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a b s t r a c t

A simple and efficient procedure for the regio-selective synthesis of 1,2-aminoalcohols from terminal
epoxides and chlorohydrins by using NaHMDS as the source of amine is reported. The wider scope and
utility of this method is demonstrated.

� 2012 Elsevier Ltd. All rights reserved.
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Scheme 1.
1,2-Aminoalcohols are important building blocks in the synthe-
sis of natural products, pharmaceuticals, and other materials.1

Generally, these 1,2-aminoalcohols are prepared by nucleophilic
ring opening of epoxides with nitrogen based nucleophiles.2–5

Simple ammonolysis of epoxides 1 (Scheme 1) is one of the most
commonly used methods6 but frequently suffers from poor regio-
selectivity (2 vs 3) and over alkylation (4).

To circumvent these challenges, alternative methods to synthe-
size this important functional group have received an immense
amount of attention over the years. Widely used methods include
epoxide opening with (i) azides followed by reduction,2 (ii) phthal-
imides followed by deprotection3 (iii) N,N-dibenzylamine followed
by debenzylation4, (iv) benzhydrilamine followed by deprotec-
tion.5 Despite these advancements, there are still some drawbacks
associated with these previously reported methods, such as
involvement of energetic intermediates (azides), toxic reagents
(hydrazine for phthalimide deprotection in [ii]), requirement of
additional steps for deprotection, and in some cases unsatisfactory
selectivity. Therefore, the development of an efficient alternative
method is highly desirable.

In one of our developmental projects, during an effort to ring
open epoxide with a secondary amine using NaHMDS as base, we
observed traces of 1,2-aminoalcohol having primary amine func-
tion. This observation prompted us to explore the possibility of
ll rights reserved.

: +91 80 23622011.
com (A. Murugan).
using NaHMDS as the source of amine for the epoxide ring opening.
When we looked into the literature, we came across a couple of re-
ports indicating the possibility of epoxide ring opening with NaH-
MDS.7 To our surprise, this methodology has not been explored by
the synthetic community. We anticipated that the sterically-large
HMDS group might give better regio-control. Herein we report
our results on a highly efficient method for the preparation of
1,2-aminoalcohols from epoxides and chlorohydrins.

We began by probing the ability of NaHMDS to open the epox-
ides. Accordingly, the treatment of styrene oxide (5) with NaHMDS
in THF at 0 �C overnight gave 15% conversion to intermediate 6.
The rate of the reaction increased considerably when the temper-
ature was raised to 20–25 �C and the reaction was complete in
14–15 h. Aqueous work-up gave 1,2-aminoalcohol 7 in excellent
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Scheme 2. (a) 3 Equivalents of 1 M NaHMDS solution in THF was used. (b) NaHMDS was added at 0–5 �C.

Table 1
Substrate scope of nucleophilic ring opening of epoxide with NaHMDS

(i) NaHMDSa, b, THF, 25 °C

(ii) water,  25 °C
8 -12 2a -2e

NH2
R

OH

R

O

Entry Substrate R Product Time (h) Yieldc (%)

1 8 4-ClC6H4 2a 17 81
2 9 4-BrC6H4 2b 14 87
3 10 4-FC6H4 2c 17 80
4 11 C6H5OCH2 2d 5 83
5 12 C4H9 2e 6 70

a 3 Equivalents of 1 M NaHMDS solution in THF was used.
b NaHMDS was added at 0–5 �C.
c Isolated yields.
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Scheme 3. (a) 3 Equivalents of 1 M NaHMDS solution in THF was used. (b) NaHMDS
was added at 0–5 �C. (c) Enantiomeric excess was determined by chiral HPLC; see
Supplementary data for details.
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Scheme 4. (a) 3 Equivalents of 1 M NaHMDS solution in THF was used. (b) NaHMDS
was added at 0–5 �C.

Table 2
Examples for the synthesis of amino alcohol from chlorohydrin

S. No. Substrate Product Yielda (%) Time (h)

1

MeO

Cl
OH

MeO

NH2

OH

85 15

2

Me

Cl
OH

Me

NH2

OH

82 16

3 Cl
OH

NH2

OH

83 15

a Isolated yields.
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yield (81%) as a single regio-isomer. HPLC analysis of the reaction
mixture did not show any traces of regio-isomer. All our efforts
to characterize the N,N-diTMS intermediate 6 proved to be unsuc-
cessful owing to its instability. It was found that 2.5–3 mole equiv-
alents of NaHMDS was necessary to get a complete reaction.
Increasing the temperature to 50 �C resulted in complex reaction
mixtures. Use of LiHMDS and KHMDS resulted in lower yields. As
anticipated, the sterically demanding HMDS moiety provided a sin-
gle regio-isomer as shown in Scheme 2.

On the basis of the optimized conditions used, a variety of other
epoxides were examined the results are collected in Table 1.

As shown in Table 1, under these conditions8, a wide range of
epoxides, both aromatic as well as aliphatic, underwent nucleo-
philic ring opening with NaHMDS in high yields.

Mechanistically we do not anticipate any possibility of racemi-
zation at C2 position of the epoxide, but to confirm the stereo-
chemical integrity of the reaction, we employed enantiopure
(R)-4-fluorostyrene oxide (10) as starting material (Scheme 3).
The product (R)-2c, as anticipated, did not suffer any loss of chiral-
ity during the course of reaction.
Encouraged by the above results, we extended this methodol-
ogy to chlorohydrins, one of the general precursors for epoxides.
Moreover epoxides with electron-releasing substituents in the aryl
ring are generally unstable and are difficult to handle. A method to
convert 1,2-chlorohydrins directly to 1,2-aminoalcohols would be
advantageous. To test this idea, we attempted the reaction with
chlorohydrin 15 (Scheme 4) and demonstrated that upon treat-
ment with NaHMDS, both epoxidation and ring-opening were
achieved to afford the desired product in excellent yield.

To assess the scope of this reaction, we carried out further
experiments with substituted aryl-halohydrins as shown in
Table 2.

From the results shown in Table 2, it is proved that this meth-
odology allows direct access to the desired 1,2-aminoalcohols from
1,2-chlorohydrins without the requirement to handle unstable
epoxide intermediates.

In summary, a simple, high-yielding, and regio-selective meth-
od for the preparation of 1,2-aminoalcohols from terminal epox-
ides and 1,2-chlorohydrins has been demonstrated. The method
appears to be of general value and works well with both aryl and
alkyl substituted epoxides.
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