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A B S T R A C T   

A series of D-π-A chromophores based on [1,2,5]oxadiazolo[3,4-b]pyrazine electron-withdrawing group has been 
designed. The influence of the π-conjugated linker (1,4-phenylene and 2,5-thienylene) and the amino-electron- 
donating group (diphenylamino and carbazol-9-yl) was studied by cyclic voltammetry, UV-Vis and emission 
spectroscopy. The second order nonlinear optical properties were also studied using the electric field induced 
second harmonic generation (EFISH) method. The experimental results have been rationalized by theoretical 
DFT calculations.   

1. Introduction 

Organic nonlinear optical (NLO) materials have attracted consider
able attention in recent years because of their potential applications in 
various fields of optoelectronics and photonics, including optical com
munications, optoelectronic transfer, optical signal process and optical 
data storage [1]. The main advantages of these materials are high NLO 
coefficients, ultrafast optical responses, flexible molecular design and 
synthesis and higher optical damage threshold, as compared to tradi
tional inorganic solids. Generally, the NLO properties of organic mate
rials are dependent on the molecular structures of chromophores. 
Typically, in order to show a significant second-order NLO response, a 
molecule must be non-centrosymmetric, with intramolecular charge 
transfer (ICT) transitions at relatively low energy and characterized by a 
large transition dipole moment and a large difference between the 
excited state and the ground state molecular dipole moment [1e]. This 
can be achieved in linear organic molecules by connecting an 
electron-donor and an electron-acceptor group through a π-conjugated 
polarizable spacer, as it occurs in classical organic dipolar push–pull 
systems [2]. 

Pyrazine is a nitrogen based heterocyclic compound with a rigid 

planar conjugated structure. Due to the electron-deficient character of 
the pyrazine, the pyrazinyl fragment can be used as electron- 
withdrawing group in push-pull structures. The incorporation of pyr
azine units in luminescent materials has been recently reviewed [3]. 
Moreover, it has been shown that push-pull pyrazine derivatives exhibit 
interesting second-order (frequency doubling) [4] and third-order (two 
photon absorption) [5] NLO properties. 

It has been demonstrated that [1,2,5]oxadiazolo[3,4-b]pyrazine 
(furazanopyrazine) exhibits higher electron-withdrawing character than 
similar non-annulated pyrazine analogues [6]. Recently, the [1,2,5] 
oxadiazolo[3,4-b]pyrazine core has been used as an acceptor part of 
push-pull molecules exhibiting pronounced fluorescence in the solid 
state and sensitivity towards nitroaromatic compounds [7]. 

This work represents further extension of our previous research 
focusing on the design of novel fluorophores that incorporate diazine 
scaffold. In this contribution we describe the synthesis of a new series of 
D–π–A [where A equals to the 1,2,5-oxadiazolo[3,4-b]pyrazine acceptor, 
D represents triphenylamine or carbazole donors, and π involves thie
nylene or phenylene groups] push-pull chromophores 7a,b and 8a,b 
and systematic investigation of their photophysical and second order 
NLO properties. The influences of the type of the π- linker as well as the 
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nature of the electron-donating group on the photophysical properties 
were thoroughly studied and structure-property relationships were 
elucidated. 

2. Results and Discussion 

2.1. Synthesis 

The synthesis of the linear push-pull systems required 5-(4-bromo
phenyl)-[1,2,5]oxadiazolo[3,4-b]pyrazine (3) and 5-(5-bromothiophen- 
2-yl)-[1,2,5]oxadiazolo[3,4-b]pyrazine (5) as starting materials. Com
pound 3 was prepared via a two-step procedure from commercially 
available 4’-bromoacetophenone (1) in 73% overall yield (Scheme 1). 

The second starting material (5) was obtained by bromination of 
previously described 5-(1-benzothiophen-3-yl)pyrimidine (4) [7] with 
an excess of N-bromosuccinimide in 85% yield (Scheme 2). 

The target chromophores 7a-b and 8a-b were synthesized in high 
yields through the Suzuki-Miyaura cross-coupling reactions shown in 
Schemes 3 and 4. Furazanopyrazines 3 and 5 were coupled with the 
corresponding pinacol esters of 4-(diphenylamino)phenylboronic (6a) 
and 9H-carbazole-9-(4-phenyl)boronic (6b) acids under reflux in 1,4- 
dioxane by using Pd(PPh3)4 as catalyst. These reactions afforded the 
corresponding D-π-A dyes 7a-d and 8a-d in good yields (Schemes 3 and 
4). 

2.2. Electrochemical properties 

Electrochemical behavior of compounds 7 and 8 was studied by 
cyclic voltammetry (CV) in CH2Cl2 containing Bu4NPF6 electrolyte at a 
scan rate of 0.1 V/s. The working electrode was a glassy carbon disk, Pt 
wire was used as the counter electrode and an Ag wire as a reference 
electrode. Ferrocene was used as an internal reference for potential 
measurements. The first oxidation/reduction peak potentials and their 
differences are listed in Table 1 and CV diagrams are shown in Fig. 1. 

Compounds 7b and 8b bearing the carbazole moiety as an electron- 
donating group exhibit a first irreversible oxidation process at 0.95 and 
0.96 V vs. ferrocene. When the donor is the diphenylamino moiety, the 
first oxidation is reversible and measured E1/2 are much lower (0.55 V 
for 7a and 0.57 V for 8a; see Fig. 1) in accordance with the stronger 
electron-donating effect of the diphenylamino group. For these two 
compounds, a second irreversible oxidation peak can be observed at the 
higher potential that modifies the reversibility of the first system, on the 
reverse scan. 

All compounds bear the same oxadiazolopyrazine electron- 
withdrawing group. For this reason, the same behavior can be 
observed on reduction when scanning from 0 to − 2 V. All compounds 
show a first reversible reduction around –1.1 V vs. Fc and a second quasi- 
reversible system around − 2 V (scan rate = 0.1 V/s). The latter becomes 
reversible when the scanning rate is increased to 1 V/s (Fig. S25). The 
obtained half-wave potentials for both systems are similar regardless of 
the nature of the electron-donating moieties and of the π-conjugated 
linker. This trend indicates a weak interaction between the donor and 
the acceptor. 

The HOMO/LUMO energies were calculated from potential values 
(the first oxidation and reduction processes) to evaluate the electro
chemical band gap. The ELUMO remains unaltered as all chromophores 

showed the same reduction behavior. On the other hand, the EHOMO of 
diphenylamino derivatives is higher leading to a decreased band gap for 
compounds 7a and 8a. These results correspond to the evolution of λmax 
values obtained from the electronic spectra. 

2.3. Photophysical properties 

The photophysical properties of compounds 7 and 8 have been 
studied in various aprotic solvents of increasing polarity and the results 
are summarized in Table 2. All compounds are emissive in n-heptane. 
Carbazole derivatives 7b and 8b are also emissive in 1,4-dioxane but no 
emission is observed in solvents of higher polarity. For push-pull de
rivatives, such observation is rationalized by decreased emission in
tensity observed in polar solvents due to lowered energies of the ICT 
excited state [8]. Fig. 2 shows the normalized absorption and emission 
spectra in n-heptane. As expected, the replacement of the 1,4-phenylene 
linker (compounds 7) by a 2,5-thienylene one (compounds 8) induces a 
red shift of both absorption and emission bands as well as increases the 
molar extinction coefficient due to a better charge transfer through the 
heterocycle [9]. Similarly to previous observation [10], the diphenyla
mino derivatives exhibited red-shifted absorption and emission. This 
effect is more pronounced than changing the π-conjugated linker. The 
absorption and emission maxima increase in the following order 7b <
8b < 7a < 8a. Compound 8b exhibited the highest emission quantum 
yield in n-heptane (ΦF = 0.96). The lowest value was observed for 
compound 7b (ΦF = 0.06), but this compound exhibited much higher 
quantum yield in 1,4-dioxane (ΦF = 0.29). Fig. 3 shows the color of 
n-heptane solutions of compounds 7-8 under UV-irradiation. 

Whereas only moderate absorption solvatochromism was observed 
for 7 and 8, which does not seem to be correlated to the solvent polarity 
(the most red-shifted absorption bands are observed in CH2Cl2), a strong 
positive emission solvatochromism was observed for carbazole de
rivatives 7b and 8b as illustrated in Figs. 4 and 5. It should be noted that 
emission solvatochromism was not observed for diphenylamino de
rivatives since the emission is fully quenched in solvents of higher po
larity than n-heptane. This phenomenon, which is due to stabilization of 
the highly-polar emitting state by polar solvent, has been extensively 
described for push-pull derivatives [11]. It should be noted however that 
the quantum yield of compound 7b is higher in 1,4-dioxane than in 
n-heptane, probably due to aggregation in this latter solvent. The slope 
of the regression line of the emission maxima plotted versus the 
Dimroth-Reichardt polarity parameter (ET(30)) is a way to evaluate the 
ICT [12]. The slope observed for compounds 7b and 8b (see Fig. S1 in 
ESI) are similar or higher as compared to pyrazine push-pull derivatives 
with diphenylamino substituents and more extended π-conjugated 
linker [13], indicating that the oxadiazolo part significantly enhances 
the electron-withdrawing character of the pyrazine. 

2.4. Second order nonlinear optical properties 

The second order NLO properties have been studied in chloroform 
solution by the electric-field induced second harmonic generation 
(EFISH) method at a non-resonant incident wavelength of 1907 nm. The 
second harmonic at λ =953 nm is therefore well clear of the absorption 
bands of the chromophores. This method provides the NLO response as 
the scalar product between the permanent dipolar moment of the 

Scheme 1. Synthesis of 5-(4-bromophenyl)-[,2,5]oxadiazolo[3,4-b]pyrazine (3).  
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molecule μ→ in fundamental state and the vector component of β 
described as β// [14]. The two level corrected μβ values (μβ0) have been 
also calculated [15]. The results are presented in Table 3. It should be 

noted that positive μβ values are obtained indicating that both ground 
and excited states are polarized in the same direction and that the 
excited state is more polarized than ground state, in accordance with the 
emission solvatochromism observation (for 7b and 8b). Compounds 8 
exhibit higher NLO response than analogues 7 and the diphenylamino 
derivatives a show better μβ values than carbazole analogues b. These 
results are coherent with the electrochemical and photophysical obser
vations indicating better ICT for compounds possessing 2,5-thienylene 
linker and diphenylamino electron-donating group. The figure of merit 
of compound 8a appears particularly interesting. 

2.5. DFT calculations 

Spatial and electronic properties of compounds 7a-b and 8a-b were 
investigated using Gaussian®16W software [17] package at the DFT 
level. Optimized geometries, energies of the frontier molecular orbitals, 
and ground state dipole moments μ  and were calculated at DFT 

Scheme 2. Synthesis of 5-(5-bromothiophen-2-yl)-[1,2,5]oxadiazolo[3,4-b]pyrazine (5).  

Scheme 3. Synthesis of 5-[4-(heteroaryl)phenyl]-[1,2,5]oxadiazolo[3,4-b]pyrazines (7a,b).  

Scheme 4. Synthesis of 5-[5-(heteroaryl)thiophen-2-yl]-[1,2,5]oxadiazolo[3,4-b]pyrazines (8a,b).  

Table 1 
Electrochemical data of compounds.  

Comp. E1/2
ox1 

[V]a 
E1/2

red1 

[V]a 
ΔE 
[V]b 

EHOMO 

[eV]c 
ELUMO 

[eV]c 
λmax 

[nm]d 

7a 0.55 –1.11 1.66 –5.33 –3.67 746 
7b 0.95e –1.10 2.05 –5.73 –3.69 604 
8a 0.57 –1.14 1.71 –5.35 –3.64 727 
8b 0.96e –1.09 2.05 –5.74 –3.69 606  

a All potentials are given versus ferrocene. 
b ΔE = E1/2

ox1–E1/2
red1. 

c EHOMO/LUMO = –(Eox1/red1+4.8). 
d Calculated λmax values (λ = 1241/ΔE). 
e Irreversible peaks Ep. 
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B3LYP/6-311+G(2df,p) level in CHCl3 as shown in Table 4. The elec
tronic absorption spectra and the first-order hyperpolarizabilities β were 
calculated by TD-DFT method using CAM-B3LYP/6-311+G(2df,p) in 
CHCl3. 

The calculated energies of the HOMO and the LUMO range from 
–5.83 to –5.45 and –3.61 and –3.46 eV (Fig. 6), respectively. Both 

Fig. 1. Cyclic voltammograms of 7a (green), 8a (orange) 7b (blue) and 8b (red) in CH2Cl2 solutions.  

Table 2 
UV/Vis and PL data in various solvents for compounds 7 and 8.  

Compds Solvent λabs (ε) 
[nm] [(mM-1 cm- 

1]) 

λem 

[nm] 
ΦF

a Stokes shift [cm- 

1] 

7a 

n-heptane 473 (18.4) 570 0.54 3598 
1,4- 
dioxane 466 (12.4) -b -b -b 

CH2Cl2 485 (11.8) -b -b -b 

MeCN 457 (16.4) -b -b -b 

7b 

n-heptane 414 (12.3) 521 0.06 4961 
1,4- 
dioxane 

401 (8.7) 619 0.29 8783 

CH2Cl2 403 (8.9) -b -b -b 

MeCN 389 (15.1) -b -b -b 

8a 

n-heptane 514 (33.2) 607 0.39 2980 
1,4- 
dioxane 511 (22.7) -b -b -b 

CH2Cl2 544 (22.7) -b -b -b 

MeCN 518 (20.7) -b -b -b 

8b 

n-heptane 452 (25.4) 548 0.96 3875 
1,4- 
dioxane 450 (22.5) 627 0.35 6273 

CH2Cl2 463 (20.3) -b -b -b 

MeCN 447 (22.6) -b -b -b  

a Fluorescence quantum yield (±10%) determined relative to 9,10-bis(phe
nylethynyl)antracene in cyclohexane (ΦF = 1.00). 

b No emission detected. 

Fig. 2. Normalized UV/Vis (solid lines) and emission spectra (dashed lines) of 
compounds 7 and 8 in n-heptane. 
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calculated and electrochemical HOMO-LUMO gaps obey the same trends 
and correlates tightly (Fig. S2) and, therefore we can consider the used 
DFT method as reliable. In general, the lowest HOMO–LUMO gap has 
been calculated for chromophores in series a bearing N,N-diphenyla
mino donor. The carbazole-terminated chromophores b showed 

deepened HOMO. The gaps are slightly lower for chromophores 7 with 
1,4-phenylene π-linker. 

Fig. 7 shows optimized geometries, HOMO/LUMO localizations and 
Mulliken charges in target chromophores; see Fig. S3 for complete listing 
of frontier molecular orbitals. All molecules are unsymmetrical and do 
not belong to any group of symmetry. Whereas the HOMO is centrally 
localized either on the diphenylamino or carbazole donors, the LUMO is 
spread over the adjacent 1,4-phenylene bridge. The Mulliken charges 
are localized accordingly, involving the donor moieties in 8 and mostly 
the π-conjugated bridge between the particular donor and acceptor. 

The calculated dipole moments reflect the geometry with the out-of- 
plane orientation of both donor moieties (the torsion angle is about 50◦). 
However, molecules in series a bearing more flexible diphenylamino 
group possess significantly higher ground state dipole moments of 

Fig. 3. n-heptane solution under UV lamp irradiation (from left to right: 7b, 8b, 
7a, 8a) c = 1-3 × 10-5 M. Photographs were taken in the dark upon irradiation 
with a hand-held lamp (λem =366 nm). 

Fig. 4. Normalized emission spectra of 7b in different aprotic solvents.  

Fig. 5. n-Heptane (left) and 1,4-dioxane (right) solution of 8b under UV lamp 
c = 3 × 10-5 M. Photographs were taken in the dark upon irradiation with a 
hand-held lamp (λem =366 nm). 

Table 3 
Results for EFISH measurements for compounds 7 and 8.   

7a 7b 8a 8b 

μβ (10-48 esu)a 700 70 1440 330 
μβ0 (10-48 esu)b 485 53 892 237 
μβ/MWc 1.91 0.19 3.88 0.89  

a μβ(2ω) at 1907 nm in CHCl3. Molecular concentrations used for the mea
surements were in the range of 10-3 to 10-2 M, μβ ± 10%. 

b Two level corrected μβ values (μβ0) [14]. 
c Figure of merit (molecular nonlinearity) 10-48 esu g mol-1 [16]. 

Table 4 
DFT-calculated electronic parameters of 7 and 8.   

7a 7b 8a 8b 

EHOMO (eV)a –5.45 –5.83 –5.48 –5.83 
ELUMO (eV)a –3.53 –3.61 –3.46 –3.58 
ΔE (eV)a 1.92 2.22 2.02 2.25 
μ (D)a 10.7 6.5 13.1 8.8 
λmax

DFT (nm/eV)b 422(2.94) 367(3.38) 479(2.59) 439(2.82) 
β(-2ω,ω,ω) (10-30 esu)b,c 215 85 373 149  

a Calculated at DFT B3LYP/6-311++G(2df,p) level in CHCl3. 
b Calculated at TD-DFT (nstates = 8) CAM-B3LYP/6-311+G(2df,p) level in 

CHCl3. 
c At 1907 nm in CHCl3. 

Fig. 6. Energy level diagram showing the electrochemical (black) and calcu
lated (red) HOMO/LUMO energies. 
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around 11 and 13 D as compared to carbazole derivatives b (Table 4). 
The fundamental electronic absorption properties were investigated 

by TD-DFT method; the calculated positions of the longest-wavelength 
absorption maxima λmax

DFT are gathered in Table 4, the spectra are pro
vided in Fig. S4. The calculated λmax

DFT values correlate tightly with the 
experimental longest-wavelength absorption maxima measured in 
dichloromethane (Table 2) – see Fig. S5. The spectra consist of two 
peaks; the low-energy peak corresponds to the HOMO→LUMO transi
tion whereas the high-energy peak involves mostly the HOMO
–2→LUMO and HOMO→LUMO+1 transitions. When comparing the 
corresponding pairs of chromophores, chromophores 8a-b bearing 2,5- 
thienylene linker possess bathochromically shifted longest-wavelength 
absorption maxima. The same trend can be seen for chromophores a 
with N,N-diphenylamino donor, when compared to carbazole de
rivatives b. 

First-order hyperpolarizabilities β were also calculated as shown in 
Table 4. The calculated β coefficients range from 85 to 373 × 10-30 esu. 
Correlations of the calculated β and experimental μβ or μβ0 products 
(EFISH experiment) are provided in Figs. S5 and S6. Both correlations 
are very tight. In general, larger nonlinearities were calculated for 
chromophores a with N,N-diphenylamino donor, the largest one belongs 
to chromophore 8a with polarizable 2,5-thienylene π-linker. 

3. Experimental section 

3.1. General Information 

All reagents and solvents were obtained from commercial sources 
and dried by using standard procedures before use. 1H and 13C NMR 
spectra were recorded on a Bruker AVANCE-500 and AVANCE-600 in
struments using Me4Si as an internal standard. IR spectra of samples 
(solid powders) were recorded on a Spectrum One Fourier transform IR 
spectrometer (Perkin Elmer) equipped with a diffuse reflectance 
attachment (DRA) in the frequency range 4000÷400 cm-1. Spectrum 
processing and band intensity determination were carried out using the 
special software supplied with the spectrometer. Elemental analysis was 
carried on a Eurovector EA 3000 automated analyzer. Melting points 
were determined on Boetius combined heating stages and were not 
corrected. The chromatographic purification of compounds was ach
ieved with silica gel Alfa Aesar 0.040-0.063 mm (230-400 mesh), eluting 
with CH2Cl2/hexane (1:2, v/v). The progress of reactions and the purity 
of compounds were checked by TLC on Sorbfil plates (Russia), in which 
the spots were visualized with UV light (λ 254 or 365 nm). The 

electrochemical studies of the compounds were performed with a home- 
designed 3-electrodes cell (WE: glassy carbon disk, RE: Ag wire, Ce: Pt). 
Ferrocene was added at the end of each experiment to determine redox 
potential values. UV Vis and fluorescence spectra were recorded with a 
Fluoromax-3 Jobin-Yvon Horiba spectrophotometer using standard 
1 cm quartz cells. Compounds were excited at their absorption maxima 
(band of lowest energy) to record the emission spectra. The ΦF values 
were calculated using a well-known procedure [18] with 9,10-bis(phe
nylethenyl)anthracene in cyclohexane (ΦF = 1.00) as standard [19]. 
Experimental details on EFISH measurements are described elsewhere 
[20]. 

3.2. Synthesis of 5-(4-bromophenyl)-[1,2,5]oxadiazolo[3,4-b]pyrazine 
(3) 

A mixture of 4′-Bromoacetophenone 1 (1.994 g, 10 mmol) and sele
nium dioxide (1.1 g, 10 mmol) in a solution of 1,4-dioxane (15 mL) and 
water (1 mL) was refluxed for 12 h. Selenium was filtered off, washed 
with 1,4-dioxane (5 mL). The solvent was evaporated at reduced pres
sure. The residue was dissolved in a mixture of ethanol (5 mL) and acetic 
acid (5 mL), 3,4-diaminofurazan (2) (1.0 g, 10 mmol) was added, and 
the resulting mixture was refluxed for 1 h and cooled to room temper
ature. A precipitate formed was filtered, washed with ethanol, and dried 
in air. Compound 3 was obtained as a pale yellow solid. Yield 2.023 g 
(73 %), mp 159-160 ◦C. 1H NMR (500 MHz, DMSO-d6) δ 9.80 (s, 1 H), 
8.38–8.33 (m, 2 H), 7.91–7.86 (m, 2 H). 13C NMR (126 MHz, DMSO-d6) 
δ 158.7, 155.6, 152.2, 151.6, 133.4, 132.4, 130.9, 127.2. Calcd. for 
C10H5BrN4O (277.08): C, 43.35; H, 1.82; N, 20.22. Found: C, 43.37; H, 
1.95; N, 20.20. 

3.3. Synthesis of 5-(5-bromothiophen-2-yl)-[1,2,5]oxadiazolo[3,4-b] 
pyrazine (5) 

N-Bromosuccinimide (4.45 g, 25 mmol) was added to a solution of 5- 
(1-benzothiophen-3-yl)pyrimidine (4) (2.04 g, 10 mmol) in DMF 
(15 ml). The obtained solution was stirred overnight at room tempera
ture. The reaction mixture was diluted with water. The formed precip
itate was filtered off, washed with water, dried, and recrystallized from 
ethanol. Yield 2.406 g (85%), orange solid, mp 213-215 ◦C. H NMR 
(500 MHz, DMSO-d6) δ 9.73 (s, 1 H), 8.40 (d, J =4.1 Hz, 1 H), 7.58 (d, J 
=4.1 Hz, 1 H). 13C NMR (126 MHz, DMSO-d6) δ 154.5, 153.5, 152.0, 
151.5, 142.2, 135.4, 133.4, 122.9. Calcd. for C8H3BrN4OS (283.10): C, 
33.94; H, 1.07; N, 19.79. Found: C, 33.90; H, 1.02; N, 19.55. 

Fig. 7. HOMO (red) and LUMO (blue) localizations (above) and Mulliken charges (below) in chromophores 7a-b and 8a-b.  
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3.4. General procedure for the synthesis of 5-[4-(heteroaryl)phenyl]- 
[1,2,5]oxadiazolo[3,4-b]pyrazine (7a,b) and 5-[5-(heteroaryl)thiophen- 
2-yl]-[1,2,5]oxadiazolo[3,4-b]pyrazine (8a,b) 

A mixture of 5-(4-bromophenyl)-[1,2,5]oxadiazolo[3,4-b]pyrazine 
(3) (277 mg, 1.0 mmol) [or 5-(5-bromothiophen-2-yl)-[1,2,5]oxadia
zolo[3,4-b]pyrazine (5) (283 mg, 1.0 mmol)], corresponding arylbor
onic acid 6a,b (1.2 mmol), Pd(PPh3)4 (115 mg, 10 mol %) and K3PO3 
(530 mg, 2.5 mmol) was dissolved in 1,4-dioxane 15 mL. The reaction 
mixture was degassed and refluxed for 15 h under an argon atmosphere. 
After completion of the reaction (monitored by TLC), the reaction 
mixture was cooled, filtered, and dissolved in a mixture of EtOAc and 
water (1:1, 50 mL), and the organic layer was separated. The aqueous 
layer was extracted with EtOAc (2 × 25 mL). The combined organic 
extracts were dried with MgSO4 and the solvents evaporated. Purifica
tion by silica gel column chromatography with CH2Cl2/hexane (1:2, v/ 
v) as an eluent to afford the title compounds (7 and 8). 

3.5. ’-([1,2,5]oxadiazolo[3,4-b]pyrazin-5-yl)-N,N-diphenyl-[1,1’- 
biphenyl]-4-amine (7a) 

Yield 375 mg (85%), dark violet solid, mp 223-224 ◦C. 1H NMR 
(600 MHz, DMSO-d6) δ 9.87 (s, 1 H), 8.54–8.47 (m, 2 H), 7.99–7.94 (m, 
2 H), 7.81–7.76 (m, 2 H), 7.39–7.35 (m, 4 H), 7.14–7.10 (m, 6 H), 
7.08–7.05 (m, 2 H). 13C NMR (151 MHz, DMSO-d6) δ 159.4, 156.4, 
152.9, 152.1, 148.4, 147.2, 144.3, 133.0, 132.1, 130.2, 128.5, 127.2, 
125.2, 124.2, 122.9. ν (DRA, cm-1) 3062 (w, C–HAr), 3053 (w, C–HAr), 
3037(w, C–HAr), 1586 (s, C–CA/C–NAr), 1561(s, C–CAr/C–NAr), 1488 (s, 
C–CAr/C–NAr), 1446 (s, C–CAr/C–NAr), 822 (s, C–HAr), 797 (s, C–HAr), 
753 (s, C–HAr), 697 (s, C–HAr). Calcd. for C28H19N5O (441.49): C, 76.17; 
H, 4.34; N, 15.86. Found: C, 75.95; H, 4.32; N, 16.09. 

3.6. -(4’-(9H-Carbazol-9-yl)-[1,1’-biphenyl]-4-yl)-[1,2,5]oxadiazolo 
[3,4-b]pyrazine (7b) 

Yield 338 mg (77%), red solid, mp 288-289 ◦C. 1H NMR (600 MHz, 
DMSO-d6) δ 9.91 (s, 1 H), 8.63–8.57 (m, 2 H), 8.28 (dt, J = 7.8, 1.0 Hz, 
2 H), 8.20–8.11 (m, 4 H), 7.84–7.78 (m, 2 H), 7.53–7.45 (m, 4 H), 7.33 
(ddd, J = 7.9, 6.7, 1.3 Hz, 2 H). 13C NMR (151 MHz, DMSO-d6) δ 159.5, 
156.3, 152.9, 152.2, 143.9, 140.5, 138.1, 137.8, 134.0, 130.3, 129.3, 
128.1, 127.7, 123.5, 121.1, 120.8, 110.2. ν (DRA, cm-1) 3034 (w, 
C–HAr), 1564 (s, C–CAr/C–NAr), 1447 (s, C–CAr/ C–NAr), 746 (s, C–HAr), 
723 (s, C–HAr). Calcd. for C28H17N5O (439.48): C, 76.52; H, 3.90; N, 
15.94. Found: C, 76.65; H, 3.78; N, 16.10. 

3.7. -(5-([1,2,5]oxadiazolo[3,4-b]pyrazin-5-yl)thiophen-2-yl)-N,N- 
diphenylaniline (8a) 

Yield 349 mg (78%), violet solid, mp 248-249 ◦C. 1H NMR (600 MHz, 
DMSO-d6) δ 9.74 (s, 1 H), 8.55 (d, J =4.2 Hz, 1 H), 7.81–7.74 (m, 2 H), 
7.72 (d, J =4.2 Hz, 1 H), 7.42–7.33 (m, 4 H), 7.20–7.07 (m, 6 H), 
7.01–6.95 (m, 2 H). 13C NMR (151 MHz, DMSO-d6) δ 155.5, 154.5, 
153.7, 152.8, 152.0, 149.2, 146.8, 139.0, 137.0, 130.3, 127.9, 125.9, 
125.6, 125.5, 124.7, 121.9. ν (DRA, cm-1) 3085 (w, C–HAr), 3062 (w, 
C–HAr), 3035 (w, C–HAr), 1589 (s, C–CAr/ C–NAr), 1568 (s, C–CAr/ 
C–NAr), 1488 (s, C–CAr/C–NAr), 1438 (s, C–CAr/C–NAr), 1405 (s, C–CAr/ 
C–NAr), 833 (s, C–HAr), 751 (s, C–HAr), 694 (s, C–HAr). Calcd. for 
C26H17N5OS (447.52): C, 69.78; H, 3.83; N, 15.65. Found: C, 69.83; H, 
3.77; N, 15.67. 

3.8. -(5-(4-(9H-Carbazol-9-yl)phenyl)thiophen-2-yl)-[1,2,5]oxadiazolo 
[3,4-b]pyrazine (8b) 

Yield 321 mg (72%), red solid, mp 246-248 ◦C. 1H NMR (600 MHz, 
DMSO-d6) δ 9.82 (d, J =2.1 Hz, 1 H), 8.66 (dd, J = 4.0, 2.2 Hz, 1 H), 8.28 
(dt, J = 7.8, 1.1 Hz, 2 H), 8.21 – 8.15 (m, 2 H), 8.00 (dd, J = 4.0, 2.2 Hz, 

1 H), 7.83 – 7.78 (m, 2 H), 7.54 – 7.44 (m, 4 H), 7.33 (ddd, J = 7.9, 6.9, 
1.2 Hz, 2 H). 13C NMR (151 MHz, DMSO-d6) δ 155.4, 154.7, 152.7, 
152.2, 152.1, 140.5, 140.3, 138.4, 136.8, 131.8, 128.4, 127.8, 127.3, 
126.9, 123.5, 121.1, 120.9, 110.3. ν (DRA, cm-1) 3093 (br. w, C–HAr), 
3080 (br. w, C–HAr), 3060 (br. w, C–HAr), 3028 (br. w, C–HAr), 1599 (s, 
C–CAr/C–NAr), 1567 (s, C–CAr/ C–NAr), 1533 (s, C–CAr/ C–NAr), 1449 (s, 
C–CAr/ C–NAr), 1406 (s, C–CAr/ C–NAr), 837 (s, C–HAr), 749 (s, C–HAr), 
724 (s, C–HAr). Calcd. for C26H15N5OS (445.50): C, 70.10; H, 3.39; N, 
15.72. Found: C, 70.00; H, 3.54; N, 15.56. 

4. Conclusion 

In summary, four new push-pull chromophores bearing [1,2,5]oxa
diazolo[3,4-b]pyrazine as electron-withdrawing part and amino group 
as donor were designed. There electrochemical and photophysical 
properties indicate that intense ICT occurs in these structures with 
electrochemical gap below 2.1 eV and strong emission solvatochromism. 
NLO responses were also measured by EFISH method. All experimental 
and theoretical results indicate a significant increase of ICT when the 
diphenylamino electro-donating group is used and when a 2,5-thieny
lene bridge is replacing the 1,4-phenylene linker. Compound 8a, that 
combines these two characteristics, exhibits a particularly high figure of 
merit and appears as an interesting candidate for incorporation in a 
polymeric matrix to obtain a material with the high electro-optic 
coefficient. 
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F. Bureš, S. Achelle, 2,4-distyryl- and 2,4,6-tristyrylpyrimidines: synthesis and 
photophysical properties, J. Org. Chem. 83 (2018) 11712–11726. 

[13] K. Hoffert, R.J. Durand, S. Gauthier, F. Robin-le Guen, S. Achelle, Synthesis and 
photophysical properties of a series of pyrazine-based push-pull chromophores, 
Eur. J. Org. Chem. (2017) 523–529. 

[14] (a) K.D. Singer, A.F. Garito, Measurements of molecular second order optical 
susceptibilities using dc induced second harmonic generation, J. Chem. Phys. 75 
(1981) 3572; 
(b) B.F. Levine, C.G. Bethea, Molecular hyperpolarizabilities determined from 
conjugated and nonconjugated organic liquids, Appl. Phys. Lett. 24 (1974) 445; 
(c) I. Ledoux, J. Zyss, Influence of the molecular environment in solution 
measurements of the second order optical susceptibility for urea and derivatives, 
Chem. Phys. 73 (1982) 203–213. 

[15] (a) J.L. Oudar, D.S. Chemla, Hyperpolarizabilities of the nitroanilines and their 
relations to the excited state dipole moment, J. Chem. Phys. 66 (1977) 2664–2668; 
(b) D.R. Kanis, M.A. Ratner, T.J. Marks, Design and construction of molecular 
assemblies with large second order optical nonlinearities. Quantum chemical 
aspects, Chem. Rev. 94 (1994) 195–242. 

[16] M. Rutkis, A. Jurgis, V. Kampars, A. Vembris, A. Tokmakovs, V. Kokars, New 
Figure of Merit for Tailoring Optimal Structure of the Second Order NLO 
Chromophore for Guest-Host Polymers, Mol. Cryst. Liquid Cryst. 485 (2008) 
903–914. 

[17] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, 
G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. 
V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J. 
V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, 
F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. 
G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, 
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, 
T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. 
J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, 
R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, 
J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, 
R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Revision A.03.03, 
Gaussian 16., 2016. 

[18] D.F. Eaton, References materials for fluorescence measurement, Pure Appl. Chem. 
60 (1988) 1107–1114. 

[19] M. Taniguchi, J.S. Lindsey, Database of absorption and fluorescence spectra of 
&300 common compounds for use in PhotochemCAD, Photochem. Photobiol. 94 
(2018) 290–327. 

[20] G. Ulrich, A. Barsella, A. Boeglin, S. Niu, R. Ziessel, BODIPY-bridged push-pull 
chromophores for nonlinear applications, ChemPhysChem 15 (2014) 2693–2700. 

E.V. Verbitskiy et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020c
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020c
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020c
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020c
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020d
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020d
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020d
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020e
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020e
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020e
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020f
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020f
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020f
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020f
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020f
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020g
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020g
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020g
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020h
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020h
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020i
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020i
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0020i
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025c
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025c
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025c
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025d
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025d
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025d
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025d
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025e
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025e
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025e
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025e
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025f
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025f
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0025f
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0030
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0030
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0035a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0035a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0035a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0035a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0035b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0035b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0035b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0035b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0040a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0040a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0040a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0040b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0040b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0040b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0045a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0045a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0045a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0045b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0045b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0045b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0050a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0050a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0050a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0050a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0050a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0050b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0050b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0050b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0050b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0055a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0055a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0055a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0055a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0055b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0055b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0055b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0055b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0055c
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0055c
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0055c
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0060a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0060a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0060a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0060b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0060b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0060b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0065
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0065
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0065
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0070a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0070a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0070a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0070b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0070b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0070c
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0070c
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0070c
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0075a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0075a
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0075b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0075b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0075b
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0080
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0080
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0080
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0080
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0085
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0085
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0085
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0085
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0085
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0085
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0085
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0085
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0085
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0085
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0085
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0085
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0085
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0090
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0090
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0095
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0095
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0095
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0100
http://refhub.elsevier.com/S1010-6030(20)30697-3/sbref0100

	Synthesis, photophysical and nonlinear optical properties of [1,2,5]oxadiazolo[3,4-b]pyrazine-based linear push-pull systems
	1 Introduction
	2 Results and Discussion
	2.1 Synthesis
	2.2 Electrochemical properties
	2.3 Photophysical properties
	2.4 Second order nonlinear optical properties
	2.5 DFT calculations

	3 Experimental section
	3.1 General Information
	3.2 Synthesis of 5-(4-bromophenyl)-[1,2,5]oxadiazolo[3,4-b]pyrazine (3)
	3.3 Synthesis of 5-(5-bromothiophen-2-yl)-[1,2,5]oxadiazolo[3,4-b]pyrazine (5)
	3.4 General procedure for the synthesis of 5-[4-(heteroaryl)phenyl]-[1,2,5]oxadiazolo[3,4-b]pyrazine (7a,b) and 5-[5-(heter ...
	3.5 ’-([1,2,5]oxadiazolo[3,4-b]pyrazin-5-yl)-N,N-diphenyl-[1,1’-biphenyl]-4-amine (7a)
	3.6 -(4’-(9H-Carbazol-9-yl)-[1,1’-biphenyl]-4-yl)-[1,2,5]oxadiazolo[3,4-b]pyrazine (7b)
	3.7 -(5-([1,2,5]oxadiazolo[3,4-b]pyrazin-5-yl)thiophen-2-yl)-N,N-diphenylaniline (8a)
	3.8 -(5-(4-(9H-Carbazol-9-yl)phenyl)thiophen-2-yl)-[1,2,5]oxadiazolo[3,4-b]pyrazine (8b)

	4 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary data
	References


