
aReaction conditions: 1a (0.3 mmol), 2a (0.6 mmol), catalyst (5 mol%), oxidant (2.0 equiv), Ag salt (2.5 equiv), and additive (0.5 
equiv) in DCM (6 mL) at 100 °C for 48 h in a sealed thick-walled tube. bIsolated yields based on 1a. c150 µL TBME was added.

yield (55%) (entries 4). To our great delight, dramatically 
improved yield of 3aa (72%) was obtained when tert-butyl 
methyl ether (TBME) was added as the co-solvent (entry 5), 
which may favour the dissolution of the reaction mixture or 
the formation of the active catalytic intermediate. Control 
experiments revealed that Ru3(CO)12 and Ag2CO3 were 
essential for this reaction (entries 6 and 7). Therefore, the 
optimized reaction conditions of the Ru-catalyzed 
decarboxylative meta-acylation were as shown in entry 5.

Having established the optimal reaction conditions, then 
we investigated the scope and functional group tolerance 
with respect to 2-arylheterocycles 1. As shown in Scheme 2, 
the reactions proceeded smoothly to afford meta-acylated 
products 3aa−3ya in moderate to good yields, with slight 
modification of reaction conditions in some cases. The para-
substituted 2-phenylpyridines were well tolerated with our 
standard conditions, regardless of electron-rich or electron-
deficient functional groups. The arylpyridines 1b−1g with 
para-substituted electron-donating groups gave the 
corresponding products 3ba−3ga in 42−76% yields. 
Substrates with halogen substituents worked well and 
furnished products 3ha−3ja in moderate to good yields 
(52−75%), which provided the opportunity for further 
functionalization via cross coupling reactions. Substrates 
1k and 1l with strong electron-withdrawing groups (CF3 
and CN) also proceeded well and delivered the desired 
products 3ka and 3la in 51% and 44% yields, respectively. 
Nevertheless, the substrate with very strong electron-
withdrawing nitro group failed to provide the desired meta-
acylated product, probably due to the increased electron-
deficiency of the aryl ring. To our delight, when one of the 
two meta-positions on the phenyl was occupied by fluorine, 
the acylation occurred on the other meta-position, and the 
corresponding product 3ma was isolated in 52% yield. It is 
worth noting that when ortho-substituted substrate 1n was 
employed, the acylation occurred on both meta-positions 
(m/m' = 2.9:1), which may result from the steric effect of 
fluorine atom. In addition, 2-(naphthalen-2-yl)pyridine also 
participated in this protocol well, and the corresponding 
product 3oa was obtained in 59% yield. Furthermore, 
substrates bearing a substituent on the pyridine moiety 
were also examined, and the desired products 3pa−3ra 
were isolated in 47−66% yields. Other directing groups 
were also explored to survey the scope and limitation of our 
protocol. When the pyrimidyl moiety was used as the 
directing group, the desired products 3sa−3va were 
obtained in yields of 51−71%. The pyrazolyl group was also 
well tolerant under the optimized conditions, providing the 
meta-acylated product 3wa in 52% yield, and the 
regioselectivity directly contrasts with classic 

Friedel−Crafts acylation reaction of 1-phenylpyrazole with 
benzoyl chloride, where the acylation took place on the 4-
position of the pyrazole ring.18 To demonstrate the utility of 
our methodology, bioactive purine derivatives were 
employed, and to our great delight, the desired meta-
acylated products 3xa and 3ya were successfully obtained 
in 55% and 54% yields, respectively. The above-mentioned 
results indicate that our methodology may be useful for the 
preparation of many bioactive compounds.

Scheme 2. Scope of Substituted Arenesa
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3ca, R' = tBu, 42%
3da, R' = OMe, 67%c

3ea, R' = SMe, 61%c

3fa, R' = OBn, 63%

R''

3sa, R'' = H, 71% (9:1)
3ta, R'' = Me, 70% (6:1)
3ua, R'' = OMe, 65%
3va, R'' = Cl, 51%

1a-1y 2a 3aa-3ya

H

Ph

O Ph

O

aReaction conditions: 1 (0.3 mmol), 2a (0.6 mmol), Ru3(CO)12 
(5 mol%), Na2S2O8 (2.0 equiv.), Ag2CO3 (2.5 equiv.), D-CSA (0.5 
equiv.), and TBME (150 µL) in DCM (6 mL) at 100 °C for 48 h. 
Isolated yields based on 1. Data in parentheses are the ratios of 
mono- to diacylation products. Unless otherwise noted, 
mono/di > 20:1. bRu3(CO)12 (10 mol%). cNa2S2O8 (2.5 equiv.), 
110 °C. dPPh3 (30 mol%) was added.

To further survey the substrate scope and generality, a 
variety of α-oxocarboxylic acids 2b−2w were employed to 
react with 1a (Scheme 3). It was found that both electron-
rich and -deficient substituents on the phenyl ring of 
phenylglyoxylic acids were widely tolerated, and the 
desired meta-acylated products were obtained in moderate 
to good yields. The para-substituted phenylglyoxylic acids 
proved

Scheme 3. Scope of Substituted α-Oxocarboxylic Acidsa
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equiv.), and TBME (150 µL) in DCM (6 mL) at 100 °C for 48 h. 
Isolated yields based on 1a. Data in parentheses are the ratios 
of mono- to diacylation products. Unless otherwise noted, 
mono/di > 20:1. bRu3(CO)12 (10 mol%). c36 h.
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to be suitable substrates for this transformation, affording 
the corresponding products 3ab−3ag in good yields 
(60−75%). Similarly, the meta-substituted phenylglyoxylic 
acids 2h−2k also worked well to give the desired products 
3ah−3ak in 62−76% yields. Moreover, this reaction could 
also be extended to ortho-substituted phenylglyoxylic acids 
to produce 3al−3an in moderate yields (48−58%). When 
disubstituted phenylglyoxylic acids were employed, the 
corresponding products 3ao−3ar were obtained in 60−76% 
yields. 2-(Naphthalene-1-yl)-2-oxoacetic acid (2s) was well 
tolerant to this acylation reaction conditions, providing the 
meta-acylated product 3as in 69% yield. What is more, 
heteroaryl glyoxylic acids were also examined, and to our 
delight, the corresponding products 3at−3aw were 
obtained, albeit in relatively lower yields (24−41%). It 
should be noted that phenylglyoxylic acids with a very 
strong electron-deficient nitro group at meta- or para-
position and alkylglyoxylic acids such as pyruvic acid and 
3,3-dimethyl-2-oxobutanoic acid gave disappointing results, 
even with higher temperatures or more additives. In 
addition, the attempts to replace the arylglyoxylic acids 
with other possible radical precursors such as aromatic 
carboxylic acids, and aromatic aldehydes failed. The 
structures of products 3 were unambiguously established 
by the single-crystal X-ray diffraction analyses of 
representative 3ak and 3as (see Figures S135−S136 and 
Tables S3−S4 in the Supplemental Information).19

It is noteworthy that electron-deficient arenes are usually 
not suitable for the classic Friedel-Crafts acylation reactions 
due to the electrophilic nature of the acylating agents. In 
fact, our attempts to realize the acylation reactions of the 
representative substrates 1a and 1s containing electron-
withdrawing pyridine and pyrimidine groups with benzoyl 
chloride in the presence of AlCl3 failed, reflecting the 
superiority and uniqueness of our meta-selective acylation 
methodology.

To gain insight into the reaction mechanism of this 
transformation, some control experiments were performed 
(Scheme 4). First, substrate 1z bearing two methyl groups 
to block the two ortho positions of the phenyl ring failed to 
give the desired product under the standard conditions, 
indicating the importance of the ortho-CAr−H metalation in 
the meta-acylation process. Second, the reaction between 
1a and 2a was retarded completely in the presence of 2.0 
equiv. of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), 
and the TEMPO-2a adduct was isolated in 42% yield, 
suggesting that a radical process might be involved in this 
transformation. Third, experiments with the isotopically 
labeled substrates were conducted to investigate the D/H 
exchange during this reaction. It was found that a significant 
D/H exchange was observed at the ortho-position of 3aa 
when [D5]-1a was treated with 2a under the standard 
conditions, while no D/H exchange occurred when [D3]-1a 
was used as the substrate. These results suggested that the 
ortho-CAr−H activation was a reversible process in this 
transformation, whereas the meta-CAr−H cleavage was not. 
Finally, the intermolecular competition experiment with 1a 
and [D3]-1a showed a kinetic isotopic effect (KIE) of kH/kD = 
4.0, indicating that the meta-C−H cleavage might be 
kinetically relevant in our catalytic system.

Scheme 4. Preliminary Mechanistic Studies
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In order to obtain the active ruthenium intermediate, the 
stoichiometric reaction of 1a with 1.0 equiv. of Ru3(CO)12 
was conducted in DCM at 100 oC for 48 h, and an 18e-
octahedral ruthenium complex I14a was isolated in 22% 
yield. Interestingly, a better yield of 54% was obtained in 
the presence of TBME, indicating that the mixed solvents of 
DCM and TBME favoured the formation of the active 
ruthenium intermediate in our meta-C−H acylation reaction. 
Furthermore, the stoichiometric and catalytic experiments 
utilizing the complex I worked well and produced product 
3aa in 55% and 51% yields, respectively. These results 
implied that I might be the active catalyst intermediate in 
this reaction (Scheme 5).

On the basis of the above results and previous literature, 
a plausible mechanism for this meta-selective acylation is 
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Scheme 5. Synthesis and Verification of Active Ruthenium 
Intermediate

DCM, 100 oC, 48 h
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proposed, as shown in Scheme 6. At first, the active 
ruthenium intermediate I is formed from 1a and Ru3(CO)12 
through the reversible ortho-ruthenation step.14a 
Subsequently, I undergoes electrophilic attack at the para-
position of the Ru-C bond with the acyl radical 4, which is 
produced by decarboxylation of 2a with the aid of Na2S2O8 
and Ag2CO3,5h,i leading to the intermediate II, and 
subsequent oxidative deprotonation of II by Ag2CO3 and/or 
Na2S2O8 furnishes the ruthenacycle III. Finally, the 
protonation and ligand exchange of III with 1a release the 
desired meta-acylated product 3aa and regenerate the 
intermediate I to complete the catalytic cycle. Trace 
amounts of biaryl byproducts20 resulted from the homo-
couplings of I and III could be detected in the reaction 
mixtures by mass spectroscopy, indicating that Na2S2O8 and 
Ag2CO3 are not the suitable oxidants for this homo-coupling 
process, and thus preferably afford the meta-acylated 
products.

Scheme 6. Plausible Reaction Mechanism
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CONCLUSION

In summary, we have developed the first ruthenium-
catalyzed direct decarboxylative meta-selective C−H 
acylation of a wide range of arenes, using Ru3(CO)12 as the 
catalyst and α-oxocarboxylic acids as the acylation source. 
This procedure possesses advantages of broad substrate 
scope, good functional group tolerance, and high 
regioselectivity. Mechanistic studies demonstrated that an 
18e-octahedral ruthenium intermediate as the active 
catalyst and a radical process were involved in this reaction. 
The present work extends the existing paradigm of the 
recently popular ruthenium-catalyzed meta-selective C−H 
functionalization regime and provides a new strategy for 
the regioselective meta-acylation reactions. We anticipate 
that this strategy should also be valuable for the 
development of pharmaceutical and materials science.
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DG = pyridine, pyrimidine, pyrazole, purine O

R
+

N
Ru

N
CO

COortho-CH ruthenation

H
H

active catalyst

acyl radical

Meta-selective acylation of arenes has been achieved via the Ru-catalyzed ortho-metalation strategy and a radical process, 
featuring broad substrate scope, good functional group tolerance, and high regioselectivity.
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