

Article

Organometalics free arylation and arylation/trifluoroacetylation of quinolines by their reaction with CF3-ynones and base induced rearrangement

Vasiliy M. Muzalevskiy, Kseniya Belyaeva, Boris A. Trofimov, and Valentine Georgievich Nenajdenko

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.0c01277 • Publication Date (Web): 07 Jul 2020 Downloaded from pubs.acs.org on July 7, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Organometalics free arylation and arylation/trifluoroacetylation of quinolines by

their reaction with CF₃-ynones and base induced rearrangement

Vasiliy M. Muzalevskiy^a, Kseniya V. Belyaeva^b, Boris A. Trofimov^{*b}, Valentine G. Nenajdenko^{*a}

^a M. V. Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1, Moscow, 119991 Russia

^bA. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., Irkutsk,

664033, Russia; Fax: (395-2)41-93-46

Abstract The reaction of quinolines with CF₃-ynones resulted in formation of 1,3-oxazinoquinolines. Subsequent treatment of the reaction mixture with a base initiated deep structural transformation of primary products. Both steps proceed in very high yield. As a result, unusual rearrangement of 1,3-oxazinoquinolines to form either 2-arylquinolines or 2-aryl-3-trifluoroacetylquinolines was discovered. The decisive role of base on the reaction direction was shown. Using these reactions, highly efficient pathways to 2-arylquinolines and 2-aryl-3-trifluoroacetylquinolines were elaborated to provide the corresponding compounds in high yields using simple one-pot procedure. The possible mechanism of rearrangement is discussed.

Introduction

Quinoline is one of the very first organic molecules known to organic chemists. It was discovered almost two centuries ago in 1834 by German chemist Friedlieb Ferdinand Runge in extracts of coal tar.¹ Nevertheless, chemistry of quinoline is a still intensively developing branch of the modern organic chemistry due to wide applications of quinoline derivatives.² Thus, this type of heterocycles has found application as sensors,³ agrochemicals,⁴ materials for phosphorescent organic light-emitting diodes,⁵ ligands for transition metal complexes⁶ and anti-foaming agents in refineries.⁷ Quinoline scaffolds play

a significant role in drug discovery showing many types of biological activity such as antifungal,⁸ anticancer.⁹ anti-inflammatory,¹⁰ and antileishmaniasis actions.¹¹ Almost 300 alkaloids, having quinoline moiety were listed in "The Dictionary of Alkaloids".¹² Nowadays, quinoline cinchona alkaloids and their derivatives are widely used in organic synthesis as key catalysts for asymmetric catalysis and organocatalysis (Figure 1).¹³ Perhaps, probably the most important application of quinoline derivatives is their use as drugs. Quinolone antibiotics including the organofluorine compounds such as ofloxacin (Floxin), norfloxacin (Noroxin), ciprofloxacin (Cipro), and moxifloxacin (Avelox) are widely used worldwide for treatment a broad range of bacterial infections—such as pneumonia and tuberculosis (Figure 1).¹⁴ In spite of big progress in treatment of tuberculosis, about 10 million people fell ill in 2018, 1.2 million lost their struggle with illness in 2018.¹⁵ Quinoline alkaloid quinine was a first cure for treatment of malaria, known since the 17th century.¹⁶ Malaria is the dangerous infective disease affected 228 million people in 2018, reaping nearly 0.4 million casualities that year.¹⁷ There are a number of modern antimalarial quinoline derived drugs, for example Chloroquine, Hydroxychloroquine, Mefloquine.¹⁸ In addition to the treatment or preventing malaria above mentioned drugs are currently tested as a possible cure for COVID-19.19

Figure 1. Selected examples of FDA approved drugs having quinoline moiety and cinchona alkaloids.

Page 3 of 39

Nowadays, organofluorine compounds are in the focus of intensive investigation due to their unique physicochemical and biological properties.²⁰ These compounds are widely used as construction materials, components of liquid crystalline compositions, agrochemicals²¹ and pharmaceuticals²². By recent estimation, about 20% (more than 300 compounds) of currently used drugs²³ contain at least one fluorine atom.²⁴ Moreover, last years show even higher shares of fluoropharmaceuticals among new small-molecule drugs (45% in 2018,²⁵ 41% in 2019²⁶). Fluorinated heterocycles make a noticeable contribution into this group. In 2018 and 2019 FDA approved 11 drug bearing fluorinated heterocyclic motifs. As a result, a great attention has been paid for the development of novel effective methodologies for the synthesis of fluorinated heterocycles.²⁷

Recently, we elaborated highly efficient stereoselective synthesis of CF_3 -oxazinoquinolines using the reaction of CF_3 -ynones²⁸ with quinolines (Scheme 1).²⁹ The synthetic utility of the prepared CF_3 -oxazinoquinolines was demonstrated.³⁰ In this manuscript we report investigation of two intriguing rearrangements of **3** under treatment with NaOH in water at 80 °C and morpholine in MeCN at 80 °C. The first one leads to 2-phenylquinoline **4** while the second one affords 2-phenyl-3-trifluoroacetylquinoline **5**. The scope of the reactions and their mechanism is also reported.

Scheme 1. Synthesis of 3a.

Results and discussion

To start our investigation, optimization of the reaction conditions was performed using CF₃-oxazine **3a** as a model substrate (Scheme 2). Both nature of solvent and base were tested (for details see Tables S1 and S2 in SI). The main findings of this screening are following. Strong inorganic bases (t-BuOK, NaOH) favor formation of only 2-phenylquinoline in THF, MeCN or H₂O and aqueous NaOH is the

reagent of choice. In contrast, formation of trifluoroacetylquinoline 5a is preferable under action of milder organic bases to give exclusively 5a in case of morpholine and *N*-methylpiperidine in MeCN.

Scheme 2. Base induced transformation of oxazine **3a** into quinolines **4a** and **5a**.

Having optimal conditions in hand, we investigated the synthetic scope of both reactions. It was found, that various CF₃-oxazinoquinolines **3** can be easily transformed into the corresponding 2-arylquinolines in up to 91% yield (Scheme 3). One pot version was also used to prepare 2-arylquinolines in up to 83% yield. The reaction is very general, allowing construction of 2-arylquinolines having different substituents in the structure. No restrictions were found. As a rule, quinolines **4** bearing electron-donating and electron-withdrawing groups as well as bulky substituents in both quinoline and aryl moieties are formed in high yield. Somehow decreased yields were observed for ortho-substituted **4f** and electron rich **4m** prepared in 53% and 63% correspondingly (one pot synthesis). It was also found that the transformation can be used for the synthesis of other heterocyclic derivatives. Thus, 2-(2-thiophenyl)quinoline **4n** and 2-phenyl-1,8-naphtyridine **4s** were prepared successfully.

The investigation of the second rearrangement revealed even better results. The reaction was appeared be insensitive to the nature of the substituents in oxazines 3 to form 2-aryl-3to trifluoroacetylquinolines 5 in up to 88% yields (Scheme 4). High yields were observed for any derivatives. For example, 2-aryl-3-trifluoroacetylquinolines 5f and 5m were prepared in 87% and 70% in one pot variation of the synthesis. Thiophenyl- and 1,8-naphtyridine derivatives were also successfully synthesized. Notably, the yield of 2-thiophenyl derivative 5n was almost twice better comparing to synthesis of **4n**.

We have also carried out syntheses of 2-phenylquinoline **4a** and 2-phenyl-3-trifluoroacetylquinoline **5a** in sub gram scale. In both cases one pot procedures were used starting from 6 mmol of CF₃-ynone **2a**. As a result, the corresponding quinolines were prepared in high yield (**4a**, 0.722 g, 60% and **5a**, 1.432 g, 82%).

There are plenty methods for the synthesis of 2-arylquinolines or 3-trifluoroacetylquinolines. The most straightforward literature approaches to 2-arylquinolines are based on application of organometallic (lithium³¹, magnesium³², zinc³³, bismuth³⁴) or organoelement (boron³⁵, silicon³⁶, tin³⁷) derivatives.

The Journal of Organic Chemistry

Effective transformations of o-alkenvlarvlisonitriles into 2-arylquinolines by radical cascades were also reported³⁸. 3-Trifluoroacetylquinolines have been prepared using trifluoroacetylating reagents³⁹ or by condensations of 2-aminobenzaldehyde⁴⁰ and 2-aminoaceto- and benzophenones⁴¹ with carbonyl compounds. Obviously, these two groups of the methods are not compartible, in terms of starting materials and the reaction products. By each group of methods, either 2-diarylquinoline or 2trifluoromethylquinoline can be obtained. In contrast, the proposed here approach allows preparation of both quinoline derivatives 4 and 5 using the same starting quinolines. Direction of transformation can be switched by choosing the base using for the rearrangement. As a result, formal arylation of starting quinoline at the C-2 position takes place or simultaneous arylation at C-2 and trifluoroacetylation at C-3 of quinoline. In addition, the proposed approaches are "orthogonal" to other methods. Thus, they are tolarate the Br substituents to open opportunities for further cross-couplings of the quinonine products obtained. To the best of our knowledge there are no such flexible methods known in the literature for modification of quinolines.

Next, some efforts were undertaken to investigate possible mechanisms of both rearrangements. First, we proposed possibility of transformation of trifluoroacetylquinoline 5 into quinoline 4 under action of NaOH in aqueous solution. However, heating of 5a with NaOH led to formation of the corresponding quinoline-3-carboxylic acid 7 in 64% yield. No decarboxylation was observed under the reaction conditions. Similarly, formation of acid 7 was observed in MeCN. It was found, that addition of NaOH to the solution of trifluoroacetylquinoline 5a obtained in situ by the treatment with morpholine afforded amide 6b in moderate yield. Addition of water to the reaction mixture allowed to switch the reaction direction to form acid 7. As a result, one pot three step synthesis of acid 7 was elaborated to give desired compound in 73% yield (Scheme 5). The obtained data permits to exclude transformation of compounds 5 into 2-arylquinolines 4 under the reaction conditions.

Scheme 5. Transformation of 2-arylquinolines-3-trifluoroacetylquinoline **5a** under action of NaOH. Next, additional experiments to study the reaction mechanism were performed. For this aim the reaction of **3a** with NaOH in D_2O was investigated. It was found, that no deuterium was incorporated into the structure of quinoline **4a** under these conditions. Next, deuterated oxazine **3a'** was prepared and their rearrangement to **4a** was studied. Treatment of **3a'** with NaOH in D_2O and H_2O resulted in transformation to quinoline **4a'** having position 3 deuterated. Small admixture of non-deuterated quinoline **4a** was formed as well. Monodeuterated product **4a'** was major product both in D_2O and H_2O . One the base of these results one can conclude, that proton adjacent to the third position of quinoline is originated from the enamine moiety of oxazine **3a'**. No significant exchange between substrate and the reaction media is observed during the rearrangement (Scheme 6).

Scheme 6. Experiments with deuterium labeled compounds and in D_2O .

Taking into account the obtained results and literature data⁴², we proposed following mechanism for the formation of **4a** (Scheme 7). Most probably the rearrangement proceeds through ANRORC type mechanism (Addition of a Nucleophile, followed by the **R**ing **O**pening and **R**ing Closure during the

 substitution)⁴³. It is initiated by deprotonation of hydroxy group of **3a** to form intermediate **A** followed by elimination of trifluoromethyl fragment to give **B**. Subsequent NaOH induced ring opening resulted in formation of intermediate **C** which has semiaminal fragment and is in equilibrium with opened form **D**. This intermediate **D** has in the structure fragment of Michael acceptor (unsaturated aldehyde). On the other hand, it has enamine fragment in the structure as well. As a result new C-C bond is formed to give intermediate **E**. Finally, aromatization takes place by elimination of acetaldehyde and CO₂ to give target 2-substituted quinoline **4a**.

Scheme 7. Possible mechanism of formation of 4a.

The proposed scheme of rearrangement of 3a to 4a can be simply adapted to the synthesis of trifluoroacetylated derivatives 5. Significantly lower basicity of the reaction media (morpholine-CH₃CN) for this transformation should be taken into account. As a result, no elimination of trifluoromethyl anion takes place. In contract, base induced ring opening of 3a gives semiaminal intermediate F which is in equilibrium with its opened form G (Scheme 8). E/Z isomerization of enaminoketone fragment and subsequent intramolecular Michael type reaction of enaminone H (or its more nucleophilic hemiaminal form) and unsaturated aldehyde resulted in cyclized intermediate I. Elimination of acetaldehyde from I ends up the transformation to form quinoline 5a.

Scheme 8. Possible mechanism of formation of 5a.

These two mechanisms are in perfect agreement with influence of nature of amine on the reaction (Table S2, SI). It was found, that rearrangement of oxazine **3a** under treatment of pyrrolidine in MeCN led surprisingly to amide **6a** after heating at 80 °C for 6 hours (Scheme 9). Most favorable explanation of this fact is a reaction of highly nucleophilic pyrrolidine with formed trifluoroacetylquinoline **5a**. Indeed, heating of **5a** with pyrrolidine afforded amide **6a** in high yield. We proposed, that various amines can be involved into the reaction to give efficient route to the corresponding amides. Less nucleophilic amines demanded to use elevated temperature. Thus, heating of **5a** in piperidine and morpholine at 110 °C for 7h afforded amides **6b** and **6c** in near quantitative yields. Heating of **5a** with primary amines did not lead to formation of the desired amides. However, addition of NaOH to the reaction mixture led to fast consumption of starting material to give the corresponding amides bearing cyclopropyl- and n-hexyl moieties **6d**, **6e**.

Scheme 9. Synthesis of amides 6.

It should be noted, that NMR investigation of the reaction mixtures revealed the formation of CF₃H in the reaction. Thus, presence of quadruplet at 6.60 ppm having very large H-F coupling constant (79 Hz) in ¹H NMR spectra as well as doublet at -77.8 (79 Hz) in ¹⁹F NMR confirmed that fact.⁴⁴ Taking into account these results, the mechanism of the transformation of ketones **5** to amides can be rationalized as a two step process. Addition of a nucleophile to carbonyl group of **5** led to intermediate **J** which eliminates trifluoromethyl anion to afford final amide (Scheme 10).

In conclusion, we developed general and efficient pathways towards to 2-arylquinolines and 2-aryl-3trifluoroacetylquinolines based on rearrangement of 1,3-oxazinoquinolines **3**. The reaction direction is orchestrated easily by choosing of the base. Thus, 2-arylquinolines **4** were prepared in high yields under treatment of 1,3-oxazinoquinolines with NaOH in water. Alternatively, synthesis of 2-aryl-3trifluoroacetylquinolines **5** can be performed using morpholine as a base. One pot versions of both syntheses were also elaborated starting from quinolines and CF₃-ynones. As a result, formal C-2 arylation and C-2 arylation/3-trifluoroacetylation of quinolines were developed. Possible mechanisms of all transformations are discussed. In addition, 2-aryl-3-trifluoroacetylquinolines **5** can be used as staring materials for novel efficient approaches to 2-phenylquinoline carboxylic acid and its amides.

Experimental section

General remarks. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker AVANCE 400 MHz spectrometer in CD₃CN and CDCl₃ at 400, 100 and 376 MHz respectively. Chemical shifts (δ) in ppm are reported with the use of the residual CHD₂CN and chloroform signals (1.94 and 7.25 for ¹H and 77.0 for ¹³C) as internal reference. The ¹⁹F chemical shifts were referenced to C₆F₆, (-162.9 ppm). The coupling constants (*J*) are given in Hertz (Hz). ESI-MS spectra were measured with an Orbitrap Elite instrument. TLC analysis was performed on "Merck 60 F₂₅₄" plates. Column chromatography was performed on silica gel. All reagents were of reagent grade and were used as such or were distilled prior to use. CF₃-ynones **2**^{28,45} and CF₃-oxazines **3**³⁰ were prepared as reported previously. Melting points were determined on an Electrothermal 9100 apparatus.

Synthesis of CF₃-ynones 2 from terminal acetylenes (general procedure): Preheated 500 mL threenecked round bottom flask equipped with thermometer, dropping funnel (with rubber septum) and argon inlet was purged with argon and then charged with 200 mL of dry THF and 0.1 mol of corresponding terminal acetylene. Thus obtained solution was cooled to -60°C and 0.11 mol of *n*-BuLi (44 mL, 2.5 M solution in hexane, 0.11 mol) was added dropwise. The reaction mixture was allowed to warm up to -20 °C and then was cooled to -60 °C. Next, CF₃CO₂Et was added slowly at temperature lower than -50 °C. The reaction mixture was allowed to warm up to room temperature (15-20 °C) and then quenched with ~100 mL of 2M HCl at 0-20 °C. Organic layer was separated and water phase was extracted with CH₂Cl₂ (3x30 mL). Combined extracts were washed with water (50 mL), dried over

 Na_2SO_4 and volatiles were evaporated *in vacuo*. The residue was purified by vacuum distillation, recrystallization or by passing through short silica gel pad using appropriate hexane– CH_2Cl_2 mixtures as an eluent. Using this procedure CF_3 -ynones **2a,c,k,m** (for structures see SI) were prepared. For characterization data of CF_3 -ynones **2a,c,k,m** see²⁸.

4-(3,4-diMethylphenyl)-1,1,1-trifluorobut-3-yn-2-one (2c). Obtained from 4-ethynyl-1,2-dimethylbenzene (13.0 g, 0.1 mol). Yellow oil, yield 14.74 g (65%).

¹H NMR (400.1 MHz, CDCl₃): δ 7.43 (s, 1H), 7.41 (dd, ³*J* = 7.7 Hz, ⁴*J* = 1.7 Hz, 1H), 7.19 (d, ³*J* = 7.7 Hz, 1H), 2.32 (s, 3H, Me), 2.28 (s, 3H, Me) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -78.7 (CF₃) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 167.2 (q, ²*J*_{CF} = 42.0 Hz, C=O), 142.7, 137.7, 134.9, 131.7, 130.3, 115.2, 114.9 (q, ¹*J*_{CF} = 288.6 Hz, CF₃), 102.0, 83.5, 20.1, 19.4 ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₂H₁₀F₃O⁺: 227.0678; found: 227.0691.

Synthesis of CF₃-ynones 2 from dichloroalkenes (general procedure): Preheated 500 mL threenecked round bottom flask equipped with thermometer, dropping funnel (with rubber septum) and argon inlet was purged with argon and then charged with dry THF (125 mL) and corresponding dichloroalkene (0.1 mol) or dibromoalkene (for **2n**). Thus obtained solution was cooled to -90°C and *n*-BuLi (0.205 mol, 82 mL, 2.5 M solution in hexane) was added dropwise keeping temperature below -70 to -60 °C. The reaction mixture was kept at -60 to -45 °C for 1h, cooling bath was removed and the reaction mixture was allowed to warm up to 0 to 5 °C. Then the reaction mixture was cooled to -90 °C and CF₃CO₂Et (15.6 g, 0.11 mol) was quite rapidly added for 1-2 minutes. Cooling bath was removed and the reaction mixture was allowed to warm up to 0 to 5 °C. Then the reaction mixture was cooled to -20 °C and HCl (0.25 mol, 125 mL, 2 M aqueous solution) was carefully added for 1 minute. After warming to room temperature (15-20 °C) organic layer was separated and water phase was extracted with CH₂Cl₂ (3x30 mL). Combined extracts were washed with water (50 mL), dried over Na₂SO₄ and volatiles were evaporated *in vacuo*. The residue was purified by vacuum distillation or by passing through short silica gel pad using hexane and appropriate hexane–CH₂Cl₂ mixtures as an eluents. Using this procedure CF₃-ynones **2d,e,f,g,h,i,j,l** were prepared (for structures see SI). For characterization data of CF₃-ynones **2d,e,f,g,h,i,j,l** see.⁴⁵

1,1,1-Trifluoro-4-(thiophen-2-yl)but-3-yn-2-one (2n). Obtained from 2-(2,2-dibromovinyl)thiophene (20.1 g, 0.075 mol). Yellow oil, yield 3.23 g (21%). ¹H NMR (400.1 MHz, CDCl₃): δ 7.68 (pd, ${}^{3}J \sim 4.4$ Hz, 2H), 7.15 (d, ${}^{3}J \sim 4.4$ Hz, 1H), ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -78.6 (CF₃) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 166.7 (q, ${}^{2}J_{CF} = 42.0$ Hz, C=O), 139.5, 134.8, 128.3, 117.8, 114.9 (q, ${}^{1}J_{CF} = 288.4$ Hz, CF₃), 94.9, 88.8 ppm. The NMR data are in agreement with those in the literature.⁴⁶

Synthesis of oxazines 3 by the reaction of CF₃-ynones and quinolines in water (general procedure): A 4 mL vial with a screw cap was charged with water (0.5 mL or D₂O for synthesis of 3a'), quinoline 1 (0.475 mmol, 0.95 equiv.) and then CF₃-ynone 2 (0.5 mmol, 1 equiv.) was added at vigorous stirring. The reaction mixture was stirred at room temperature for 1-2 h and left overnight. Excess water was decanted; the solid residue was dissolved in ethyl acetate (0.5 mL) and dried over Na₂SO₄ (directly in the reaction vial). The solution was transferred into a round bottomed flask and the product crystallized by addition of appropriate amount of heptane (2-3 mL). The mother liquor was decanted, the crude product was dried under reduced pressure to give pure (3*R**,4a*R**)-isomer of 3. Using this procedure oxazines 3a,d,e,g,i,k,o,p,q,r,s were prepared (for structures see SI). For characterization data of these compounds see.³⁰

Synthesis of 2-arylquinolines (4) (general procedure A). A 4 mL vial with a screw cap was charged with oxazine 3 (0.1 mmol), water (0.5 mL) and NaOH (0.012 g, 0.3 mmol, 3 equiv.). The reaction mixture was heated at 80 °C at stirring for 2 h using magnetic stirrer with heating. After cooling down to room temperature, the reaction mixture was extracted with EtOAc (2x0.5 mL), combined organic phase was passed through a short silica gel pad using hexane followed by hexane-CH₂Cl₂ (3:1) as eluents. Evaporation of volatiles afforded pure 2-arylquinoline 4.

One pot synthesis of 2-arylquinolines(4) (procedure B). A 4 mL vial with a screw cap was charged with water (1 mL), quinoline 1 (0.475 mmol, 0.95 equiv.) and then CF_3 -ynone 2 (0.5 mmol) was added

at vigorous stirring. The reaction mixture was stirred at room temperature overnight. After that NaOH (0.060 g, 1.5 mmol, 3 equiv.) was added and the reaction mixture was heated at 80 °C at stirring for 2 h using magnetic stirrer with heating. After cooling down to room temperature, the reaction mixture was extracted with CH_2Cl_2 (2x0.5 mL), combined organic phase was passed through a short silica gel pad using hexane followed by hexane- CH_2Cl_2 (3:1) as eluents. Evaporation of volatiles afforded pure 2-arylquinoline **4**.

2-Phenylquinoline (4a). Obtained from oxazine **3a** (0.030 g, 0.087 mmol) by procedure A or from quinoline **1a** (0.061 g, 0.473 mmol) and acetylene **2a** (0.099 g, 0.5 mmol) by procedure B Light brown powder, m.p. 81-83 °C (Lit. data⁴⁷: 82-84 °C), yield 0.016 g (90%, A) or 0.073 g (75%, B). Sub gram scale synthesis was performed using procedure B from quinoline **1a** (0.756 g, 5.86 mmol) and acetylene **2a** (1.200 g, 6.061 mmol). Yield 0.722 g, (60%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.22 (d, ³*J* = 8.6 Hz, 1H), 8.19-8.15 (m, 3H), 7.87 (d, ³*J* = 8.6 Hz, 1H), 7.83 (dd, ³*J* = 8.1 Hz, ⁴*J* = 0.7 Hz, 1H), 7.75-7.70 (m, 1H), 7.54-7.51 (m, 3H), 7.48-7.44 (m, 1H) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 157.3, 148.2, 139.6, 136.7, 129.63, 129.61, 129.3, 128.8, 127.5, 127.4, 127.1, 126.2, 119.0 ppm. The NMR data are in agreement with those in the literature⁴⁷.

2-Phenylquinoline-3-d (4a'). Obtained from oxazine **3a'** (0.051 g, 0.147 mmol) by procedure A or from quinoline **1a** (0.129 g, 1 mmol) and acetylene **2a** (0.205 g, 1.035 mmol) by procedure B (D₂O was used instead of H₂O). Light brown viscous oil, yield 0.025 g (82%, A, 84:16 mixture with **3a**) or 0.165 g (80%, B, 94:6 mixture with **3a**). ¹H NMR (400.1 MHz, CDCl₃): δ 8.27 (d, ³*J* = 8.6 Hz, 1H), 8.23-8.20 (m, 2H), 8.11 (s, 1H), 7.79-7.72 (m, 2H), 7.58-7.47 (m, 4H) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 157.0, 148.1, 139.4, 136.4, 129.49, 129.43, 129.1, 128.6, 127.4, 127.3, 126.9, 126.0, 118.4 (t, ¹*J*_{CD} = 24.8 Hz) ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₅H₁₁DN⁺: 207.1027; found: 207.1020.

2-(p-Tolyl)quinoline (4b). Obtained from quinoline **1a** (0.030 g, 0.233 mmol) and acetylene **2b** (0.0556 g, 0.262 mmol) by procedure B. Yellow-orange crystals, m.p. 80-82 °C (Lit. data⁴⁷: 79-81 °C),

yield 0.041 g (80%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.18 (d, ³*J* = 8.5 Hz, 2H), 8.08 (d, ³*J* = 8.1 Hz, 2H), 7.85 (d, ³*J* = 8.6 Hz, 1H), 7.80 (dd, ³*J* = 8.2 Hz, ⁴*J* = 1.4 Hz, 1H), 7.72 (ptd, ³*J* = 7.8 Hz, ⁴*J* = 1.4 Hz, 1H), 7.51 (ptd, ³*J* = 7.5 Hz, ⁴*J* = 1.1 Hz, 1H), 7.34 (d, ³*J* = 8.1 Hz, 2H), 2.44 (s, 3H, Me) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 157.3, 148.2, 139.3, 136.8, 136.6, 129.6, 129.5, 127.4, 127.0, 126.0, 118.8, 21.3 ppm. The NMR data are in agreement with those in the literature⁴⁷.

2-(3,4-diMethylphenyl)quinoline (4c). Obtained from quinoline **1a** (0.0313 g, 0.242 mmol) and acetylene **2a** (0.0603 g, 0.267 mmol) by procedure B. Light yellow powder, m.p. 91-93 °C (Lit. data⁴⁸: 89-91 °C), yield 0.047 g (83%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.18 (d, ³*J* = 8.3 Hz, 1H), 8.17 (d, ³*J* = 8.4 Hz, 1H), 7.99 (d, ³*J* = 8.1 Hz, 1H), 7.87 (dd, ³*J* = 8.3 Hz, ⁴*J* = 1.8 Hz, 1H), 7.85 (d, ³*J* = 8.6 Hz, 1H), 7.80 (dd, ³*J* = 8.1 Hz, ⁴*J* = 1.1 Hz, 1H), 7.72 (ptd, ³*J* = 7.8 Hz, ⁴*J* = 1.4 Hz, 1H), 7.50 (ptd, ³*J* = 7.5 Hz, ⁴*J* = 1.1 Hz, 1H), 7.29 (d, ³*J* = 7.8 Hz, 1H), 2.39 (s, 3H, Me), 2.34 (s, 3H, Me) ppm. ¹³C {¹H} NMR (100.6 MHz, CDCl₃): δ 157.5, 148.2, 138.1, 137.2, 137.0, 136.6, 130.1, 129.6, 129.5, 128.6, 127.4, 127.0, 126.0, 124.9, 118.9, 19.9, 19.7 ppm. The NMR data are in agreement with those in the literature⁴⁸.

2-(4-(tert-Butyl)phenyl)quinoline (4d). Obtained from quinoline **1a** (0.0305 g, 0.236 mmol) and acetylene **2d** (0.068 g, 0.268 mmol) by procedure B. Light brown solid, m.p. 62-64 °C (Lit. data⁴⁹: 84-85 °C), yield 0.046 g (75%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.18 (d, ³*J* = 8.6 Hz, 2H), 8.11 (d, ³*J* = 8.6 Hz, 2H), 7.86 (d, ³*J* = 8.6 Hz, 1H), 7.81 (dd, ³*J* = 8.1 Hz, ⁴*J* = 1.2 Hz, 1H), 7.72 (ptd, ³*J* = 7.7 Hz, ⁴*J* = 1.4 Hz, 1H), 7.56 (d, ³*J* = 8.6 Hz, 2H), 7.51 (ptd, ³*J* = 7.5 Hz, ⁴*J* = 1.1 Hz, 1H), 1.39 (s, 9H, *t*-Bu) ppm. ¹³C{¹H} (100.6 MHz, CDCl₃): δ 157.3, 152.5, 148.3, 136.9, 136.6, 129.6, 129.5, 127.4, 127.2, 127.0, 126.0, 125.8, 118.9, 34.7, 31.3 ppm. The NMR data are in agreement with those in the literature⁴⁹.

2-(4-Methoxyphenyl)quinoline (4e). Obtained from oxazine **3e** (0.081 g, 0.216 mmol) by procedure A. Light brown powder, m.p. 124-125 °C (Lit. data⁴⁷: 119-121 °C), yield 0.046 g (91%). ¹H NMR (400.1

MHz, CDCl₃): δ 8.16-8.11 (m, 4H), 7.82-7.77 (m, 2H), 7.70 (ptd, ${}^{3}J = 7.7$ Hz, ${}^{4}J = 1.4$ Hz, 1H), 7.48 (ptd, ${}^{3}J = 7.5$ Hz, ${}^{4}J = 1.0$ Hz, 1H), 7.04 (d, ${}^{3}J = 8.9$ Hz, 2H), 3.87 (s, 3H, MeO) ppm. ${}^{13}C{}^{1}H$ NMR (100.6 MHz, CDCl₃): δ 160.7, 156.9, 148.2, 136.6, 132.2, 129.5, 129.4, 128.8, 127.4, 126.8, 125.9, 118.5, 114.2, 55.3 ppm. The NMR data are in agreement with those in the literature⁴⁷.

2-(2-Methoxyphenyl)quinoline (4f). Obtained from quinoline **1a** (0.061 g, 0.473 mmol) and acetylene **2f** (0.114 g, 0.5 mmol) by procedure B. Light yellow oil, yield 0.063 g (57%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.19 (d, ³*J* = 8.5 Hz, 1H), 8.13 (d, ³*J* = 8.6 Hz, 1H), 7.89 (d, ³*J* = 8.6 Hz, 1H), 7.87 (dd, ³*J* = 7.6 Hz, ⁴*J* = 1.8 Hz, 1H), 7.82 (dd, ³*J* = 8.1 Hz, ⁴*J* = 1.1 Hz, 1H), 7.70 (ptd, ³*J* = 7.7 Hz, ⁴*J* = 1.4 Hz, 1H), 7.52 (ptd, ³*J* = 7.5 Hz, ⁴*J* = 1.1 Hz, 1H), 7.42 (ptd, ³*J* = 7.4 Hz, ⁴*J* = 1.8 Hz, 1H), 7.14 (td, ³*J* = 7.5 Hz, ⁴*J* = 1.0 Hz, 1H), 7.02 (d, ³*J* = 8.3 Hz, 1H), 3.85 (s, 3H, MeO) ppm.

¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 157.1, 157.0, 148.2, 135.0, 131.4, 130.2, 129.6, 129.5, 129.1, 127.3, 126.9, 126.1, 123.4, 121.2, 111.3, 55.5 ppm. The NMR data are in agreement with those in the literature⁵⁰.

2-(4-(Methylthio)phenyl)quinoline (4g). Obtained from oxazine **3g** (0.0286 g, 0.0731 mmol) by procedure A. Light yellow powder, m.p. 146-148 °C (Lit. data⁵¹: 128-130 °C), yield 0.0154 g (84%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.19 (d, ³*J* = 8.6 Hz, 1H), 8.14 (d, ³*J* = 8.5 Hz, 1H), 8.09 (d, ³*J* = 8.5 Hz, 2H), 7.84 (d, ³*J* = 8.6 Hz, 1H), 7.81 (d, ³*J* = 8.1 Hz, 1H), 7.71 (ptd, ³*J* = 7.7 Hz, ⁴*J* = 1.3 Hz, 1H), 7.51 (ptd, ³*J* = 7.5 Hz, ⁴*J* = 1.1 Hz, 1H), 7.38 (d, ³*J* = 8.5 Hz, 2H), 2.54 (s, 3H, MeS) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 156.6, 148.3, 140.4, 136.8, 136.2, 129.7, 129.6, 127.8, 127.4, 127.1, 126.4, 126.2, 118.6, 15.5 ppm. The NMR data are in agreement with those in the literature⁵¹.

2-(4-(Trifluoromethyl)phenyl)quinoline (4h). Obtained from quinoline **1a** (0.033 g, 0.256 mmol) and acetylene **2h** (0.070 g, 0.263 mmol) by procedure B. Light brown powder, m.p. 125-126 °C (Lit. data⁵⁰: 122-124 °C), yield 0.0545 g (78%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.26 (d, ³*J* = 8.1 Hz, 2H), 8.22 (d, ³*J* = 8.6 Hz, 1H), 8.18 (d, ³*J* = 8.5 Hz, 1H), 7.86-7.82 (m, 2H), 7.77-7.73 (m, 3H), 7.55 (ptd, ³*J* = 7.5

Hz, ${}^{4}J = 1.1$ Hz, 1H) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -63.8 (CF₃) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 155.6, 148.2, 142.9 (q, ${}^{4}J_{CF} = 1.1$ Hz), 137.1, 131.0 (q, ${}^{2}J_{CF} = 32.4$ Hz, <u>C</u>-CF₃), 130.0, 129.8, 127.8, 127.5, 127.4, 126.8, 125.7 (q, ${}^{3}J_{CF} = 3.7$ Hz), 115.9 (q, ${}^{1}J_{CF} = 272.2$ Hz, CF₃), 118.7 ppm. The NMR data are in agreement with those in the literature⁵⁰.

2-(4-Chlorophenyl)quinoline (4i). Obtained from oxazine **3i** (0.036 g, 0.0947 mmol) by procedure A. Light brown powder, m.p. 108-110 °C (Lit. data⁴⁷: 114-116 °C), yield 0.020 g (88%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.21 (d, ³*J* = 8.6 Hz, 1H), 8.15 (d, ³*J* = 8.5 Hz, 1H), 8.11 (d, ³*J* = 8.4 Hz, 2H), 7.82 (d, ³*J* = 8.6 Hz, 2H), 7.73 (ptd, ³*J* = 7.7 Hz, ⁴*J* = 1.0 Hz, 1H), 7.53 (pt, ³*J* = 7-8 Hz, 1H), 7.48 (d, ³*J* = 8.4 Hz, 2H) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 156.0, 148.2, 138.0, 137.0, 135.5, 129.8, 129.6, 129.0, 128.8, 127.5, 127.2, 126.5, 118.6 ppm. The NMR data are in agreement with those in the literature⁴⁷.

2-(2-Chlorophenyl)quinoline (4j). Obtained from quinoline **1a** (0.0313 g, 0.243 mmol) and acetylene **2j** (0.0605 g, 0.257 mmol) by procedure B. Light yellow-brown powder, m.p. 77-79 °C (Lit. data⁵²: 72-75 °C), yield 0.0428 g (73%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.21 (d, ³*J* = 8.7 Hz, 1H), 8.18 (d, ³*J* = 8.7 Hz, 1H), 7.86 (dd, ³*J* = 8.1 Hz, ⁴*J* = 0.9 Hz, 1H), 7.75 (d, ³*J* = 8.4 Hz, 1H), 7.74 (ptd, ³*J* = 7.7 Hz, ⁴*J* = 1.4 Hz, 1H), 7.69 (dd, ³*J* = 7.4 Hz, ⁴*J* = 2.1 Hz, 1H), 7.57 (ptd, ³*J* = 7.5 Hz, ⁴*J* = 1.1 Hz, 1H), 7.50 (dd, ³*J* = 7.4 Hz, ⁴*J* = 2.1 Hz, 1H), 7.43-7.35 (m, 2H) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 157.4, 148.0, 139.6, 135.6, 132.3, 131.7, 130.0, 129.8, 129.7, 129.6, 127.5, 127.14, 127.07, 126.7, 122.7 ppm. The NMR data are in agreement with those in the literature⁵².

2-(4-Bromophenyl)quinoline (4k). Obtained from quinoline **1a** (0.0305 g, 0.236 mmol) and acetylene **2k** (0.069 g, 0.249 mmol) by procedure B. Light brown powder, m.p. 114-115 °C (Lit. data⁴⁷: 120-122 °C), yield 0.050 g (75%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.19-8.14 (m, 2H), 8.03 (d, ³*J* = 8.5 Hz, 2H), 7.80 (d, ³*J* = 8.1 Hz, 1H), 7.79 (d, ³*J* = 8.6 Hz, 1H), 7.73 (ptd, ³*J* = 7.6 Hz, ⁴*J* = 1.3 Hz, 1H), 7.63 (d, ³*J* = 8.5 Hz, 2H), 7.52 (ptd, ³*J* = 7.5 Hz, ⁴*J* = 0.9 Hz, 1H) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ

155.9, 148.1, 138.4, 136.9, 131.9, 129.8, 129.6, 129.0, 127.4, 127.2, 126.5, 123.9, 118.4 ppm. The NMR data are in agreement with those in the literature⁴⁷.

2-(4-Fluorophenyl)quinoline (41). Obtained from quinoline **1a** (0.0301 g, 0.233 mmol) and acetylene **2l** (0.0612 g, 0.5 mmol) by procedure B. Light brown powder, m.p. 92-94 °C (Lit. data⁴⁷: 90-91 °C), yield 0.043 g (83%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.19 (d, ³*J* = 8.7 Hz, 1H), 8.18-8.13 (m, 3H), 7.81 (d, ³*J* = 8.6 Hz, 2H), 7.72 (ptd, ³*J* = 7.4 Hz, ⁴*J* = 1.4 Hz, 1H), 7.52 (ptd, ³*J* = 7.5 Hz, ⁴*J* = 1.0 Hz, 1H), 7.20 (pt, ³*J*_{HH}, ³*J*_{HF} = 8.7 Hz, 2H) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -113.67...-113.75 (m, Ar-F) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 163.7 (d, ¹*J*_{CF} = 249.0 Hz), 156.2, 148.2, 136.9, 135.8 (d, ⁴*J*_{CF} = 3.1 Hz), 129.8, 129.6, 129.4 (d, ³*J*_{CF} = 8.5 Hz), 127.4, 127.0, 126.3, 118.4, 115.7 (d, ²*J*_{CF} = 21.6 Hz) ppm. The NMR data are in agreement with those in the literature⁴⁷.

2-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)quinoline (4m). Obtained from quinoline **1a** (0.0314 g, 0.243 mmol) and acetylene **2m** (0.063 g, 0.246 mmol) by procedure B. Light yellow powder, m.p. 115-117 °C (Lit. data⁵³: 104 °C), yield 0.0405 g (63%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.14 (pt, ³*J* = 8.3 Hz, 2H), 7.78 (d, ³*J* = 8.6 Hz, 2H), 7.74 (d, ⁴*J* = 2.1 Hz, 1H), 7.69 (ptd, ³*J* = 7.7 Hz, ⁴*J* = 1.4 Hz, 1H), 7.68 (dd, ³*J* = 8.4 Hz, ⁴*J* = 2.1 Hz, 1H), 7.48 (ptd, ³*J* = 7.5 Hz, ⁴*J* = 1.1 Hz, 1H), 7.00 (d, ³*J* = 8.4 Hz, 1H), 4.30 (s, 4H, 2CH₂) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 156.5, 148.1, 144.9, 143.8, 136.6, 133.2, 129.52, 129.50, 127.4, 126.9, 125.9, 120.8, 118.5, 117.5, 116.5, 64.5, 64.3 ppm. The NMR data are in agreement with those in the literature⁵³.

2-(Thiophen-2-yl)quinoline (4n). Obtained from quinoline **1a** (0.060 g, 0.465 mmol) and acetylene **2n** (0.101 g, 0.495 mmol) by procedure B. Light brown powder, m.p. 129-131 °C (Lit. data⁵⁰: 124-127 °C), yield 0.0374 g (38%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.12 (d, ³*J* = 8.8 Hz, 1H), 8.09 (d, ³*J* = 8.6 Hz, 1H), 7.79-7.75 (m, 2H), 7.72 (dd, ³*J* = 3.7 Hz, ⁴*J* = 1.0 Hz, 1H), 7.69 (ptd, ³*J* = 7.7 Hz, ⁴*J* = 1.4 Hz, 1H), 7.50-7.45 (m, 2H), 7.15 (dd, ³*J* = 5.0 Hz, ³*J* = 3.7 Hz, 1H) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ

152.3, 148.1, 145.3, 136.6, 129.8, 129.2, 128.5, 128.0, 127.4, 127.1, 126.1, 125.8, 117.6 ppm. The NMR data are in agreement with those in the literature⁵⁰.

2-Phenylquinoline-5-carbonitrile (40). Obtained from quinoline **1b** (0.037 g, 0.240 mmol) and acetylene **2a** (0.056 g, 0.281 mmol) by procedure B. Light yellow-green powder, m.p. 142-144 °C, yield 0.0436 g (79%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.54 (d, ³*J* = 8.8 Hz, 1H), 8.37 (d, ³*J* = 8.5 Hz, 1H), 8.18-8.15 (m, 2H), 8.04 (d, ³*J* = 8.8 Hz, 1H), 7.92 (dd, ³*J* = 7.3 Hz, ⁴*J* = 0.9 Hz, 1H), 7.75 (dd, ³*J* = 8.5 Hz, ³*J* = 7.3 Hz, 1H), 7.56-7.48 (m, 3H) ppm. ¹³C {¹H} NMR (100.6 MHz, CDCl₃): δ 158.8, 147.4, 138.4, 135.2, 133.9, 132.4, 130.1, 129.0, 128.8, 127.6, 126.8, 121.0, 116.8, 109.9 ppm. HRMS (ESITOF): m/z [M+H]⁺ Calcd for C₁₆H₁₁N₂⁺: 231.0917; found: 231.0926.

5-Bromo-2-phenylquinoline (4p). Obtained from quinoline **1c** (0.0518 g, 0.249 mmol) and acetylene **2a** (0.0518 g, 0.262 mmol) by procedure B. Light brown powder, m.p. 80-82 °C, yield 0.0612 g (87%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.55 (d, ³*J* = 8.8 Hz, 1H), 8.18-8.12 (m, 3H), 7.93 (d, ³*J* = 8.8 Hz, 1H), 7.77 (d, ³*J* = 7.3 Hz, 1H), 7.57-7.48 (m, 4H) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 157.8, 148.9, 138.8, 136.1, 129.9, 129.8, 129.7, 129.6, 128.9, 127.6, 126.5, 121.7, 120.0 ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₅H₁₁⁷⁹BrN⁺: 284.0069; found: 284.0068; Calcd for C₁₅H₁₁⁸¹BrN⁺: 286.0049; found: 286.0049.

6-Bromo-2-phenylquinoline (4q). Obtained from oxazine **3q** (0.0626 g, 0.148 mmol) by procedure A. Light brown powder, m.p. 123-124 °C (Lit. data⁴⁹: 123-124 °C), yield 0.0282 g (67%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.15-8.12 (m, 2H), 8.10 (d, ³*J* = 8.7 Hz, 1H), 8.03 (d, ³*J* = 9.0 Hz, 1H), 7.97 (d, ⁴*J* = 2.2 Hz, 1H), 7.87 (d, ³*J* = 8.7 Hz, 1H), 7.78 (dd, ³*J* = 9.0 Hz, ⁴*J* = 2.2 Hz, 1H), 7.55-7.45 (m, 3H) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 157.6, 146.8, 139.1, 135.7, 133.1, 131.4, 129.6, 129.5, 128.9, 128.2, 127.4, 120.0, 119.7 ppm. The NMR data are in agreement with those in the literature⁴⁹.

7-Chloro-2-phenylquinoline (4r). Obtained from quinoline 1e (0.0389 g, 0.239 mmol) and acetylene
2a (0.057 g, 0.288 mmol) by procedure B. White powder, m.p. 114-115 °C (Lit. data⁵⁴: 110-111 °C),

yield 0.046 g (80%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.17-8.14 (m, 4H), 7.85 (d, ³*J* = 8.5 Hz, 1H), 7.73 (d, ³*J* = 8.6 Hz, 1H), 7.55-7.44 (m, 4H) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 158.2, 148.6, 139.1, 136.5, 135.4, 129.6, 128.9, 128.63, 128.62, 127.5, 127.2, 125.4, 119.1 ppm. The NMR data are in agreement with those in the literature⁵⁴.

2-Phenyl-1,8-naphthyridine (4s). Obtained from quinoline **1f** (0.027 g, 0.208 mmol) and acetylene **2a** (0.056 g, 0.288 mmol) by procedure B. White powder, m.p. 119-120 °C (Lit. data⁵⁵: 120-121 °C), yield 0.0365 g (85%). ¹H NMR (400.1 MHz, CDCl₃): δ 9.09 (dd, ³*J* = 4.2 Hz, ⁴*J* = 2.0 Hz, 1H), 8.30-8.27 (m, 2H), 8.19 (d, ³*J* = 8.5 Hz, 1H), 8.14 (dd, ³*J* = 8.1 Hz, ⁴*J* = 2.0 Hz, 1H), 7.96 (d, ³*J* = 8.5 Hz, 1H), 7.52-7.43 (m, 3H), 7.42 (dd, ³*J* = 8.1 Hz, ⁴*J* = 4.2 Hz, 1H) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 160.1, 156.0, 153.7, 138.4, 137.7, 136.7, 130.0, 128.7, 127.8, 121.7, 121.6, 119.6 ppm. The NMR data are in agreement with those in the literature⁵⁵.

Synthesis of 2,2,2-trifluoro-1-(2-arylquinolin-3-yl)ethanones (5) (procedure A). A 4 mL vial with a screw cap was charged with oxazine 3a (0.1 mmol), MeCN (0.5 mL) and morpholine (0.0087 g, 0.1 mmol, 1 equiv.). The reaction mixture was heated at 80 °C for 4-6 h using magnetic stirrer with heating and then volatiles were evaporated in vacuo. The residue was passed through a short silica gel pad using hexane followed by hexane-CH₂Cl₂ (3:1) as eluents. Evaporation of volatiles afforded pure 5. One pot synthesis of 2,2,2-trifluoro-1-(2-arylquinolin-3-yl)ethanones (5) (procedure B). A 4 mL vial with a screw cap was charged with water (0.009 g, 0.5 mmol, 1 equiv.), quinoline 1 (0.475 mmol, 0.95 equiv.), MeCN (1.5 mL) and then CF₃-ynone 2 (0.5 mmol, 1 equiv.) was added at stirring. The clear solution thus obtained was left at room temperature for 24h. Next, morpholine (0.044 g, 0.5 mmol, 1 equiv.) was added and the reaction mixture was heated at 80 °C for 6 h using magnetic stirrer with heating. Volatiles were evaporated in vacuo, the residue was passed through a short silica gel pad using hexane followed by hexane-CH₂Cl₂ (3:1) as eluents. Evaporation of volatiles afforded pure 5.

2,2,2-Trifluoro-1-(2-phenylquinolin-3-yl)ethanone (5a). Obtained from oxazine 3a (0.030 g, 0.087

mmol) by procedure A or from quinoline **1a** (0.061 g, 0.475 mmol) and acetylene **2a** (0.099 g, 0.5 mmol) by procedure B. Pale yellow powder, m.p. 86-87 °C, yield 0.023 g (88%, A) or 0.116 g (81%, B). Sub gram scale synthesis was performed using procedure B from quinoline **1a** (0.751 g, 5.821 mmol) and acetylene **2a** (1.167 g, 5.89 mmol). Yield 1.432 g, (82%). ¹H NMR (400.1 MHz, CD₃CN): δ 8.77 (s, 1H), 8.09 (m, 1H), 8.07 (m, 1H), 7.91 (m, 1H), 7.68 (m, 1H), 7.56 (m, 2H), 7.49 (m, 3H) ppm. ¹³C {¹H} NMR (100.6 MHz, CD₃CN): δ 185.4 (q, ²*J*_{CF} = 36.0 Hz, C=O), 158.4, 149.6, 140.8, 140.7 (q, ⁴*J*_{CF} = 3.0 Hz, C-4), 134.3, 130.3, 130.2, 130.1, 129.6, 129.1, 126.4, 126.0, 117.1 (q, ¹*J*_{CF} = 291.7 Hz, CF₃) ppm. ¹⁹F NMR (376.5 MHz, CD₃CN): δ -72.4 (CF₃) ppm. ¹H NMR (400.1 MHz, CDCl₃): δ 8.58 (s, 1H), 8.22 (d, ³*J* = 8.5 Hz, 1H), 7.93 (d, ³*J* = 8.1 Hz, 1H), 7.87 (ptd, ³*J* = 8 Hz, ⁴*J* = 1 Hz, 1H), 7.65-7.60 (m, 3H), 7.53-7.46 (m, 3H) ppm. ¹³C {¹H} NMR (100.6 MHz, CDCl₃): δ 184.5 (q, ²*J*_{CF} = 36.3 Hz, C=O), 157.6, 148.6, 139.3, 138.9 (q, ⁴*J*_{CF} = 2.0 Hz, C-4), 132.9, 129.6, 129.3, 128.9, 128.7, 128.6, 127.8, 125.8, 124.8, 115.9 (q, ¹*J*_{CF} = 292.3 Hz, CF₃) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -73.7 (CF₃) ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₇H₁₁F₃NO⁺: 302.0793; found: 302.0790.

2,2,2-Trifluoro-1-(2-(p-tolyl)quinolin-3-yl)ethan-1-one (5b). Obtained from quinoline **1a** (0.061 g, 0.475 mmol) and acetylene **2b** (0.106 g, 0.5 mmol) by procedure B. Pale yellow powder, m.p. 78-80 °C, yield 0.120 g (80%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.56 (s, 1H), 8.20 (d, ³*J* = 8.5 Hz, 1H), 7.95 (d, ³*J* = 8.3 Hz, 1H), 7.88 (ptd, ³*J* = 7.7 Hz, ⁴*J* = 1.4 Hz, 1H), 7.64 (ptd, ³*J* = 7.5 Hz, ⁴*J* = 1.1 Hz, 1H), 7.48 (d, ³*J* = 8.0 Hz, 2H), 7.30 (d, ³*J* = 8.0 Hz, 2H), 2.42 (s, 3H, Me) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -73.8 (CF₃) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 184.9 (q, ²*J*_{CF} = 36.1 Hz, C=O), 157.6, 148.8, 139.5, 138.9 (q, ⁴*J*_{CF} = 2.0 Hz), 136.5, 132.8, 129.6, 129.5, 128.8, 128.7, 127.7, 126.0, 124.8, 115.9 (q, ¹*J*_{CF} = 292.5 Hz, CF₃), 21.4 ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₈H₁₃F₃NO,⁺: 316.0944; found: 316.0941.

1-(2-(3,4-Dimethylphenyl)quinolin-3-yl)-2,2,2-trifluoroethan-1-one (5c). Obtained from quinoline **1a** (0.061 g, 0.475 mmol) and acetylene **2c** (0.113 g, 0.5 mmol) by procedure B. White powder, m.p. 117-119 °C, yield 0.128 g (82%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.54 (s, 1H), 8.20 (d, ³*J* = 8.4 Hz, 1H), 7.94 (d, ³*J* = 8.1 Hz, 1H), 7.88 (ptd, ³*J* = 7.7 Hz, ⁴*J* = 1.4 Hz, 1H), 7.64 (ptd, ³*J* = 7.5 Hz, ⁴*J* = 1.0 Hz, 1H), 7.43 (s, 1H), 7.23 (s, 2H), 2.34 (s, 3H, Me), 2.32 (s, 3H, Me) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -73.8 (CF₃) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 185.1 (q, ²*J*_{CF} = 36.1 Hz, C=O), 157.7, 148.8, 138.8 (q, ⁴*J*_{CF} = 2.0 Hz), 138.2, 137.3, 136.9, 132.8, 130.0 (2C), 129.6, 128.6, 127.7, 126.4, 126.2, 124.8, 115.9 (q, ¹*J*_{CF} = 292.5 Hz, CF₃), 19.9, 19.7 ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₉H₁₅F₃NO⁺: 330.1100; found: 330.1100.

1-(2-(4-(*tert***-Butyl)phenyl)quinolin-3-yl)-2,2,2-trifluoroethan-1-one (5d).** Obtained from oxazine 3d (0.060 g, 0.15 mmol) and morpholine (0.013 g, 0.150 mmol) by procedure A or from quinoline 1a (0.017 g, 0.13 mmol) and acetylene 2d (0.035 g, 0.138 mmol) by procedure B. Pale yellow powder, m.p. 109-111 °C, yield 0.045 g (84%, A) or 0.035 g (75%, B). IR (microlayer): 1615 (C=C), 1727 (C=O) cm⁻¹. ¹H NMR (400.1 MHz, CD₃CN): δ 8.74 (s, 1H), 8.06 (m, 2H), 7.89 (m, 1H), 7.65 (m, 1H), 7.54-7.48 (m, 4H,), 1.34 (s, 9H, *t*-Bu) ppm. ¹³C {¹H} NMR (100.6 MHz, CD₃CN): δ 185.4 (q, ${}^{2}J_{CF}$ = 34.7 Hz, C=O), 158.2, 153.4, 149.6, 140.5, 137.7, 134.1, 130.2, 130.1, 129.9, 128.9, 128.0, 126.5, 125.8, 117.1 (q, ${}^{1}J_{CF}$ = 291.6 Hz, CF₃), 35.4 (C from *t*-Bu), 31.5 (3Me from *t*-Bu) ppm. ¹⁹F NMR (376.5 MHz, CD₃CN): δ -73.0 (CF₃) ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₂₁H₁₉F₃NO⁺: 358.1419; found: 358.1425.

2,2,2-Trifluoro-1-(2-(4-methoxyphenyl)quinolin-3-yl)ethan-1-one (5e). Obtained from oxazine **3e** (0.052 g, 0.138 mmol), morpholine (0.004 g, 0.046 mmol) by procedure A or from quinoline **1a** (0.061 g, 0.475 mmol) and acetylene **2a** (0.114 g, 0.5 mmol) by procedure B. Pale yellow powder, m.p. 96-98 °C, yield 0.029 g (65%, A) or 0.139 g (88%, B). IR (microlayer): 1605 (C=C), 1725 (C=O) cm⁻¹. ¹H NMR (400.1 MHz, CD₃CN): δ 8.74 (s, 1H), 8.09 (m, 2H), 7.93 (m, 1H), 7.69 (m, 1H), 7.54 (m, 2H),

7.05 (m, 2H), 3.86 (s, 3H, OMe) ppm. ¹³C{¹H} NMR (100.6 MHz, CD₃CN): δ 185.6 (q, ²J_{CF} = 35.5 Hz,

C=O), 161.8, 157.8, 151.6, 149.7, 140.6, 136.9, 134.1, 133.0, 131.6, 130.1, 128.8, 125.8, 117.5 (g, ¹J_{CF}) = 291.4 Hz, CF₃), 115.1, 56.1 (OMe) ppm. ¹⁹F NMR (376.5 MHz, CD₃CN): δ -73.2 (CF₃) ppm. ¹H NMR (400.1 MHz, CDCl₃): δ 8.51 (s, 1H), 8.17 (d, ${}^{3}J$ = 8.4 Hz, 1H), 7.89 (d, ${}^{3}J$ = 8.6 Hz, 1H), 7.85 (ptd, ${}^{3}J = 7.7$ Hz, ${}^{4}J = 1.5$ Hz, 1H), 7.59 (ptd, ${}^{3}J = 7.5$ Hz, ${}^{4}J = 1.0$ Hz, 1H), 7.56 (d, ${}^{3}J = 8.8$ Hz, 2H), 7.02 (d, ${}^{3}J = 8.8$ Hz, 2H), 3.84 (s, 3H, MeO) ppm. ${}^{19}F$ NMR (376.5 MHz, CDCl₃): δ -73.8 (CF₃) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 185.2 (q, ²J_{CF} = 36.1 Hz, C=O), 160.6, 156.9, 148.7, 138.8 (q, ${}^{4}J_{CF} = 1.9 \text{ Hz}$, 132.7, 131.7, 130.4, 129.4, 128.6, 127.5, 125.9, 124.6, 115.8 (q, ${}^{1}J_{CF} = 292.5 \text{ Hz}$, CF₃), 114.2, 55.2 ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₈H₁₃F₃NO₂⁺: 332.0893; found: 332.0901. 2,2,2-Trifluoro-1-(2-(2-methoxyphenyl)quinolin-3-yl)ethan-1-one (5f). Obtained from quinoline 1a (0.061 g, 0.475 mmol) and acetylene **5f** (0.114 g, 0.5 mmol) by procedure B. Light yellow powder, m.p. 152-154 °C, yield 0.136 g (87%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.48 (s, 1H), 8.20 (d, ³J = 8.5 Hz, 1H), 7.91 (d, ${}^{3}J = 8.1$ Hz, 1H), 7.85 (dd, ${}^{3}J = 7.5$ Hz, ${}^{4}J = 1.7$ Hz, 1H), 7.83 (ptd, ${}^{3}J = 7.7$ Hz, ${}^{4}J = 1.4$ Hz, 1H), 7.61 (ptd, ${}^{3}J = 7.5$ Hz, ${}^{4}J = 0.9$ Hz, 1H), 7.45 (ptd, ${}^{3}J = 7.9$ Hz, ${}^{4}J = 1.7$ Hz, 1H), 7.22 (ptd, ${}^{3}J$ = 7.5 Hz, ${}^{4}J$ = 0.8 Hz, 1H), 6.90 (d, ${}^{3}J$ = 8.2 Hz, 2H), 3.71 (s, 3H, MeO) ppm. ${}^{19}F$ NMR (376.5 MHz, CDCl₃): δ -73.5 (CF₃) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 182.2 (g, ²J_{CF} = 35.6 Hz, C=O), 154.5, 154.4, 149.0, 135.5 (q, ${}^{4}J_{CF}$ = 2.4 Hz), 132.2, 130.99, 130.95, 129.6, 128.6, 127.64, 127.6, 126.5, 124.8, 122.0, 116.4 (q, ${}^{1}J_{CF}$ = 292.3 Hz, CF₃), 110.7, 54.8 ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₈H₁₃F₃NO₂⁺: 332.0893; found: 332.0884.

2,2,2-Trifluoro-1-(2-(4-(methylthio)phenyl)quinolin-3-yl)ethan-1-one (5g). Obtained from oxazine **3g** (0.054 g, 0.138 mmol) by procedure A. Yellow brown powder, m.p. 105-107 °C, yield 0.034 g (71%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.57 (s, 1H), 8.19 (d, ³*J* = 8.5 Hz, 1H), 7.95 (d, ³*J* = 8.1 Hz, 1H), 7.89 (ptd, ³*J* = 7.7 Hz, ⁴*J* = 1.0 Hz, 1H), 7.65 (pt, ³*J* = 7.4 Hz, 1H), 7.50 (d, ³*J* = 8.3 Hz, 2H), 2.52 (s, 3H, MeS) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -73.7 (CF₃) ppm.

¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 184.6 (q, ${}^{2}J_{CF}$ = 36.1 Hz, C=O), 157.0, 148.8, 140.7, 139.1 (q, ${}^{4}J_{CF}$ = 2.2 Hz), 135.8, 133.0, 129.6, 129.3, 128.7, 127.9, 126.2, 125.7, 124.9, 115.9 (q, ${}^{1}J_{CF}$ = 292.5 Hz, CF₃), 15.4 ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₈H₁₃F₃NOS⁺: 348.0664; found: 348.0665. **2,2,2-Trifluoro-1-(2-(4-(trifluoromethyl)phenyl)quinolin-3-yl)ethan-1-one (5h).** Obtained from quinoline **1a** (0.061 g, 0.475 mmol) and acetylene **2h** (0.133 g, 0.5 mmol) by procedure B. White powder, m.p. 120-122 °C, yield 0.142 g (81%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.70 (s, 1H), 8.19 (d, ${}^{3}J$ = 8.5 Hz, 1H), 7.99 (d, ${}^{3}J$ = 8.1 Hz, 1H), 7.93 (ptd, ${}^{3}J$ = 7.7 Hz, ${}^{4}J$ = 1.3 Hz, 1H), 7.76-7.66 (m, 5H) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -63.8 (Ar-CF₃), -73.3 (COCF₃) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 183.1 (q, ${}^{2}J_{CF}$ = 36.1 Hz, C=O), 156.7, 148.7, 142.9 (q, ${}^{4}J_{CF}$ = 1.1 Hz), 139.6 (q, ${}^{4}J_{CF}$ = 2.8 Hz), 133.5, 131.1 (q, ${}^{2}J_{CF}$ = 32.6 Hz), 129.7, 129.2, 128.9, 128.5, 125.6 (q, ${}^{3}J_{CF}$ = 3.7 Hz), 125.1, 124.8, 124.0 (q, ${}^{1}J_{CF}$ = 272.4 Hz, CF₃), 116.0 (q, ${}^{1}J_{CF}$ = 292.1 Hz, CF₃) ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₈H₁₀F₆NO⁺: 370.0661; found: 370.0650.

1-(2-(4-Chlorophenyl)quinolin-3-yl)-2,2,2-trifluoroethan-1-one (5i). Obtained from oxazine 3i (0.093 g, 0.245 mmol) by procedure A. Light yellow powder, m.p. 115-116 °C, yield 0.058 g (71%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.62 (s, 1H), 8.19 (d, ${}^{3}J$ = 8.5 Hz, 1H), 7.97 (d, ${}^{3}J$ = 8.2 Hz, 1H), 7.91 (ptd, ${}^{3}J$ = 7.7 Hz, ${}^{4}J$ = 1.4 Hz, 1H), 7.68 (ptd, ${}^{3}J$ = 7.5 Hz, ${}^{4}J$ = 1.0 Hz, 1H), 7.51 (d, ${}^{3}J$ = 8.6 Hz, 2H), 7.46 (d, ${}^{3}J$ = 8.6 Hz, 2H) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -73.6 (CF₃) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 183.9 (q, ${}^{2}J_{CF}$ = 36.1 Hz, C=O), 156.6, 148.7, 139.3 (q, ${}^{4}J_{CF}$ = 2.2 Hz), 137.8, 135.6, 133.3, 130.2, 129.7, 129.0, 128.8, 128.2, 125.3, 125.0, 115.9 (q, ${}^{1}J_{CF}$ = 292.3 Hz, CF₃) ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₇H₁₀ClF₃NO⁺: 336.0398; found: 336.0395.

1-(2-(2-Chlorophenyl)quinolin-3-yl)-2,2,2-trifluoroethan-1-one (5j). Obtained from quinoline 1a (0.061 g, 0.475 mmol) and acetylene 2j (0.116 g, 0.5 mmol) by procedure B. Yellow solid, m.p. 86-88 °C, yield 0.122 g (77%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.75 (s, 1H), 8.21 (d, ³*J* = 8.5 Hz, 1H), 8.03 (d, ³*J* = 8.1 Hz, 1H), 7.93 (ptd, ³*J* = 7.7 Hz, ⁴*J* = 1.4 Hz, 1H), 7.72 (ptd, ³*J* = 7.6 Hz, ⁴*J* = 1.0 Hz, 1H),

7.51 (pd, ${}^{3}J$ = 7-8 Hz, 2H), 7.48-7.41 (m, 3H) ppm. ${}^{19}F$ NMR (376.5 MHz, CDCl₃): δ -72.3 (CF₃) ppm. ${}^{13}C{}^{1}H$ NMR (100.6 MHz, CDCl₃): δ 180.7 (q, ${}^{2}J_{CF}$ = 35.4 Hz, C=O), 156.3, 148.9, 138.9 (q, ${}^{4}J_{CF}$ = 3.3 Hz), 138.4, 133.4, 131.3, 130.7, 130.2, 129.8, 129.5, 129.2, 128.5, 127.6, 125.3, 124.5, 116.3 (q, ${}^{1}J_{CF}$ = 292.5 Hz, CF₃) ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₇H₁₀ClF₃NO⁺: 336.0398; found: 336.0396.

1-(2-(4-Bromophenyl)quinolin-3-yl)-2,2,2-trifluoroethan-1-one (5k). Obtained from oxazine **3k** (0.083 g, 0.196 mmol) by procedure A. Light yellow solid, m.p. 125-127 °C, yield 0.058 g (78%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.63 (s, 1H), 8.19 (d, ³*J* = 8.4 Hz, 1H), 7.97 (d, ³*J* = 8.1 Hz, 1H), 7.91 (ptd, ³*J* = 7.7 Hz, ⁴*J* = 1.4 Hz, 1H), 7.68 (ptd, ³*J* = 7.5 Hz, ⁴*J* = 1.0 Hz, 1H), 7.62 (d, ³*J* = 8.6 Hz, 2H), 7.44 (d, ³*J* = 8.6 Hz, 2H) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -73.6 (CF₃) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 183.8 (q, ²*J*_{CF} = 36.3 Hz, C=O), 156.7, 148.7, 139.4 (q, ⁴*J*_{CF} = 2.2 Hz), 138.2, 133.3, 131.9, 130.5, 129.7, 128.8, 128.2, 125.2, 125.0, 123.9, 115.9 (q, ¹*J*_{CF} = 292.5 Hz, CF₃) ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₇H₁₀⁷⁹BrF₃NO⁺: 379.9892; found: 379.9884; Calcd for C₁₇H₁₀⁸¹BrF₃NO⁺: 381.9873; found: 381.9865.

1-(2-(4-Fluorophenyl)quinolin-3-yl)-2,2,2-trifluoroethan-1-one (5l). Obtained from quinoline **1a** (0.061 g, 0.475 mmol) and acetylene **2l** (0.113 g, 0.5 mmol) by procedure B. Light yellow powder, m.p. 94-95 °C, yield 0.127 g (84%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.60 (s, 1H), 8.19 (d, ${}^{3}J$ = 8.5 Hz, 1H), 7.95 (d, ${}^{3}J$ = 8.2 Hz, 1H), 7.90 (ptd, ${}^{3}J$ = 7.7 Hz, ${}^{4}J$ = 1.4 Hz, 1H), 7.66 (ptd, ${}^{3}J$ = 7.5 Hz, ${}^{4}J$ = 1.1 Hz, 1H), 7.57 (dd, ${}^{3}J_{HH}$ = 8.8 Hz, ${}^{4}J_{HF}$ = 5.2 Hz, 2H), 7.18 (pt, ${}^{3}J_{HH}$, ${}^{3}J_{HF}$ = 8.7 Hz, 2H) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -73.6 (s, 3F, CF₃), -112.88...-112.96 (m, 1F, Ar-F) ppm. ¹³C {¹H} NMR (100.6 MHz, CDCl₃): δ 184.2 (q, ${}^{2}J_{CF}$ = 36.3 Hz, C=O), 163.5 (d, ${}^{1}J_{CF}$ = 249.5 Hz), 156.6, 148.7, 139.2 (q, ${}^{4}J_{CF}$ = 2.4 Hz), 135.4 (d, ${}^{4}J_{CF}$ = 3.3 Hz), 133.1, 130.8 (d, ${}^{3}J_{CF}$ = 8.5 Hz), 129.6, 128.7, 128.0, 125.5, 124.9, 115.9 (q, ${}^{1}J_{CF}$ = 292.3 Hz, CF₃), 115.8 (d, ${}^{2}J_{CF}$ = 21.9 Hz) ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₇H₁₀F₄NO⁺: 320.0693; found: 320.0685.

1-(2-(2,3-diHydrobenzo[b][1,4]dioxin-6-yl)quinolin-3-yl)-2,2,2-trifluoroethan-1-one (5m). Obtained from quinoline **1a** (0.061 g, 0.475 mmol) and acetylene **2m** (0.128 g, 0.5 mmol) by procedure B. Yellow brown solid, m.p. 84-85 °C, yield 0.120 g (70%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.51 (s, 1H), 8.18 (d, ³*J* = 8.5 Hz, 1H), 7.93 (d, ³*J* = 7.9 Hz, 1H), 7.87 (ptd, ³*J* = 7.7 Hz, ⁴*J* = 1.3 Hz, 1H), 7.63 (ptd, ³*J* = 7.5 Hz, ⁴*J* = 1.2 Hz, 1H), 7.21 (d, ⁴*J* = 2.1 Hz, 1H), 7.00 (dd, ³*J* = 8.3 Hz, ⁴*J* = 2.1 Hz, 1H), 7.44 (d, ³*J* = 8.3 Hz, 1H), 4.31-4.29 (m, 4H, 2CH₂) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -73.8 (CF₃) ppm. ¹³C {¹H} NMR (100.6 MHz, CDCl₃): δ 185.1 (q, ²*J*_{CF} = 36.7 Hz, C=O), 156.8, 148.7, 145.0, 143.9, 138.8, (q, ⁴*J*_{CF} = 1.8 Hz), 132.8, 132.7, 129.6, 128.6, 127.7, 126.0, 124.8, 122.4, 118.0, 117.7, 115.9 (q, ¹*J*_{CF} = 290.3 Hz, CF₃), 64.5, 64.3 ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₉H₁₃F₃NO₃⁺: 360.0842; found: 360.0849.

2,2,2-Trifluoro-1-(2-(thiophen-2-yl)quinolin-3-yl)ethan-1-one (5n). Obtained from quinoline **1a** (0.061 g, 0.475 mmol) and acetylene **2n** (0.102 g, 0.5 mmol) by procedure B. White powder, m.p. 67-69 °C, yield 0.115 g (79%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.38 (s, 1H), 8.13 (dd, ³*J* = 8.4 Hz, ⁴*J* = 0.6 Hz, 1H), 7.86 (d, ³*J* = 7.8 Hz, 1H), 7.83 (ptd, ³*J* = 7.7 Hz, ⁴*J* = 1.4 Hz, 1H), 7.58 (ptd, ³*J* = 7.5 Hz, ⁴*J* = 1.1 Hz, 1H), 7.54 (dd, ³*J* = 5.1 Hz, ⁴*J* = 1.0 Hz, 1H), 7.22 (dd, ³*J* = 3.7 Hz, ⁴*J* = 1.0 Hz, 1H), 7.11 (dd, ³*J* = 5.1 Hz, ³*J* = 3.7 Hz, 1H) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -74.5 (CF₃) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 185.9 (q, ²*J*_{CF} = 36.5 Hz, C=O), 149.5, 148.6, 142.5, 138.3 (q, ⁴*J*_{CF} = 1.5 Hz), 132.7, 129.6, 129.3, 128.8, 128.4, 128.0, 127.7, 125.3, 124.7, 115.8 (q, ¹*J*_{CF} = 292.5 Hz, CF₃) ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₅H₉F₃NOS⁺: 308.0351; found: 308.0353.

2-Phenyl-3-(2,2,2-trifluoroacetyl)quinoline-5-carbonitrile (50). Obtained from oxazine 3a (0.0392 g, 0.106 mmol) by procedure A or from quinoline 1b (0.077 g, 0.5 mmol) and acetylene 2a (0.104 g, 0.525 mmol) by procedure B. White powder, m.p. 107-109 °C, yield 0.028 g (81%, A) or 0.113 g (69%, B). ¹H NMR (400.1 MHz, CDCl₃): δ 8.84 (s, 1H), 8.46 (d, ³J = 8.5 Hz, 1H), 8.08 (d, ³J = 7.2 Hz, 1H), 7.95 (pt, ³J = 7.9 Hz, 1H), 7.61-7.60 (m, 2H), 7.54-7.52 (m, 3H) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ

-74.2 (CF₃) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 185.0 (q, ²*J*_{CF} = 37.3 Hz, C=O), 159.0, 148.1, 138.4, 135.6, 135.1, 134.0, 131.6, 130.1, 129.0 (2C), 128.6, 124.8, 115.8, 115.6 (q, ¹*J*_{CF} = 292.0 Hz, CF₃), 111.3 ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₈H₁₀F₃N₂O⁺: 327.0740; found: 327.0739.

1-(5-Bromo-2-phenylquinolin-3-yl)-2,2,2-trifluoroethan-1-one (5p). Obtained from oxazine **3p** (0.091 g, 0.215 mmol) by procedure A. Light brown solid, m.p. 125-127 °C, yield 0.061 g (75%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.93 (s, 1H), 8.17 (d, ${}^{3}J$ = 8.4 Hz, 1H), 7.91 (dd, ${}^{3}J$ = 7.5 Hz, ${}^{4}J$ = 0.9 Hz, 1H), 7.72 (dd, ${}^{3}J$ = 8.4 Hz, ${}^{3}J$ = 7.5 Hz, 1H), 7.62-7.57 (m, 2H), 7.54-7.49 (m, 3H) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -73.9 (CF₃) ppm. ¹³C {¹H} NMR (100.6 MHz, CDCl₃): δ 184.7 (q, ${}^{2}J_{CF}$ = 36.7 Hz, C=O), 158.2, 149.4, 138.6, 138.5 (q, ${}^{4}J_{CF}$ = 2.2 Hz), 132.9, 131.5, 129.7, 129.5, 129.0, 128.9, 127.1, 124.8, 122.8, 115.8 (q, ${}^{1}J_{CF}$ = 292.1 Hz, CF₃) ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₇H₁₀⁷⁹BrF₃NO⁺: 379.9892; found: 379.9899; Calcd for C₁₇H₁₀⁸¹BrF₃NO⁺: 381.9873; found: 381.9880.

1-(6-Bromo-2-phenylquinolin-3-yl)-2,2,2-trifluoroethan-1-one (5q). Obtained from oxazine **3q** (0.070 g, 0.165 mmol) by procedure A. Light yellow solid, m.p. 89-91 °C, yield 0.051 g (81%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.45 (s, 1H), 8.12 (d, ${}^{4}J$ = 1.5 Hz, 1H), 8.07 (d, ${}^{3}J$ = 8.9 Hz, 1H), 7.94 (dd, ${}^{3}J$ = 8.9 Hz, ${}^{4}J$ = 1.5 Hz, 1H), 7.58-7.56 (m, 2H), 7.49-7.48 (m, 3H) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -74.0 (CF₃) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 184.6 (q, ${}^{2}J_{CF}$ = 36.7 Hz, C=O), 157.9, 147.3, 138.9, 137.6, 136.3, 131.4, 130.5, 129.6, 128.91, 128.85, 126.9, 126.0, 121.9, 115.8 (q, ${}^{1}J_{CF}$ = 292.3 Hz, CF₃) ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₇H₁₀⁷⁹BrF₃NO⁺: 379.9892; found: 379.9887; Calcd for C₁₇H₁₀⁸¹BrF₃NO⁺: 381.9873; found: 381.9867.

1-(7-Chloro-2-phenylquinolin-3-yl)-2,2,2-trifluoroethan-1-one (5r). Obtained from oxazine 3r (0.065 g, 0.174 mmol) by procedure A. Light yellow oil, yield 0.048 g (83%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.55 (s, 1H), 8.21 (d, ⁴*J* = 1.9 Hz, 1H), 7.89 (d, ³*J* = 8.7 Hz, 1H), 7.60 (dd, ³*J* = 8.7 Hz, ⁴*J* =

1.9 Hz, 1H), 7.58-7.55 (m, 2H), 7.52-7.48 (m, 3H) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -73.8 (CF₃) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 184.4 (q, ²*J*_{CF} = 36.5 Hz, C=O), 158.7, 149.0, 139.2, 138.9, 138.7 (q, ⁴*J*_{CF} = 2.0 Hz), 129.8, 129.6, 129.1, 128.88, 128.83, 128.75, 126.1, 123.3, 115.8 (q, ¹*J*_{CF} = 292.3 Hz, CF₃) ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₇H₁₀ClF₃NO⁺: 336.0398; found: 336.0395.

2,2,2-Trifluoro-1-(2-phenyl-1,8-naphthyridin-3-yl)ethan-1-one (5s). Obtained from oxazine **3s** (0.066 g, 0.191 mmol) by procedure A. Light brown powder, m.p. 74-76 °C, yield 0.038 g (66%). ¹H NMR (400.1 MHz, CDCl₃): δ 9.28 (dd, ³*J* = 4.2 Hz, ⁴*J* = 2.0 Hz, 1H), 8.59 (s, 1H), 8.36 (dd, ³*J* = 8.1 Hz, ⁴*J* = 2.0 Hz, 1H), 7.70-7.68 (m, 2H), 7.63 (dd, ³*J* = 8.1 Hz, ³*J* = 4.2 Hz, 1H), 7.52-7.48 (m, 3H) ppm. ¹⁹F NMR (376.5 MHz, CDCl₃): δ -74.1 (CF₃) ppm. ¹³C {¹H} NMR (100.6 MHz, CD₃CN): δ 185.3 (q, ²*J*_{CF} = 36.1 Hz, C=O), 161.4, 158.1, 157.0, 142.3 (q, ⁴*J*_{CF} = 2.2 Hz), 140.1, 139.5, 130.6, 130.1, 129.7, 127.2, 124.5, 121.0, 116.8 (q, ¹*J*_{CF} = 291.7 Hz, CF₃) ppm.

HRMS (ESI-TOF): $m/z [M+H]^+$ Calcd for $C_{16}H_{10}F_3N_2O^+$: 303.0740; found: 303.0738.

Synthesis of (2-phenylquinolin-3-yl)(pyrrolidin-1-yl)methanone (6a) (procedure A). A 4 mL vial with a screw cap was charged with oxazine **3a** (0.025 g, 0.0724 mmol), MeCN (0.5 mL) and pyrrolidine (0.012 g, 0.169 mmol). The reaction mixture was heated at 80 °C for 6 h using magnetic stirrer with heating and then volatiles were evaporated in vacuo. The residue was passed through a short silica gel pad using hexane-CH₂Cl₂ (1:1) followed by CH₂Cl₂ and CH₂Cl₂ -MeOH (100:1) as eluents. Evaporation of volatiles afforded 0.021 g (96%) of pure **6a**. One pot synthesis of **6a** (procedure B). A 8 mL vial with a screw cap was charged with water (0.0188 g, 1.05 mmol), quinoline **1a** (0.1228 g, 0.952 mmol), MeCN (1 mL) and then CF₃-ynone **2a** (0.2035 g, 1.028 mmol) was added at stirring. The clear solution thus obtained was left at room temperature for 24h. Next, pyrrolidine (0.177 g, 2.49 mmol) was added and the reaction mixture was heated at 80 °C for 6 h. Volatiles were evaporated in vacuo, the residue was passed through a short silica gel pad using hexane-CH₂Cl₂ (1:1) followed by °C for 6 h. Volatiles were evaporated in vacuo, the residue was passed through a short silica gel pad using hexane-CH₂Cl₂ (1:1) followed by °C for 6 h. Volatiles were evaporated in vacuo, the residue was passed through a short silica gel pad using hexane-CH₂Cl₂ (1:1) followed by

CH₂Cl₂ and CH₂Cl₂ -MeOH (100:1) as eluents. Evaporation of volatiles afforded 0.280 g (97%) of pure **6a**. Synthesis of **6a** from **5a** (procedure C). A 4 mL vial with a screw cap was charged with **5a** (0.0285 g, 0.0947 mmol), MeCN (0.5 mL) and pyrrolidine (0.015 g, 0.21 mmol). The reaction mixture was heated at 80 °C for 6 h using magnetic stirrer with heating and then volatiles were evaporated in vacuo. The residue was passed through a short silica gel pad using hexane-CH₂Cl₂ (1:1) followed by CH₂Cl₂ and CH₂Cl₂ -MeOH (100:1) as eluents. Evaporation of volatiles afforded 0.0281 g (98%) of pure **6a**. Yellow brown viscous oil. ¹H NMR (400.1 MHz, CDCl₃): δ 8.27 (s, 1H), 8.22 (d, ³*J* = 8.5 Hz, 1H), 7.90-7.87 (m, 2H, Ph), 7.85 (dd, ³*J* = 8.2 Hz, ⁴*J* = 1.0 Hz, 1H), 7.75 (ptd, ³*J* = 7.7 Hz, ⁴*J* = 1.5 Hz, 1H), 7.56 (ptd, ³*J* = 7.5 Hz, ⁴*J* = 1.1 Hz, 1H), 7.48-7.40 (m, 3H, Ph), 3.48 (br s, 2H), 2.75 (br s, 2H), 1.68 (br s, 2H), 1.47 (br s, 2H) ppm. ¹³C {¹H} NMR (100.6 MHz, CDCl₃): δ 168.0, 154.7, 147.8, 139.2, 135.5, 130.6, 130.3, 129.3, 129.0, 128.5, 128.2, 127.5, 126.8, 126.1, 47.4, 45.5, 25.3, 23.9 ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₂₀H₁₉N₂O⁺: 303.1492; found: 303.1504.

Synthesis of amides 6b-e (general procedures D,E). A 4 mL vial with a screw cap was charged with 2,2,2-trifluoro-1-(2-phenylquinolin-3-yl)ethanone **5a** (0.045-0.053 g, 0.150-0.176 mmol), corresponding amine (0.195-0.298 g, 0.169 mmol) and NaOH (0.020 g, 0.5 mmol for primary amines, procedure E). The reaction mixture was heated at 110 °C for 6-7 h (secondary amines, D) or 2 h (primary amines, E) using magnetic stirrer with heating and then volatiles were evaporated in vacuo. The residue was passed through a short silica gel pad using hexane-CH₂Cl₂ (1:1) followed by CH_2Cl_2 and CH_2Cl_2 -MeOH (100:1) as eluents.

Evaporation of volatiles afforded corresponding pure amide 6.

(2-Phenylquinolin-3-yl)(piperidin-1-yl)methanone (6b). Obtained from 5a (0.053 g, 0.176 mmol) and piperidine (0.298, 3.506 mmol) by procedure D. White powder, m.p. 138-140 °C, yield 0.054 g (97%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.21 (s, 1H), 8.15 (d, ³*J* = 8.4 Hz, 1H), 7.87-7.84 (m, 2H, Ph), 7.82 (d, ³*J* = 8.1 Hz, 1H), 7.73 (ptd, ³*J* = 7.7 Hz, ⁴*J* = 1.3 Hz, 1H), 7.54 (ptd, ³*J* = 7.5 Hz, ⁴*J* = 0.9 Hz, 1H), 7.47-7.40 (m, 3H, Ph), 3.70-3.65 (m, 1H), 3.48-3.42 (m, 1H), 2.88-2.82 (m, 1H), 2.70-2.65 (m, 1H), 1.52-1.47 (m, 1H), 1.40-1.26 (m, 3H), 1.13-1.04 (m, 1H), 0.56-0.47 (m, 1H) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 168.2, 155.0, 147.8, 139.3, 135.9, 130.3, 129.9, 129.4, 129.1, 129.0, 128.4, 127.6, 127.0, 126.3, 47.6, 42.4, 25.1, 24.8, 23.9 ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₂₁H₂₁N₂O⁺: 317.1648; found: 317.1655.

Morpholino(2-phenylquinolin-3-yl)methanone (6c). Obtained from 5a (0.047 g, 0.156 mmol) and morpholine (0.214, 2.460 mmol) by procedure D. White powder, m.p. 146-148 °C, yield 0.049 g (99%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.26 (s, 1H), 8.16 (d, ${}^{3}J = 8.5$ Hz, 1H), 7.86-7.82 (m, 3H), 7.76 (ptd, ${}^{3}J = 7.7$ Hz, ${}^{4}J = 1.5$ Hz, 1H), 7.56 (ptd, ${}^{3}J = 7.5$ Hz, ${}^{4}J = 1.1$ Hz, 1H), 7.51-7.44 (m, 3H, Ph), 3.80-3.74 (m, 1H), 3.64-3.59 (m, 1H), 3.52-3.46 (m, 1H), 3.32-3.26 (m, 1H), 3.25-3.20 (m, 1H), 2.96-2.90 (m, 1H), 2.70-2.65 (m, 1H), 2.47-2.42 (m, 1H) ppm. ${}^{13}C{}^{1}H{}$ NMR (100.6 MHz, CDCl₃): δ 168.4, 154.8, 147.9, 139.0, 136.4, 130.6, 129.3, 128.9, 128.7, 128.5, 127.5, 127.1, 126.1, 65.8, 65.5, 46.7, 41.8 ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₂₀H₁₉N₂O₂⁺: 319.1441; found: 319.1446.

N-Hexyl-2-phenylquinoline-3-carboxamide (6d). Obtained from 5a (0.045 g, 0.1495 mmol) and n-hexyl amine (0.195, 1.931 mmol) by procedure E. Light yellow powder, m.p. 135-137 °C, yield 0.049 g (99%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.43 (s, 1H), 8.09 (d, ³*J* = 8.5 Hz, 1H), 7.81 (d, ³*J* = 8.0 Hz, 1H), 7.74-7.69 (m, 3H), 7.53 (pt, ³*J* = 7.5 Hz, 1H), 7.47-7.43 (m, 3H, Ph), 5.64 (br s, 1H, NH), 3.16 (q, ³*J* = 6.6 Hz, 2H, CH₂NH), 1.26-1.11 (m, 6H), 1.04-0.98 (m, 2H), 0.83 (t, ³*J* = 7.1 Hz, 3H, Me) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 168.1, 156.0, 147.9, 139.5, 137.6, 130.3, 129.6, 129.3, 129.1,

128.9, 128.6, 127.9, 127.1, 126.1, 40.1, 31.3, 28.8, 26.3, 22.4, 13.9 ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₂₂H₂₅N₂O⁺: 333.1961; found: 333.1961.

N-Cyclopropyl-2-phenylquinoline-3-carboxamide (6e). Obtained from **5a** (0.0509 g, 0.169 mmol) and cyclopropylamine (0.270, 4.737 mmol) by procedure D. White powder, m.p. 185-187 °C, yield 0.036 g (74%). ¹H NMR (400.1 MHz, CDCl₃): δ 8.55 (s, 1H), 8.14 (d, ³*J* = 8.4 Hz, 1H), 7.89 (d, ³*J* = 8.0 Hz, 1H), 7.78 (ptd, ³*J* = 7.7 Hz, ⁴*J* = 1.3 Hz, 1H), 7.71-7.68 (m, 2H), 7.58 (ptd, ³*J* = 7.5 Hz, ⁴*J* = 0.9 Hz, 1H), 7.50-7.46 (m, 3H, Ph), 5.41 (br s, 1H, NH), 2.70-2.64 (m, 1H), 0.69-0.65 (m, 2H), 0.19-0.15 (m, 2H) ppm. ¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 169.4, 156.0, 148.0, 139.4, 137.8, 131.0, 129.3, 129.20, 129.18, 128.9, 128.6, 128.0, 127.2, 126.1, 22.8, 6.3 ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₉H₁₇N₂O⁺: 289.1335; found: 289.1343.

Synthesis of 2-phenylquinoline-3-carboxylic acid (7) from 2,2,2-trifluoro-1-(2-phenylquinolin-3-yl)ethanone **5a**. A 4 mL vial with a screw cap was charged with 2,2,2-trifluoro-1-(2-phenylquinolin-3-yl)ethanone **5a** (0.030 g, 0.0997 mmol), water (0.5 mL) and NaOH (0.020 g, 0.5 mmol). The reaction mixture was stirred for 2 days, and then pH was adjusted to slightly acidic (5-6) by carefull addition of 1M HCl. The precipitate formed was filtred off, washed with water (2x0.5 mL) and dried in vacuo to give pure **7**. Yield 0.016 g (64%).

One pot synthesis of 2-phenylquinoline-3-carboxylic acid (7) from quinoline 1a and CF₃-ynone 1a. A 8 mL vial with a screw cap was charged with water (0.0188 g, 1.05 mmol), quinoline 1a (0.1228 g, 0.952 mmol), MeCN (1 mL) and then CF₃-ynone 2a (0.2035 g, 1.028 mmol) was added at stirring. The clear solution thus obtained was left at room temperature for 24h. Next, morpoline (0.117 g, 1.345 mmol) was added and the reaction mixture was heated at 80 °C for 6 h using magnetic stirrer with heating. After that water (1 mL) and NaOH (0.131 g, 3.275 mmol) were added and the reaction mixture was heated at 80 °C for 1 h at stirring using magnetic stirrer with heating. Volatiles were evaporated in vacuo, to form slurry, which was acidified to slightly acidic medium (pH 5-6) by carefull addition of

1M HCl. The precipitate formed was filtred off, washed with water (2x0.5 mL) and dried in vacuo to give pure 7. Yield 0.174 g (73%). Light beige powder, m.p. 232-234 °C (Lit. data⁵⁶: 231 °C). ¹H NMR (400.1 MHz, DMSO-*d*₆): δ 8.76 (s, 1H), 8.12 (d, ³*J* = 7.9 Hz, 1H), 8.07 (d, ³*J* = 8.3 Hz, 1H), 7.86 (pt, ³*J* = 7.2 Hz, 1H), 7.70-7.60 (m, 3H), 7.50-7.40 (m, 3H) ppm. ¹³C{¹H} NMR (100.6 MHz, DMSO-*d*₆): δ 169.0, 156.8, 147.4, 140.2, 138.0, 131.5, 128.8, 128.7, 128.6, 128.0, 127.5, 127.3, 126.9, 125.6 ppm. ¹H NMR (400.1 MHz, D₂O+NaOH): δ 8.27 (s, 1H), 7.85 (d, ³*J* = 8.6 Hz, 1H), 7.82 (d, ³*J* = 8.1 Hz, 1H), 7.65 (pt, ³*J* = 7.7 Hz, 1H), 7.61-7.54 (m, 2H), 7.51-7.39 (m, 4H) ppm. ¹³C{¹H} NMR (100.6 MHz, D₂O+NaOH): δ 176.1, 156.3, 145.6, 139.0, 135.4, 132.9, 130.4, 128.6, 128.0, 127.9, 127.7, 126.7, 126.6, 125.9 ppm. HRMS (ESI-TOF): m/z [M+H]⁺ Calcd for C₁₆H₁₂NO₂⁺: 250.0863; found: 250.0866. ASSOCIATED CONTENT

Supporting Information. Structures of CF_3 -ynones 2, oxazines 3, details of optimization of the reaction conditions, copies of all NMR spectra. The Supporting Information is available free of charge on the ACS Publications website.

AUTHOR INFORMATION

Corresponding Author

*nenajdenko@org.chem.msu.ru.

Acknowledgments. This work was supported by Russian Science Foundation (grant no. 18-13-00136. The authors acknowledge partial support in measuring of NMR from M.V. Lomonosov Moscow State University Program of Development. The authors acknowledge Thermo Fisher Scientific Inc., MS Analytica (Moscow, Russia), and personally to Prof. A. Makarov for providing mass spectrometry equipment for this work.

⁽¹⁾ Runge, F. F. Ueber einige Produkte der Steinkohlendestillation (On some products of coal distillation). *Ann. der Phys. u. Chem.* 1834, *31*, 65-78 ; see especially p. 68: "*3. Leukol oder Weissöl*" (3. White oil [in Greek] or white oil [in German]).
From p. 68: "Diese dritte Basis habe ich Leukol oder Weissöl genannt, weil sie keine farbigen Reactionen zeigt." (This third base I've named leukol or white oil because it shows no color reactions).

(2) (a) Sharma, R.; Kour, P.; Kumar, A. A Review on Transition-Metal Mediated Synthesis of Quinolines. J. Chem. Sci. 2018, 130, 73. (b) Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. Synthesis of Substituted Quinolines by Iron(III)-Catalyzed Three-Component Coupling Reaction of Aldehydes, Amines, and Styrenes. Asian J. Org. Chem. 2014, 3, 303–308. (c) Lei, L.; Yao, Y.-Y.; Jiang, L.-J.; Lu, X.; Liang, C.; Mo, D.-L. Synthesis of Furo[3,2-b]quinolines and Furo[2,3-b:4,5b']diquinolines through [4+2] Cycloaddition of Aza-o-Quinone Methides and Furans. J. Org. Chem. 2020, 85, 3059-3070. (3) Hu, H.-Y.; Chen, C-.F. A New Fluorescent Chemosensor for Anion Based on an Artificial Cyclic Tetrapeptide. Tetrahedon Lett. 2006, 47, 175–179. (4) Aly, M. R. E.; Ibrahim, M. M.; Okael, A. M.; Gherbawy, Y. A. M. H. Synthesis, Insecticidal, and Fungicidal Screening of Some New Ouinoline Derivatives. Russ. J. Bioorg. Chem. 2014, 40, 214–227. (5) (a) Kim, J. L.; Shin, I. S.; Kim, H. Efficient Electrogenerated Chemiluminescence from Cyclometalated Iridium(III) Complexes. J. Am. Chem. Soc. 2005, 127, 1614–1615; (b) Całus, S.; Gondek, E.; Danel, A.; Jarosz, B.; Pokładko, M.; Kityk, A. V. Electroluminescence of 6-R-1,3-Diphenyl-1*H*-pyrazolo[3,4-*b*]quinoline-Based Organic Light-Emitting Diodes (R = F, Br, Cl, CH₃, C₂H₃ and N(C₆H₅)₂). Mater. Lett. 2007, 61, 3292–3295; (c) Li, C.-X.; Shih, H. H.; Jiang, X.; Sun, P.-P.; Pan, Y.; Cheng, C.-H. Synthesis, Characterization, and Electroluminescent Properties of Iridium Complex Containing 4-Phenybenzoquinoline Ligand. Synth. Met. 2009, 159, 2070-2074; (d) Fan, C. C.; Sun, P. P.; Su, T. H.; Cheng, C.-H. Host and Dopant Materials for Idealized Deep-Red Organic Electrophosphorescence Devices. Adv. Mater. 2011, 23, 2981–2985. (e) Lu, K. Y.; Chou, H. H.; Hsieh, C.-H.; Yang, Y.-H. O.; Tsai, H.-R.; Tsai, H.-Y.; Hsu, L.-C.; Chen, C.-Y.; Chen, I. C.; Cheng, C.-H. Wide-Range Color Tuning of Iridium Biscarbene Complexes from Blue to Red by Different N/N Ligands: an Alternative Route for Adjusting the Emission Colors. Adv. Mater. 2011, 23, 4933-4937. (6) (a) Ernst, S.; Kaim, W. Coordination Characteristics of Four Isomeric .Alpha.-Diimine Ligands. .Pi. Molecular Orbital Perturbation Calculations for the Bidiazines and Their Correlation with the Properties of Group 6 Metal Carbonyl Complexes, J. Am. Chem. Soc. 1986, 108, 3578–3586. (b) Steel, P. J. Aromatic Nitrogen Heterocycles as Bridging Ligands;

a Survey. Coord. Chem. Rev. 1990, 106, 227-265. (c) Hu, Y.; Zhang, G.; Thummel, R. P. Friedländer Approach for the Incorporation of 6-Bromoquinoline into Novel Chelating Ligands. Org. Lett. 2003, 5, 2251–2253.

(7) Caeiro, G.; Lopes, J. M.; Magnoux, P.; Ayrault, P.; Ribeiro, F. R. A FT-IR Study of Deactivation Phenomena During Methylcyclohexane Transformation on H-USY Zeolites: Nitrogen Poisoning, Coke formation, and Acidity-Activity Correlations. J. Catal. 2007, 249, 234-243.

(8) Musiol, R.; Serda, M.; Hensel-Bielowka, S.; Polanski, J. Ouinoline-Based Antifungals. Curr. Med. Chem. 2010, 17, 1960-1973.

(9) (a) Solomon, V. R.; Lee, H. Quinoline as a Privileged Scaffold in Cancer Drug Discovery. Curr. Med. Chem. 2011, 18, 1488–1508. (b) Lee, E.; Han, S.; Jin, G. H.; Lee, H. J.; Kim, W.-Y.; Ryu, J.-H.; Jeon, R. Synthesis and Anticancer Activity of Aminodihydroquinoline Analogs: Identification of Novel Proapoptotic Agents. Bioorg. Med. Chem. Lett. 2013, 23, 3976-3978. (c) Marganakop, S. B.; Kamble, R. R.; Hoskeri, J.; Prasad, D. J.; Meti, G. Y. Facile Synthesis of Novel Quinoline Derivatives as Anticancer Agents. Med. Chem. Res. 2014, 23, 2727-2735.

(10) (a) Baba, A.; Kawamura, N.; Makino, H.; Ohta, Y.; Taketomi, S.; Sohda, T. Studies on Disease-Modifying Antirheumatic Drugs: Synthesis of Novel Quinoline and Quinazoline Derivatives and Their Anti-Inflammatory Effect. J. Med. Chem. 1996, 39, 5176-5182. (b) Bekhit, A. A.; El-Sayed, O. A.; Aboulmagd, E.; Park, J. Y. Tetrazolo[1,5-a]quinoline

as a Potential Promising New Scaffold for the Synthesis of Novel Anti-Inflammatory and Antibacterial Agents. Eur.	J. Med.
<i>Chem.</i> 2004 , <i>39</i> , 249–255.	
(11) Reynolds, K. A.; Loughlin, W. A.; Young, D. J. Quinolines as Chemotherapeutic Agents for Leishmaniasis. M	ini-Rev.
Med. Chem. 2013, 13, 730–743.	
(12) Dictionary of Alkaloids, 2nd ed.; Buckingham, J.; Baggaley, K. H.; Roberts, A. D.; Szabó, L. F., Eds.; CRO	C Press,
Taylor and Francis Group: Boca Raton, USA, 2010.	
(13) (a) Tian, SK.; Chen, Y.; Hang, J.; Tang, L.; McDaid, P.; Deng, L. Asymmetric Organic Catalysis with M	lodified
Cinchona Alkaloids. Acc. Chem. Res. 2004, 37, 621-631. (b) Cinchona Alkaloids in Synthesis and Catalysis, I	igands,
mmobilization and Organocatalysis; Song, C. E. Ed.; WILEY-VCH Verlag GmbH & Co. KGaA:Weinheim, 24)09. (c)
Marcelli, T.; Hiemstra, H. Cinchona Alkaloids in Asymmetric Organocatalysis. Synthesis 2010, 2010, 1229-12	279. (d)
Marcelli, T. Organocatalysis: Cinchona Catalysts. WIREs Comput Mol Sci. 2011, 1, 142-152. (e) Sinibaldi, A.; N	ori, V.;
Baschieri, A.; Fini, F.; Arcadi, A.; Carlone, A. Organocatalysis and Beyond: Activating Reactions with Two C	atalytic
Species. Catalysts 2019, 9, 928.	
(14) Reddy, V. P. In Organofluorine Compounds in Biology and Medicine. Chapter 5 - Organofluorine Pharmace	uticals;
Elsevier, 2015; pp. 133–178.	
(15) Global Tuberculosis Report 2019; Geneva: World Health Organization; 2019.	
https://www.who.int/tb/publications/global_report/en/	
(16) Murie, V. E.; Nishimura, R. H. V.; Rolim, L. A.; Vessecchi, R.; Lopes, N. P.; Clososki G. C. Base-Co	ntrolled
Regioselective Functionalization of Chloro-Substituted Quinolines. J. Org. Chem. 2018, 83, 871-880.	
(17) World Malaria Report 2019; Geneva: World Health Organization; 2019. https://www.who.int/news-room/	feature-
stories/detail/world-malaria-report-2019	
(18) Schlagenhauf, P.; Adamcova, M.; Regep, L.; Schaerer, M. T.; Rhein, H. G. The Position of Mefloquine a	s a 21 st
Century Malaria Chemoprophylaxis. Malar. J. 2010, 9, 357.	
(19) https://www.covid19treatmentguidelines.nih.gov/therapeutic-options-under-investigation/	
(20) (a) Liang, T.; Neumann, C. N.; Ritter, T. Introduction of Fluorine and Fluorine-Containing Functional Groups.	Angew.
Chem., Int. Ed. 2013, 52, 8214-8264. (b) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Advances in C	atalytic
Enantioselective Fluorination, Mono-, Di-, and Trifluoromethylation, and Trifluoromethylthiolation Reactions. Che	m. Rev.
2015, 115, 826-870. (c) Ahrens, T.; Kohlmann, J.; Ahrens, M.; Braun, T. Functionalization of Fluorinated Molect	ules by
Transition Metal Mediated C-F Bond Activation to Access Fluorinated Building Blocks. Chem. Rev. 2015, 115, 92	31–972.
(d) Nenajdenko, V. G.; Muzalevskiy, V. M.; Shastin, A. V. Polyfluorinated Ethanes as Versatile Fluorinated C2-F	Building
Blocks for Organic Synthesis. Chem. Rev. 2015, 115, 973-1050. (e) Yerien, D. E.; Barata-Vallejo, S.; Post	igo, A.
Difluoromethylation Reactions of Organic Compounds. Chem Eur. J. 2017, 23, 14676–14701.	
(21) (a) Jeschke, P. The Unique Role of Fluorine in the Design of Active Ingredients for Modern Crop Pro-	tection.
ChemBioChem 2004, 5, 570-589. (b) Jeschke, P. The Unique Role of Halogen Substituents in the Design of	Modern
Agrochemicals. Pest Manage. Sci. 2010, 66, 10-27. (c) Fujiwara, T.; O'Hagan, D. Successful Fluorine-Con-	ntaining
Herbicide Agrochemicals. J. Fluorine Chem. 2014, 167, 16-29. (d) Jeschke, P. Latest Generation of Halogen-Con-	ntaining
Pesticides. Pest Manage. Sci. 2017, 73, 1053-1056.	

(22) (a) Bégué, J. P.; Bonnet-Delpon, D. In *Bioorganic and Medicinal Chemistry of Fluorine*; John Wiley & Sons: Hoboken, 2008. (b) *Fluorine and Health. Molecular Imaging, Biomedical Materials and Pharmaceuticals*; Tressaud, A.; Haufe, G., Eds.; Elsevier: Amsterdam, 2008; pp. 553–778. (c) Kirsch, P. In *Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications*; Wiley-VCH: Weinheim, 2013.

(23) (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in Medicinal Chemistry. *Chem. Soc. Rev.* 2008, *37*, 320–330. (b) Hagmann, W. K. The Many Roles for Fluorine in Medicinal Chemistry. *J. Med. Chem.* 2008, *51*, 4359–4369. (c) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). *Chem. Rev.* 2014, *114*, 2432–2506. (d) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. Data-Mining for Sulfur and Fluorine: an Evaluation of Pharmaceuticals to Reveal Opportunities for Drug Design and Discovery. *J. Med. Chem.* 2014, *57*, 2832–2842. (e) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. Applications of Fluorine in Medicinal Chemistry. *J. Med. Chem.* 2015, *58*, 8315–8359. (f) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Next Generation of Fluorine Containing Pharmaceuticals, Compounds Currently in Phase II–III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. *Chem. Rev.* 2016, *116*, 422–518. (g) Meanwell, N. A. Fluorine and Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design. *J. Med. Chem.* 2018, *61*, 5822–5880.

(24) Inoue, M.; Sumii, Y.; Shibata, N. Contribution of Organofluorine Compounds to Pharmaceuticals. *ACS Omega* doi: 10.1021/acsomega.0c00830; *in press*.

(25) de la Torre, B. G.; Albericio, F. The Pharmaceutical Industry in 2018. An Analysis of FDA Drug Approvals from the Perspective of Molecules. *Molecules* **2019**, *24*, 809.

(26) de la Torre, B. G.; Albericio, F. The Pharmaceutical Industry in 2019. An Analysis of FDA Drug Approvals from the Perspective of Molecules. *Molecules* **2020**, *25*, 745.

(27) For recent reviews, see: (a) Muzalevskiy, V. M.; Nenajdenko, V. G.; Shastin, A. V.; Balenkova, E. S.; Haufe, G. Synthesis of Trifluoromethyl Pyrroles and Their Benzo Analogues. *Synthesis* 2009, 2009, 3905–3929. (b) Serdyuk, O. V.; Abaev, V. T.; Butin, A. V.; Nenajdenko, V. G. Synthesis of Fluorinated Thiophenes and Their Analogues. *Synthesis* 2011, 2011, 2505–2529. (c) *Fluorine in Heterocyclic Chemistry*; Nenajdenko, V. G., Ed.; Springer, 2014; Vol. 1, 681 pp, Vol. 2, 760 pp. (d) Politanskaya, L.V.; Selivanova, G.A.; Panteleeva, E.V.; Tretyakov, E.V.; Platonov, V.E.; Nikul'shin, P.V.; Vinogradov, A.S.; Zonov, Ya.V.; Karpov, V.M.; Mezhenkova, T.V.; Vasilyev, A.V.; Koldobskii, A.B.; Shilova, O.S.; Morozova, S.M.; Burgart, Ya.V.; Shchegolkov, E.V.; Saloutin, V.I.; Sokolov, V.B.; Aksinenko, A.Yu.; Nenajdenko, V.G.; Moskalik, M.Yu.; Astakhova, V.V.; Shainyan, B.A.; Tabolin, A.A.; Ioffe, S.L.; Muzalevskiy, V.M.; Balenkova, E.S.; Shastin, A.V.; Tyutyunov, A.A.; Boiko, V.E.; Igumnov, S.M.; Dilman, A.D.; Adonin, N.Yu.; Bardin, V.V.; Masoud, S.M.; Vorobyeva, D.V.; Osipov, S.N.; Nosova, E.V.; Lipunova, G.N.; Charushin, V.N.; Prima, D.O.; Makarov, A.G.; Zibarev, A.V.; Trofimov, B.A.; Sobenina, L.N.; Belyaeva, K.V.; Sosnovskikh, V.Ya.; Obydennov, D.L.; Usachev, S.A. Organofluorine Chemistry: Promising Growth Areas and Challenges. *Rus. Chem. Rev.* 2019, *88*, 425–569.

(28) Muzalevskiy, V. M.; Rulev, A. Yu.; Romanov, A. R.; Kondrashov, E. V.; Ushakov, I. A.; Chertkov, V. A.; Nenajdenko, V. G. Selective, Metal-Free Approach to 3- or 5-CF₃-Pyrazoles: Solvent Switchable Reaction of CF₃-Ynones with Hydrazines. *J. Org. Chem.* **2017**, *82*, 7200–7214.

(29) (a) Trofimov, B. A.; Belyaeva, K. V.; Nikitina, L. P.; Afonin, A. V.; Vashchenko, A. V.; Muzalevskiy, V. M.; Nenajdenko, V. G. Metal-Free Stereoselective Annulation of Quinolines with Trifluoroacetylacetylenes and Water: an Access to Fluorinated Oxazinoquinolines. Chem. Commun. 2018, 54, 2268-2271. (b) Belyaeva, K. V.; Nikitina, L. P.; Afonin, A. V.; Vashchenko, A. V.; Muzalevskiy, V. M.; Nenajdenko, V. G.; Trofimov, B. A. Catalyst-Free 1:2 Annulation of Quinolines with Trifluoroacetylacetylenes: an Access to Functionalized Oxazinoquinolines. Org. Biomol. Chem. 2018, 16,8038-8041. (30) Muzalevskiy, V. M.; Trofimov, B. A.; Belyaeva, A. V.; Nenajdenko, V. G. Green, Diastereoselective Synthesis of CF₃-Oxazinoquinolines in Water. Green Chem. 2019, 21, 6353-6360. (31) (a) Geissman, T. A.; Schlatter, M. J.; Webb I. D.; Roberts, J. D. The Synthesis of Some Intermediates for Use in the Preparation of Analgs of Salicylaldehyde Ethylenediimine Cobalt ("Salcomine")¹. J. Org. Chem. 1946, 11, 741-750. (b) Maier, A. F. G.; Tussing, S.; Schneider, T.; Flörke, U.; Qu, Z.-W.; Grimme, S.; Paradies, J. Frustrated Lewis Pair Catalyzed Dehydrogenative Oxidation of Indolines and Other Heterocycles. Angew. Chem., Int. Ed. 2016, 55, 12219–12223. (c) Lu, R.; Cao, L.; Guan, H.; Liu, L. Iron-Catalyzed Aerobic Dehydrogenative Kinetic Resolution of Cyclic Secondary Amines. J. Am. Chem. Soc. 2019, 141, 6318-6324. (32) (a) Fuerstner, A.; Leitner, A.; Mendez, M.; Krause, H. Iron-Catalyzed Cross-Coupling Reactions. J. Am. Chem. Soc. 2002, 124, 13856–13863. (b) Iglesias, M. J.; Prieto, A.; Nicasio, M. C. Kumada–Tamao–Corriu Coupling of Heteroaromatic Chlorides and Aryl Ethers Catalyzed by (IPr)Ni(allyl)Cl. Org. Lett. 2012, 14, 4318-4321. (c) Kuzmina, O. M.; Steib, A. K.; Markiewicz, J. T.; Flubacher, D.; Knochel, P. Ligand-Accelerated Iron- and Cobalt-Catalyzed Cross-Coupling Reactions between N-Heteroaryl Halides and Aryl Magnesium Reagents. Angew. Chem., Int. Ed. 2013, 52, 4945–4949. (33) (a) Tobisu, M.; Hyodo, I.; Chatani, N. Nickel-Catalyzed Reaction of Arylzinc Reagents with N-Aromatic Heterocycles: A Straightforward Approach to C-H Bond Arylation of Electron-Deficient Heteroaromatic Compounds. J. Am. Chem. Soc. 2009, 131, 12070–12071. (b) Hyodo, I.; Tobisu, M.; Chatani, N. Catalytic Arylation of a C-H Bond in Pyridine and Related Six-Membered N-Heteroarenes Using Organozinc Reagents. Chem. - Asian J. 2012, 7, 1357–1365. (34) Rao, M. L. N.; Dhanorkar, R. J. Triarylbismuthanes as Threefold Aryl-Transfer Reagents in Regioselective Cross-Coupling Reactions with Bromopyridines and Quinolines. Eur. J. Org. Chem. 2014, 2014, 5214-5228. (35) (a) Yang, J.; Liu, S.; Zheng, J.-F.; Zhou, J. Room-Temperature Suzuki-Miyaura Coupling of Heteroaryl Chlorides and Tosylates, Eur. J. Org. Chem. 2012, 2012, 6248–6259. (b) Kundu, D. S.; Schmidt, J.; Bleschke, C.; Thomas, A.; Blechert, S. A Microporous Binol-Derived Phosphoric Acid. Angew. Chem., Int. Ed. 2012, 51, 5456-5459. (c) Ramakrishna, V.; Rani, M. J.; Reddy, N. D. A Zwitterionic Palladium(II) Complex as a Precatalyst for Neat-Water-Mediated Cross-Coupling Reactions of Heteroaryl, Benzyl, and Aryl Acid Chlorides with Organoboron Reagents. Eur. J. Org. Chem. 2017, 2017, 7238–7255. (d) Duong, H. A.; Wu, W.; Teo, Y.-Y. Cobalt-Catalyzed Cross-Coupling Reactions of Arylboronic Esters and Aryl Halides. Organometallics 2017, 36, 4363-4366. (36)(a) Lee, D.-H.; Jung, J.-Y.; Jin, M.-J. General and Highly Active Catalyst for Mono and Double Hiyama Coupling Reactions of Unreactive Aryl Chlorides in Water. Chem. Commun. 2010, 46, 9046–9048. (b) Tang, S.; Takeda, M.; Nakao, Y.; Hiyama, T. Nickel-Catalysed Cross-Coupling Reaction of Aryl(trialkyl)silanes with Aryl Chlorides and Tosylates. Chem. Commun. 2011, 47, 307-309. (c) Yuen, O. Y.; So, C. M.; Man, H. W.; Kwong, F. Y. A General Palladium

Catalyzed Hiyama Cross - Coupling Reaction of Aryl and Heteroaryl Chlorides. Chem. - Eur. J. 2016, 22, 6471-6476.

(37) (a) Lee, D.-H.; Jung, J.-Y.; Jin, M.-J. Highly Active and Recyclable Silica Gel-Supported Palladium Catalyst for Mild Cross-Coupling Reactions of Unactivated Heteroaryl Chlorides. Green Chem. 2010, 12, 2024–2029. (b) Lee, D.-H.; Taher, A.; Ahn, W.-S.; Jin, M.-J. Room Temperature Stille Cross-Coupling Reaction of Unreactive Arvl Chlorides and Heteroarvl Chlorides. Chem. Commun. 2010, 46, 478-480. (38) a) Evoniuk, C. J.; Gomes, G. dos P.; Ly, M.; White, F. D.; Alabugin, I. V. Coupling Radical Homoallylic Expansions with C-C Fragmentations for the Synthesis of Heteroaromatics: Quinolines from Reactions of o-Alkenylarylisonitriles with Aryl, Alkyl, and Perfluoroalkyl Radicals. J. Org. Chem., 2017, 82, 4265-4278.; b) Evoniuk, C. J.; Ly, M.; Alabugin, I. V. Coupling cyclizations with fragmentations for the preparation of heteroaromatics: quinolines from o-alkenyl arylisocyanides and boronic acids. Chem. Commun., 2015, 51, 12831-12834. (39) (a) Okada, E.; Sakaemura, T.; Shimomura, N. A Simple Synthetic Method for 3-Trifluoroacetylated 4-Aminoquinolines from 4-Dimethylaminoquinoline by Novel Trifluoroacetylation and N-N Exchange Reactions. Chem. Lett. 2000, 29, 50–51. (b) Okada, E.; Hatakenaka, M.; Sakaemura, T.; Shimomura, N.; Ashida, T. Simple Synthesis of 3-Trifluoroacetyl-4-quinolylamines, Sulfides, and Ethers Starting from N,N-Dimethyl-4-quinolylamine. Heterocycles 2012, 86, 1177-1185. (40) Chen, Y.; Huang, J.; Hwang, T.-L.; Li, T.J.; Cui, S.; Chan, J.; Bio, M. A Highly Regioselective Friedländer Reaction Mediated by Lanthanum Chloride. Tetrahedron Lett. 2012, 53, 3237-3241. (41) (a) Ryabukhin, S. V.; Volochnyuk, D. M.; Plaskon, A. S.; Naumchik, V. S.; Tolmachev, A. A. Chlorotrimethylsilane-Mediated Friedländer Synthesis of Polysubstituted Ouinolines. Synthesis 2007, 2007, 1214–1224. (b) Atechian, S.; Nock, N.; Norcross, R. D.; Ratni, H.; Thomas, A. W.; Verron, J.; Masciadri, R. New Vistas in Quinoline Synthesis. Tetrahedron 2007, 63, 2811-2823. (c) Kumar, S.; Saini, A.; Sandhu, J. S. Iron(III) Chloride-Promoted, Solvent-Free, Facile, and Efficient Friedländer Synthesis of Quinolines. Synth. Commun. 2007, 37, 4071-4078. (42)Trofimov, B. A.; Belyaeva, K. V.; Nikitina, L. P.; Mal'kina, A. G.; Afonin, A. V.; Ushakova, I. A.; Vashchenko, A. V. Transition Metal-Free One-Pot Double C-H Functionalization of Quinolines with Disubstituted Electron-Deficient Acetylenes. Chem. Commun. 2018, 54, 5863-5866. ⁴³ ANRORC Rearrangement. In Comprehensive Organic Name Reactions and Reagents, Wang, Z. (Ed.). Wiley, 2010, pp. 87-90. (44) Fasano, V.; LaFortune, J. H. W.; Bavne, J. M.; Ingleson, M. J.; Stephan, D. W. Air- and Water-Stable Lewis Acids: Synthesis and Reactivity of P-Trifluoromethyl Electrophilic Phosphonium Cations. Chem. Commun. 2018, 54, 662–665. (⁴⁵) Muzalevskiy, V. M.; Sizova, Z. A.; Duisenov, A. I.; Shastin, A. V.; Nenajdenko, V. G. Efficient multi gram approach to acetylenes and CF3 - ynones starting from dichloroalkenes prepared by catalytic olefination reaction (COR). Eur. J. Org. Chem. accepted. https://doi.org/10.1002/ejoc.202000531 (⁴⁶) Trost, B. M.; Hung, C.-I.; Scharf, M. J. Direct Catalytic Asymmetric Vinylogous Additions of α , β - and β , γ -Butenolides to Polyfluorinated Alkynyl Ketimines. Angew. Chem. Int. Ed. 2018, 57, 11408-11412. (⁴⁷)Sudhapriya, N.; Nandakumar, A.; Perumal, P. T. Facile Synthesis of 2-Substituted Quinolines and 3-Alkynyl-2-aryl-2H-Indazole via SnCl₂-Mediated Reductive Cyclization. RSC Adv. 2014, 4, 58476-58480. (⁴⁸) Yu, J.; Li, Z.; Su, W. Synthesis of Quinolines by N-Deformylation and Aromatization via Solvent-Free, High-Speed Ball Milling. Synth. Commun., 2013, 43, 361-374. **ACS Paragon Plus Environment**

(49)) Li, C.; Li, J.; An, Y.; Peng, J.; Wu, W.; Jiang, H. Palladium-Catalyzed Allylic C-H Oxidative Annulation for Assembly
of	Functionalized 2-Substituted Quinoline Derivatives. J. Org. Chem., 2016, 81, 12189–12196.
(50) Chen, X.; Qiu, S.; Wang, S.; Wang, H.; Zhai, H. Blue-Light-Promoted Carbon-Carbon Double Bond Isomerization and Its
Ap	plication in the Syntheses of Quinolines. Org. Biomol. Chem. 2017, 15, 6349-6352.
(51)) Iosub, A. V.; Stahl, S. S. Catalytic Aerobic Dehydrogenation of Nitrogen Heterocycles Using Heterogeneous Cobalt
Ox	ide Supported on Nitrogen-Doped Carbon. Org. Lett. 2015, 17, 4404–4407.
(52) Anand, N.; Chanda, T.; Koley, S.; Chowdhury, S.; Singh, M. S. CuSO ₄ -D-lucose, an Inexpensive and Eco-Efficient
Cat	talytic System: Direct Access to Diverse Quinolines Through Modified Friedländer Approach Involving S _N Ar/Reduction/Annulation
Cas	scade in One Pot. RSC Adv. 2015, 5, 7654–7660.
⁵³ I	Hyodo, I.; Tobisu, M.; Chatani, N. Catalytic Arylation of a C-H Bond in Pyridine and Related Six-Membered N-
He	teroarenes Using Organozinc Reagents. Chem Asian J. 2012, 7, 1357–1365
(54)) Wang, R.; Fan, H.; Zhao, W.; Li, F. Acceptorless Dehydrogenative Cyclization of o-Aminobenzyl Alcohols with
Ke	tones to Quinolines in Water Catalyzed by Water-Soluble Metal-Ligand Bifunctional Catalyst [Cp*(6,6'-
(0]	H) ₂ bpy)(H ₂ O)][OTf] ₂ . Org. Lett. 2016 , 18, 3558–3561.
(55)) Xiong, B.; Zhang, S.; Jiang, H.; Zhang, M. Hydrogen-Transfer-Mediated Direct β-Alkylation of Aryl-1,8-
naŗ	phthyridines with Alcohols under Transition Metal Catalyst Free Conditions. Org. Lett. 2016, 18, 724–727.
(56)) Oberkobusch, R. Über die Basen des Steinkohlenteer-Pechs. Chem. Ber. 1953, 86, 975–979.