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A B S T R A C T

The present work describes development of a simple and cost-effective fluorescence sensor for determination of
quinone specially 1,8-dihydroxyanthraquinone (danthron). A 2D-metal-organic framework (TMU-54) containing
the azobenzene group has been synthesized and applied as an efficient fluorescent sensor for danthron detection.
The key feature that has a great impact on the properties of the material is the presence and distribution of
functional groups within the structure. We discuss the relationship between the nature and structure of the
specifically designed organic linker as well as the properties of this framework in fluorescence recognition of
quinones. TMU-54 ([Cd3(adc)6(DMF)2]) is capable of distinguishing complementary and mismatched target
sequences with high sensitivity and a significant Ksv (1049) value.

1. Introduction

Quinones, hydroquinones, semiquinones, and their derivates have
been found to undergo rapid single-electron reduction that is highly
damaging to biological molecules [1,2]. Exposure of humans and
wildlife to quinones and the inherent reactivity of released single-
electrons may induce adverse health and toxicity effects [3,4]. An-
thraquinones are also a subgroup of quinone derivatives whose study is
very important because of their structural correlation with quinone
antitumor drugs and anthraquinoid vat dyes [5]. On the other hand, it
is all the more important as the α-hydroxy groups are present in a large
number of natural anthraquinones which have found many applications
in the composition of pharmaceuticals and physiologically active sub-
stances [6–8]. They are also important as dyes, analytical reagents,
indicators, and in other applications. Despite this importance, few
studies have been done to identify these substances and there is no
report in the literature on using porous materials as sensor probes for
determination of these materials [9,10].

Owing to their unique characteristics like crystalline hybrid struc-
ture, high porosity and surface area, mixed inorganic-organic nature,
structural stability and designability in chemical functionality, metal-
organic frameworks (MOFs) have been applied in a large variety of
applications [11,12]. Perhaps the most important feature of the MOFs is

their tunability through targeted selection of ligands and metal nodes
for specific applications such as catalysis, sensing, and hazardous ma-
terial removal [13–20]. Over the recent years, the role of functional
groups in implementing various applications has been significant
[21–23]. MOFs containing photoresponsive building blocks, such as
azobenzene, aryl azide, and nitrobenzyl groups are currently in the
spotlight due to their potential applications in different areas including
molecular sensing and catalysis [24–27]. Thus, MOFs containing one of
these functional groups offer a leading strategy for realizing long-range
manipulation of their functions with adjustable specificity. Because of
their photochemical isomerization with ultraviolet or visible light,
azobenzene derivatives have been investigated as photo-switches that
provide extensive geometrical changes [28,29]. Their isomerization
ability could provide a significant alteration in polarity [30,31]. Due to
the advantages mentioned above, in the past decade, many MOFs em-
ployed as ideal luminescent materials, have been reported for sensing of
different kinds of pollutants [32]. MOFs have been applied as chemical
sensors for detecting different types of analytes such as metal ions,
small-molecules, volatile organic compounds, nitroaromatics, anions,
and bio-chemicals. Considering their widespread release in the nature
and their critical hazards on the environment and human body, de-
tection of metal ions through MOFs has received a lot of attention over
the past few years [33,34].
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Luminescent metal–organic frameworks (LMOFs) have several key
advantages over other luminescent probe materials [35]. The natural
crystallinity of metal–organic frameworks allows exact structure de-
termination by X-ray crystallography, providing precise information
about atomic positions and the interactions that may be used in various
applications. Long range interactions include radioactive energy
transfer, in which target molecules absorb emissions from the probe
material [36,37].

Herein, inspired by this approach, we report the synthesis of a 2D
luminescent MOF containing an azobenzene group. The chosen ligand
was azobenzene-4,4-dicarboxylic acid (adc) (Scheme 1) which led to
synthesis of TMU-54 ([Cd3(adc)6(DMF)2]). The sensitivity of TMU-54
towards quinone derivatives was studied in an ethanolic solution. This
structure can act as a turn-off fluorescence sensor for quinones.

2. Experimental

2.1. Synthesis of the azobenzene-based ligand

The azobenzene-4,4-dicarboxylic acid (adc) linker was synthesized
according to the previously reported procedure [17]. Also for more
information, the synthesis has been discussed in the supporting in-
formation (Scheme 1).

2.2. Synthesis of TMU-54 ([Cd3(adc)6(DMF)2])

The single crystals of TMU-54 ([Cd3(adc)6(DMF)2]) were synthe-
sized by heating a mixture of 1mmol adc ligand (0.27 g), 1 mmol of Cd
(NO3)2·4H2O (0.3 g) and DMF (15mL) in a Teflon-lined stainless steel
autoclave under autogenous pressure at 100 °C for 2 days. After cooling
to room temperature at the rate of 5 °C h−1, TMU-54 red crystals were
obtained in 40% yield. m.p.: 300 °C. FT-IR data (KBr pellet, cm−1):
selected bands are: 673 (m), 789 (m), 1012 (m), 1388 (m), 1620 (s),
1665 (vs) and 3410 (br).

2.3. General method of quinine derivatives fluorescence sensing

All the fluorescence titrations were carried out with a 3mg stable
suspension of reported crystals in 3mL ethanolic solution of quino-
lones. Excitation and emission wavelengths of the compound TMU-54
in ethanol were 370 nm and 430 nm, respectively.

It should be noted that before any sensing process, the crystal ac-
tivation was done. The trapped solvent was removed by soaking the
synthesized crystals in 15mL of CH3CN solvent for 4 days. Fresh acet-
onitrile was exchanged every 24 h and after 3 days the solvent was
decanted. Finally, the CH3CN was evaporated by heating the crystals at
120 °C for 24 h. The activation was confirmed by FT-IR spectroscopy

Scheme 1. Schematic presentation of azobenzene-4,4-dicarboxylic acid (adc)
linker.

Fig. 1. Coordination environment around Cd atoms (A), separated chains of the supramolecular structure (B), 3D structure of TMU-54 (C), and simplified structure of
TMU-54 (D).
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(absence of the peak at 1666 cm−1) and powder X-ray diffraction
(stability in the crystal structure).

3. Results and discussion

3.1. Characterization of TMU-54

TMU-54, was synthesized to have a centrosymmetric triclinic space
group (P-1). Crystal data with data collection and refinement para-
meters are summarized in Table S1, also selected bond distances and
angles are given in Table S2. The hourglass-like [Cd3(COO)6] SBUs of
the TMU-54 ([Cd3(adc)6(DMF)2]) contains two different Cd(II) centers
in which Cd1 is connected by six oxygen atoms (Cd1O6) of six different
adc linkers creating an octahedral environment, while Cd2 has seven
coordinated geometry interacting with six oxygen atoms of three adc
ligands and one oxygen atom from a coordinated DMF molecule. The
distance between the two cadmium atoms in hourglass-like Cd3 SBU is
3.412 Ȧ. The three ligands attached to each Cd1 atom are spaced apart
in the space between the three ligands attached to another Cd1 atom
with opposite orientation (Fig. 1). This particular orientation and in-
terpenetration leads to the reduction of free space in the structure. The
supramolecular features of TMU-54 are controlled by weak directional
intermolecular interactions. The π-π stacking interactions through iso-
lated chains create a 3D supramolecular framework. To investigate the
porosity of these structures, the Brunauer-Emmett-Teller (BET) mea-
surements of N2 gas were f demonstrate that TMU-54 has a surface area
of 35.7m2/g (Fig. 2).

3.2. Thermal stability studies of TMU-54

Thermogravimetric analysis (TGA) of the TMU-54 shows the good
thermal stability of the structure. The two-step gradual weight loss (in
temperature range of 325–500 °C) corresponds to the decomposition of
the framework (calc.: 67%, found: 65.5%) corresponding to the se-
paration of the ligand connected to the metal node. Therefore, the
structure is stable at temperatures up to 300 °C (Fig. 3 and Figs. S2–S5).

3.3. Quinoline-sensing ability of TMU-54

Owing to photophysical properties of MOFs in signal transduction
and advantages of photoluminescence (PL) methods, PL-based methods
have received more attention compared to other methods. PL methods
are highly sensitive with reachable single molecular detection limits,
easily manipulable, practical in real-life and in-field applications, with
rapid response time, and able to be addressed by powdered materials

directly. A very critical advantage of PL-methods is that both powder
and crystal of LMOFs can be applied in metal ion detection without the
need for film fabrication [35]. Therefore, considering the hybrid nature
of MOFs and, they can rise to optical emission and transduce special
kind of signals under photoinduced excitation conditions which is a
very favorable behavior for PL-methods. Various fluorescence-based
chemosensors were used for the detection of different analytes but
using LMOF due to the minimum material consumption is considered
cost-effective. As a result, MOF-based sensor materials have been ex-
tensively applied in photoluminescence-based methods as the most
widely explored technique for detection of metal ions to date. Due to
the fact that Cd2+ (d10) is the metal used to synthesize TMU-54, the
fluorescence is ligand-derived. Given the structural properties of the
structure’s ligands and their ability to form hydrogen bonding, electron
donation of azobenzene group, and probability of π-π stacking with the
guest molecule, quinone derivatives were selected as target structures
for detection. Model experiments were conducted to demonstrate our
assumption and evaluate the sensing ability of TMU-54 to benzoqui-
none, naphthoquinone, anthraquinone, phenol, and 1,8-dihydroxyan-
thraquinone. Stern–Volmer equation has generally been proposed to
investigate the response to quenching of various analytes (see the
supporting information). The results are presented in Table 1, which
show that TMU-54 is a turn-off fluorescence detector for quinone de-
rivatives. As it is shown in Table 1, the structure of TMU-54 acts as a
turn-off fluorescence sensor to quinone derivatives, but does not show
any particular reaction in the presence of 1,8-dihydroxyanthraquinone.

The order of quenching efficiency in the presence of TMU-54 is 1,8-
dihydroxyanthraquinone > Naphthoquinone > 1,4-
Benzoquinone > Anthraquinone (Figs. S2 and S3 and Fig. 4).

Quinones have a low-lying unoccupied π* orbital, which can accept
an electron from the excited state chemophore, thus efficiently
quenching the fluorescence emission of this compound but in the case
of 1,8-dihydroxyanthraquinone sensing by TMU-54, the proximity of
the excitation wavelength of the guest to the emission wavelength of
the host justifies the observed effect. For compounds containing α-hy-
droxy group tautomerism involves a proton transfer along a conjuga-
tion chain from hydroxy group and adjacent carbonyl group [31]. In-
termolecular hydrogen bonding as well as the π-π stacking interaction
can also be effective in danthron sensing by TMU-54.

The UV–Vis spectra of all the analytes have been studied (Fig. 5).
The overlap of the fluorescence emission spectrum of the sensor with
the absorption spectrum of the analytes is a more important factor.
When the proximity between a donor and an acceptor, with sufficient
spectral overlap, is of< 10 nm the energy transfer process can be
achieved. The large overlap of TMU-54 emission peak with the ab-
sorption spectrum of danthron and the lack of spectral overlap between
TMU-54 and other analytes confirm the energy transfer process me-
chanism in 1,8-dihydroxyanthraquinone sensing by TMU-54 (Fig. 5).

The XRD patterns of TMU-54 before and after the sensing process
are shown in Fig. 6. The intact patterns show that the structures remain
unchanged during the sensing process (see Fig. 6).

As a result, we can clearly argue that fine tuning of MOF cavities
with ideal organic functional groups can provide situations resulting in
high sensing ability of MOFs despite their moderate surface areas.
Considering this point, we applied azobenzene decorated TMU-54 for
sensing of 1,8-dihydroxyantraquinone to take advantage of its strong
and improved characteristics. Therefore, TMU-54 shows high sensi-
tivity towards 1, 8-dihydroxyantraquinone (Ksv > 1040) compared
with other quinone derivatives.

4. Conclusion

In this work we synthesized a fluorescent MOF (TMU-54) by the
solvothermal method. The sensing ability of TMU-54 (containing the
same azobenzene functional group) toward quinone derivatives was
studied. The activated TMU-54 can selectively detect quinones andFig. 2. N2 adsorption–desorption isotherms of TMU-54 (B).
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especially 1,8 dihydroxyanthraquinone (danthron). Fluorescence titra-
tion experiments confirmed that TMU-54 shows selective detection
towards quinones in the presence of other compounds and also de-
monstrates a detection limit of 1× 10−5 M for 1,8-dihydroxyan-
thraquinone. On the other hand, TMU-54 can detect quinones with
lower Ksv values, expect for anthron. Investigations reveal that Lewis
basicity and electron donation of azobenzene (eCeN]NeCe) have
significant effects on danthron sensing by TMU-54. This type of inter-
action is beneficial to such fast and sensitive detection abilities.

Fig. 3. Fluorescence emission spectra of TMU54 dispersed in EtOH solution of hydroxyanthraquinone at different concentrations, excited at 360 nm (b) Stern–Volmer
(SV) plots in the presence of 5 mg of TMU-54 and in different concentration of 1,8-dihydroxyanthraquinone.

Table 1
The Ksv values (S−1) obtained from quinones sensing by TMU-
54.

Analyte TMU-54

Naphthoquinone 880
1,4-Benzoquinone 248
Anthraquinone 122
1,8-dihydroxyanthraquinone 1049

Fig. 4. Fluorescence spectra of other studied analytes, excited at 370 nm.
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