Palladium-Catalyzed Cross-Coupling Reactions of 1,2-Diiodoalkenes with Terminal Alkynes: Selective Synthesis of Unsymmetrical Buta-1,3-diynes and 2-Ethynylbenzofurans

Yun Liang,^a Li-Ming Tao,^{a,b} Yue-Hua Zhang,^a Jin-Heng Li*^a

^a Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, P. R. of China

Fax +86(731)8872101; E-mail: jhli@hunnu.edu.cn

^b Department of Chemistry and Life Science, Xiangnan University, Chenzhou 423000, P. R. of China

Received 30 June 2008; revised 11 September 2008

Abstract: (*E*)-1,2-Diiodoalkenes were found to be effective building blocks for the preparation of unsymmetrical buta-1,3-diynes and 2-ethynylbenzofurans. In the presence of palladium(II) acetate and copper(I) iodide, unsymmetrical buta-1,3-diynes were selectively obtained in moderate to good yields. Moreover, 2-ethynylbenzofurans were obtained in one pot from the reaction of 2-ethynylphenol with (*E*)-1,2-diiodoalkenes, palladium(II) acetate, and copper(I) iodide by simple heating.

Key words: palladium(II) acetate, copper(I) iodide, (*E*)-1,2-diiodoalkene, terminal alkyne, buta-1,3-diyne, 2-ethynylbenzofuran

Buta-1,3-divnes are an important structural motif frequently found in a wide range of natural products, bioactive molecules, and functional materials; they are also extremely valuable intermediates in organic synthesis.¹ Accordingly, considerable efforts have been devoted to the development of efficient methods for their preparation.^{1–8} The Glaser coupling reaction represents one of the most reported transformations using a copper complex as the catalyst.² However, this technique is often unsatisfactory for the synthesis of unsymmetrical buta-1,3-diynes.³ In 1955, the reaction of terminal alkynes with bromoacetylenes, copper(I) salts, and amines was reported by Chodliewicz and Cadiot,⁴ which provided a particularly useful route for the preparation of unsymmetrical buta-1,3diynes.^{1,4,5} Subsequently, the use of palladium as a cocatalyst to improve the copper(I)-catalyzed reaction has been developed.⁶ Although 1-haloalk-1-ynes are usually synthesized under highly basic conditions and are quite often unstable, little attention has been given to use other reagents as haloacetylene precursors for the reaction. Recently, 1,1-dibromoalk-1-enes instead of 1-bromoalk-1ynes were successfully employed for the preparation of unsymmetrical buta-1,3-diynes.7 Herein, we wish to report that the application of easily available (E)-1,2-diiodoalkenes,⁹ as iodoacetylene precursors, reacted with terminal alkynes for the highly selective synthesis of unsymmetrical buta-1,3-divnes in the presence of palladium(II) acetate and copper(I) iodide. Furthermore, the

SYNTHESIS 2008, No. 24, pp 3988–3994 Advanced online publication: 01.12.2008

DOI: 10.1055/s-0028-1083251; Art ID: F14508SS

© Georg Thieme Verlag Stuttgart · New York

standard conditions were extended to construct 2-ethynylbenzofurans in one pot (Scheme 1).¹⁰

Initially, we examined the reaction of phenylacetylene (1a) with (E)-2,3-diiodoprop-2-en-1-ol (2a) to explore the standard conditions (Table 1). The results showed that unsymmetrical buta-1,3-diyne 3aa could be obtained using either copper(I) iodide or palladium(II) acetate as the catalyst, but both yield and rate were enhanced by using copper(I) iodide and palladium(II) acetate co-catalyst (entries 1-3). Without palladium(II) acetate, treatment of alkyne 1a with 2a and copper(I) iodide in triethylamine-tetrahydrofuran for 20 hours afforded the target product 3aa in a 53% yield together with a homocoupling product 4aa in a 48% yield (entry 1), whereas the addition of 1 mol% of palladium(II) acetate increased the yield of 3aa to 68% in two hours (entry 3). This prompted us to further test other copper salts, including copper(I) bromide and copper(I) chloride, but they were less effective than copper(I) iodide (entries 4 and 5). Subsequently, a series of other palladium catalysts were also evaluated; they all were inferior to palladium(II) acetate to some extent (entries 6–9). Finally, the effects of both solvent and base were screened (entries 3 and 10–13). It turned out that a mixture of triethylamine and tetrahydrofuran (1:4) provided the best results.

Subsequently, the scope of both alkynes and 1,2-diiodoalkenes was investigated under the standard reaction conditions (Table 2). We were happy to find that a large range of functional groups were tolerated well at various positions on the both alkyne and 1,2-diiodoalkene. Reaction of phenylacetylene (**1a**) with ethyl (E)-2,3-diiodoacrylate (**2b**), palladium(II) acetate, and copper(I) iodide provided the target product **3ab** in 81% yield (entry 1). Unsymmetrical buta-1,3-diynes **3ba**, **3cc**, **3dc**, **3dd**, and **3ec** were also obtained in moderate yields from the corresponding alkynes 1b-e bearing an ester, hydroxy, or amino group (entries 2–6). Substrate 1c bearing a hydroxy group, for instance, was treated with (E)-(1,2-diiodovinyl)benzene (2c) for 18 hours to afford smoothly the corresponding product 3cc in 58% yield (entry 3). Aliphatic alkynes including dec-1-yne (1f) and bulky 3,3-dimethylbut-1-yne (1g) underwent reaction with 1,2-diiodoalkenes 2a, 2c, or 2e successfully in good yields using palladium(II) acetate and copper(I) iodide as the co-catalyst and triethylamine as the base (entries 7-9). Interestingly, unprotected and protected alkynols 1h-j were all suitable substrates for coupling with (E)-1,2-diiodoalkenes 2c-e in moderate to excellent yields (entries 10-13). 2-Ethynylcyclohexanol (1i), for instance, underwent a smooth reaction with 1,2-diiodoalkene 2d, palladium(II) acetate, and copper(I) iodide to give the target product 3fe in quantitative yield (entry 11).

Based on the observation of entry 3 in Table 2, we decided to explore the preparation of 2-ethynylbenzofurans in one step. To our delight, 2-ethynylbenzofurans could be ob-

Table 1 Screening Conditions^a

Ph =	$=$ + $\frac{1}{2a}$	H → F + I	Ph- <u>3</u> Ph- <u></u>		H₂OH h
Entry	[Pd]	[Cu]	Time	(h) Isolate	d yield ^b (%)
1	_	CuI	20	5 3	4aa 48
2	Pd(OAc) ₂	_	20	35	24
3	Pd(OAc) ₂	CuI	2	68	45
4	Pd(OAc) ₂	CuBr	2	56	49
5	Pd(OAc) ₂	CuCl	2	58	50
6 ^c	Pd(OAc) ₂ /Ph ₃ P	CuI	4	49	45
7	PdCl ₂ (MeCN) ₂	CuI	2	62	44
8	$PdCl_2(PPh_3)_2$	CuI	2	44	66
9	Pd(dba) ₂	CuI	12	50	56
10 ^d	Pd(OAc) ₂	CuI	2	60	62
11 ^e	Pd(OAc) ₂	CuI	15	33	37
$12^{\rm f}$	Pd(OAc) ₂	CuI	14	38	42
13 ^g	Pd(OAc) ₂	CuI	2	56	63

^a Reaction conditions: **1a** (1 mmol), **2a** (0.5 mmol), [Pd] (1 mol%), [Cu] (5 mol%), Et₃N–THF (1:4, 5 mL), r.t., under argon atmosphere. ^b Isolated yield of **3aa** based on the amount of **2a** and yield of **4aa** base on the amount of **1a**.

^c Ph₃P (2 mol%).

^d Et₃N–THF (1:1, 5 mL).

^e Et₃N (3 equiv) in THF (5 mL).

 f Cs₂CO₃ (3 equiv) in THF (5 mL).

^g Et₃N (5 mL).

tained by heating in the presence of palladium(II) acetate and copper(I) iodide (Table 3). We found that the reaction of 2-ethynylphenol (1c) with (*E*)-1,2-diiodoalkenes 2b–d and 2f at room temperature for 18 hours and then at 100 °C for 10–18 hours gave the desired 2-ethynylbenzofurans 5 in moderate yields (entries 1–4). Other 2-ethynylphenols 1k–m, bearing either electron-withdrawing or/and electron-donating substituents, also underwent the reaction with (*E*)-1,2-diiodoalkenes 2c or 2d in moderate to good yields (entries 5–8). 2-Ethynyl-4-nitrophenol (1k), for example, reacted successfully with (*E*)-1,2-dii

Table 2Palladium(II) Acetate/Copper(I) Iodide-Catalyzed Cross-
Coupling Reaction of Terminal Alkynes 1 with (E)-2,3-Diiodoalk-
enes 2^a

R ¹		+ $ = R^2$	Pd(C Et ₃ N	$DAc)_2$, Cul $PAc)_2$, Cul $R^1 = R^1$		R ²
Entr	y Imi	dazole			Tim (h)	e Yield ^b (%)
1	1 a	───Ph	2b		16	81 (3ab)
2	1b	CO ₂ Me	2a	ICH₂OH	7	75 (3ba)
3	1c	ОН	2c	I Ph	18	58 (3cc)
4	1d	NH ₂	2c		16	51 (3dc)
5	1d		2d	I/ ⁿ C ₈ H ₁₇	17	46 (3dd)
6	1e	NHAc	2c		16	57 (3ec)
7	1f	[−] ⁿ C ₈ H ₁₇	2c		12	89 (3fc)
8	1f		2e	OHI	9	76 (3fe)
9	1g	──tBu	2a	Ι	6	81 (3ga)
10	1h	<u></u> —СН₂ОН	2c		18	81 (3aa)
11	1i	ОН	2d		8	99 (3fe)
12	1j	∽ ──CH ₂ OAc	2c		15	88 (3jc)
13	1i		2e		15	70 (3ie)

^a Reaction conditions: **1** (1 mmol), **2** (0.5 mmol), Pd(OAc)₂ (1 mol%), CuI (5 mol%), Et₃N–THF (1:4, 5 mL), r.t., under argon atmosphere. ^b Isolated yield based on the amount of **2**.

Synthesis 2008, No. 24, 3988-3994 © Thieme Stuttgart · New York

iodoalkenes 2c or 2d, palladium(II) acetate, and copper(I) iodide in high yields (entries 5 and 6). Substrate 1l, bearing both a methoxy group and a formyl group, still provided the desired product 5lc in 36% yield under the same conditions (entry 7). It is worth noting that no target products 5, but only the corresponding buta-1,3-diyne products 3dc and 3ec are isolated from the reaction of 2-ethynylanilines 1d or 1e with 2c even at 100 °C.

A controlled reaction was conducted as outlined in Scheme 2 to elucidate the mechanism. 1-[(E)-1,2-Di-iodovinyl]benzene (**2c**) was treated with palladium(II) acetate and copper(I) iodide in triethylamine-tetrahydro-furan to give 1,4-diphenylbuta-1,3-diyne (**4aa**) in 60% yield.

.OH

Table 3 One-Pot Synthesis of 2-Ethynylbenzofurans 5ª

Two working mechanisms, as shown in Scheme 3, are proposed on the basis of the previously reported mechanism¹⁻⁸ and the present results. Insertion of M (Cu or Pd) into the C-I bond of 1,2-diiodoalkene 2 occurs readily to form intermediate A. Intermediate A may proceed by two pathways: (1) Elimination of I-I and then H⁺ from intermediate A affords intermediate B and/or C with the aid of base.^{6a} Intermediate **B** and/or **C** can selectively undergo the homocoupling reaction and/or the cross-coupling reaction. In the presence of an excess amount of alkyne 1, selectivity toward the cross-coupling reaction of intermediate **B** with **1** takes place to yield the unsymmetrical buta-1,3-diyne 3. It is well-known that alkyne 1 undergoes the homocoupling reaction easily to afford 4 in the presence of both palladium(0) and copper(I) iodide.^{1g,8} (2) Intermediate A reacted with terminal alkyne 1 via the Sonogashira mechanism¹ to give intermediate **D**, followed by elimination of H–I from intermediate D in situ to generate unsymmetrical buta-1,3-diyne 3.4-6 Further exploration of the true mechanism is in progress.

$\begin{array}{c} R^{1} \underbrace{\Pi}_{l} \\ 1 \end{array} + \underbrace{I}_{l} \underbrace{Pd(OAC)_{2}, Cul}_{l = 100 \ ^{\circ}C} R^{1} \underbrace{\Pi}_{l} \\ R^{1} \underbrace{\Pi}_{l} \\ R^{1} \underbrace{\Pi}_{l} \\ R^{2} \end{array} = R^{2}$								
Entry	Imidazole	Imidazole		Aryl halide		Yield ^b (%)		
1	1c	ОН	2b		29	33 (5cb)		
2	1c	·	2c	IPh	36	63 (5cc)		
3	1c		2d	I/ ^p C ₈ H ₁₇	28	32 (5cd)		
4	1c		2f	IОн	30	58 (5cf)		
5	1k	O ₂ N OH	2c		18	91 (5kc)		
6	1k	- %	2d		18	81 (5kd)		
7	11	ОМе	2c		32	36 (5lc)		
8	1m	CI	2d		36	57 (5md)		

^a Reaction conditions: 1 (1 mmol), 2 (0.5 mmol), Pd(OAc)₂ (1 mol%), CuI (5 mol%), Et₃N–THF (1:4, 5 mL), r.t. for 18 h, and then 100 °C for the remaining time, under argon atmosphere.

^b Isolated yield based on the amount of **2**.

Scheme 3 Two possible mechanisms

In summary, we have developed a new approach for the highly selective synthesis of unsymmetrical buta-1,3diynes using (E)-1,2-diiodoalk-1-enes as an attractive alternative to 1-iodoalk-1-ynes. Furthermore, 2-ethynylbenzofurans were also prepared successfully by simple heating, where a C–C bond and a C–O bond are formed in one pot. We are currently exploring the application of this methodology in organic synthesis.

NMR spectroscopy was performed on an Inova-400 (Varian) spectrometer operating at 400 MHz (¹H NMR) and 100 MHz (¹³C NMR). TMS was used an internal standard and CDCl₃ was used as the solvent. Mass spectrometric analysis was performed by GC-MS analysis (Shimadzu GCMS-QP2010). (*E*)-1,2-Diiodoalkenes were prepared from the reaction of the corresponding alkynes with I₂ by known procedures.⁹ All solvents are dried according to standard procedures and the other reagents are used directly from commercial sources. All melting points are uncorrected.

Buta-1,3-diynes 3; General Procedure

A mixture of alkyne 1 (1.0 mmol), (*E*)-1,2-diiodoalkene 2, Pd(OAc)₂ (1 mol%), CuI (5 mol%), Et₃N (1 mL), and THF (4 mL) was stirred under an argon atmosphere at r.t. for the indicated time (Table 2) until complete consumption of the starting material (TLC and GC-MS). Then the mixture was filtered and evaporated and the residue was purified by flash column chromatography to afford **3** (hexane or hexane–EtOAc).

2-Ethynylbenzofurans 5; Typical Procedure

A mixture of alkyne **1** (1.0 mmol), (*E*)-1,2-diiodoalkene **2**, Pd(OAc)₂ (1 mol%), CuI (5 mol%), Et₃N (1 mL), and THF (4 mL) was stirred under an argon atmosphere at r.t. for 18 h, and then at 100 °C for the remaining time until complete consumption of the starting material (TLC and GC-MS). The mixture was filtered and evaporated and the residue was purified by flash column chromatography to afford **5** (hexane or hexane–EtOAc).

5-Phenylpenta-2,4-diyn-1-ol (3aa)^{5f}

Brown oil.

¹H NMR (400 MHz): δ = 7.47 (d, J = 8.4 Hz, 2 H), 7.35–7.28 (m, 3 H), 4.40 (s, 2 H), 2.20 (br s, 1 H).

 13 C NMR (100 MHz): δ = 132.6, 129.3, 128.4, 121.4, 80.6, 78.5, 73.2, 70.3, 51.5.

LRMS (EI, 70 eV): m/z (%) = 156 (M⁺, 27), 147 (16), 139 (14), 128 (40), 102 (49), 69 (53), 57 (31), 44 (100).

Ethyl 5-Phenylpenta-2,4-diynoate (3ab)¹¹ Yellow oil.

I CHOW OIL

¹H NMR (400 MHz): δ = 7.49 (d, J = 6.8 Hz, 2 H), 7.37–7.32 (m, 3 H), 4.81 (s, 2 H), 2.12 (s, 3 H).

¹³C NMR (100 MHz): δ = 170.0, 132.6, 129.4, 128.4, 121.1, 78.7, 76.1, 73.0, 71.1, 52.5, 20.6.

LRMS (EI, 70 eV): m/z (%) = 198 (M⁺, 3), 181 (5), 169 (66), 147 (34), 119 (29), 113 (25), 97 (48), 85 (31), 69 (100).

Methyl 2-(5-Hydroxypenta-1,3-diynyl)benzoate (3ba) Yellow solid; mp 74.4–74.8 °C.

Tellow solid, http://4.4–//

¹H NMR (400 MHz): δ = 7.97 (d, *J* = 8.8 Hz, 1 H), 7.61 (d, *J* = 8.8 Hz, 1 H), 7.48 (t, *J* = 7.6 Hz, 1 H), 7.41 (t, *J* = 8.0 Hz, 1 H), 4.45 (s, 2 H), 3.95 (s, 3 H), 2.40 (br s, 1 H).

¹³C NMR (100 MHz): δ = 166.1, 135.2, 132.7, 131.8, 130.5, 128.8, 122.1, 82.3, 78.0, 76.6, 70.3, 52.4, 51.6.

LRMS (EI, 70 eV): m/z (%) = 214 (M⁺, 84), 199 (17), 185 (26), 169 (31), 143 (38), 128 (35), 115 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₃H₁₀O₃: 214.0630; found: 214.0628.

2-(4-Phenylbuta-1,3-diynyl)phenol (3cc)

Light yellow solid; mp 78.6–79.7 °C.

¹H NMR (400 MHz): δ = 7.54 (d, J = 8.0 Hz, 2 H), 7.42–7.34 (m, 4 H), 7.29 (t, J = 8.4 Hz, 1 H), 6.96 (d, J = 8.4 Hz, 1 H), 6.89 (t, J = 7.6 Hz, 1 H), 5.80 (s, 1 H).

¹³C NMR (100 MHz): δ = 158.1, 132.7, 132.5, 131.3, 129.5, 128.5, 121.3, 120.6, 115.1, 108.2, 83.4, 80.5, 75.6, 73.2.

LRMS (EI, 70 eV): m/z (%) = 218 (M⁺, 100).

HRMS (EI): m/z [M]⁺ calcd for C₁₆H₁₀O: 218.0732; found: 218.0732.

2-(4-Phenylbuta-1,3-diynyl)aniline (3dc) Brown oil.

¹H NMR (400 MHz): δ = 7.53 (d, J = 8.0 Hz, 2 H), 7.37–7.31 (m, 4 H), 7.15 (t, J = 8.0 Hz, 1 H), 6.69 (d, J = 8.0 Hz, 2 H), 4.32 (br s, 2 H).

¹³C NMR (100 MHz): δ = 149.5, 133.0, 132.3, 130.6, 129.1, 128.4, 121.8, 117.9, 114.4, 106.0, 82.6, 79.0, 78.6, 73.9.

LRMS (EI, 70 eV): m/z (%) = 217 (M⁺, 100).

HRMS (EI): m/z [M]⁺ calcd for C₁₆H₁₁O: 217.0892; found: 217.0891.

2-(Dodeca-1,3-diynyl)aniline (**3dd**)¹² Brown oil.

¹H NMR (400 MHz): δ = 7.29 (d, *J* = 7.6 Hz, 1 H), 7.12 (t, *J* = 7.2 Hz, 1 H), 6.67–6.63 (m, 2 H), 4.26 (br s, 2 H), 2.37 (t, *J* = 7.2 Hz, 2 H), 1.59–1.53 (m, 2 H), 1.43–1.39 (m, 2 H), 1.29–1.24 (m, 8 H), 0.89 (t, *J* = 6.0 Hz, 3 H).

¹³C NMR (100 MHz): δ = 149.4, 133.1, 130.1, 117.8, 114.2, 106.5, 85.9, 79.5, 71.6, 65.0, 31.8, 29.1, 29.0, 28.9, 28.2, 22.6, 19.6, 14.1.

LRMS (EI, 70 eV): *m*/*z* (%) = 253 (M⁺, 18), 238 (48), 181 (53), 167 (51), 139 (60), 69 (100).

N-[2-(4-Phenylbuta-1,3-diynyl)phenyl]acetamide (3ec) Light yellow solid; mp 112.8 °C.

¹H NMR (400 MHz): δ = 8.40 (d, J = 8.0 Hz, 1 H), 7.86 (br s, 1 H), 7.55 (d, J = 8.4 Hz, 2 H), 7.49 (d, J = 8.8 Hz, 1 H), 7.41–7.34 (m, 4 H), 7.05 (t, J = 7.6 Hz, 1 H), 2.27 (s, 3 H).

¹³C NMR (100 MHz): δ = 168.4, 140.3, 132.9, 132.5, 130.6, 129.6, 128.5, 123.5, 121.2, 119.6, 110.4, 83.8, 80.5, 76.4, 73.1, 25.0.

LRMS (EI, 70 eV): m/z (%) = 259 (M⁺, 55), 217 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₃NO: 259.0997; found: 259.0997.

(Dodeca-1,3-diynyl)benzene (3fc)¹³

Yellow oil.

¹H NMR (400 MHz): δ = 7.47 (d, J = 9.6 Hz, 2 H), 7.31–7.29 (m, 3 H), 2.35 (t, J = 6.8 Hz, 2 H), 1.59–1.55 (m, 2 H), 1.41–1.28 (m, 10 H), 0.88 (t, J = 6.8 Hz, 3 H).

¹³C NMR (100 MHz): δ = 132.5, 128.7, 128.3, 122.1, 84.9, 74.7, 74.4, 65.0, 31.8, 29.1 (d), 28.9, 28.2, 22.6, 19.6, 14.1.

LRMS (EI, 70 eV): m/z (%) = 238 (M⁺, 43), 181 (51), 169 (45), 167 (52), 139 (54), 115 (37), 91 (58), 79 (46), 69 (100).

1-(Dodeca-1,3-diynyl)cyclohexanol (3fe)

Yellow oil.

¹H NMR (400 MHz): δ = 2.28 (t, *J* = 7.2 Hz, 2 H), 2.12 (br s, 1 H), 1.93–1.89 (m, 2 H), 1.71–1.67 (m, 2 H), 1.62–1.49 (m, 7 H), 1.42–1.35 (m, 2 H), 1.32–1.27 (m, 9 H), 0.88 (t, *J* = 6.8 Hz, 3 H).

 ^{13}C NMR (100 MHz): δ = 81.6, 79.1, 69.2, 64.4, 39.7 (d), 31.8, 29.1, 29.0, 28.8, 28.1, 25.0, 23.1, 22.6, 19.3, 14.0.

LRMS (EI, 70 eV): m/z (%) = 260 (M⁺, 3), 245 (2), 231 (9), 217 (30), 203 (16), 175 (58), 149 (40), 119 (34), 91 (86), 81 (44), 79 (54), 69 (26), 55 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₂₈O: 260.2140; found: 260.2139.

6,6-Dimethylhepta-2,4-diyn-1-ol (3ga)14

Light yellow oil.

¹H NMR (400 MHz): δ = 4.25 (s, 2 H), 2.21 (br s, 1 H), 1.18 (s, 9 H). ¹³C NMR (100 MHz): δ = 89.2, 74.8, 70.5, 63.0, 51.3, 30.3, 27.9. LRMS (EI, 70 eV): *m*/*z* (%) = 136 (M⁺, 68), 119 (100).

¹³C NMR (100 MHz): δ = 170.1, 132.6, 129.5, 128.4, 121.2, 78.8, 76.1, 73.0, 71.1, 52.5, 29.7.

Yellow oil.

LRMS (EI, 70 eV): m/z (%) = 198 (M⁺, 58), 139 (100).

5-Phenylpenta-2,4-diynyl Acetate (3jc)¹⁵

H), 4.82 (s, 2 H), 2.12 (s, 3 H).

5-(1-Hydroxycyclohexyl)penta-2,4-diynyl Acetate (3je) Yellow oil.

¹H NMR (400 MHz): δ = 4.75 (s, 2 H), 2.11 (s, 3 H), 1.93–1.90 (m, 2 H), 1.72–1.69 (m, 2 H), 1.63–1.51 (m, 5 H), 1.27–1.25 (m, 1 H). ¹³C NMR (100 MHz): δ = 170.1, 83.5, 73.0, 70.6, 69.1, 68.0, 52.4, 39.5, 24.9, 23.0, 20.6.

¹H NMR (400 MHz): δ = 7.49 (d, J = 6.8 Hz, 2 H), 7.38–7.32 (m, 3

LRMS (EI, 70 eV): m/z (%) = 220 (M⁺, 59), 178 (65), 160 (52), 135 (55), 132 (59), 121 (42), 118 (65), 117 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₃H₁₆O₃: 220.1099; found: 220.1097.

Ethyl 3-(Benzofuran-2-yl)propynoate (5cb)

Brown yellow oil.

¹H NMR (400 MHz): δ = 7.53 (d, *J* = 7.6 Hz, 1 H), 7.42 (d, *J* = 8.8 Hz, 1 H), 7.31 (t, *J* = 8.4 Hz, 1 H), 7.22 (t, *J* = 8.0 Hz, 1 H), 6.96 (s, 1 H), 4.93 (s, 2 H), 2.11 (s, 3 H).

¹³C NMR (100 MHz): δ = 172.0, 156.7, 139.4, 129.0, 127.7, 125.1, 123.2, 114.5, 113.1, 97.0, 78.7, 54.2, 22.5.

LRMS (EI, 70 eV): m/z (%) = 214 (M⁺, 100).

HRMS (EI): m/z [M]⁺ calcd for C₁₃H₁₀O₃: 214.0630; found: 214.0630.

2-(2-Phenylethynyl)benzofuran (5cc)¹⁶

White solid; mp 69.2–70.1 °C.

¹H NMR (400 MHz): δ = 7.59–7.57 (m, 3 H), 7.47 (d, J = 8.0 Hz, 1 H), 7.39–7.31 (m, 4 H), 7.26–7.23 (m, 1 H), 7.00 (s, 1 H).

¹³C NMR (100 MHz): δ = 154.9, 138.7, 131.6, 129.1, 128.4, 127.7, 125.6, 123.3, 121.8, 121.2, 111.5, 110.2, 95.0, 79.6.

LRMS (EI, 70 eV): m/z (%) = 218 (M⁺, 100).

2-(Dec-1-ynyl)benzofuran (5cd)

Light yellow oil.

¹H NMR (400 MHz): δ = 7.52 (d, J = 7.6 Hz, 1 H), 7.42 (d, J = 8.8 Hz, 1 H), 7.29 (t, J = 8.4 Hz, 1 H), 7.21 (t, J = 7.6 Hz, 1 H), 6.82 (s, 1 H), 2.48 (t, J = 7.2 Hz, 2 H), 1.64–1.62 (m, 2 H), 1.32–1.27 (m, 10 H), 0.88 (t, J = 7.2 Hz, 3 H).

¹³C NMR (100 MHz): δ = 154.5, 139.3, 127.8, 125.0, 123.0, 120.9, 111.0, 110.0, 97.1, 77.6, 31.8, 29.1, 29.0, 28.9, 28.8, 28.2, 22.6, 19.6, 14.1.

LRMS (EI, 70 eV): m/z (%) = 254 (M⁺, 8), 219 (5), 154 (4), 40 (35), 28 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₂₂O: 254.1671; found: 254.1670.

4-(Benzofuran-2-yl)but-3-yn-1-ol (5cf)

Brown yellow oil.

¹H NMR (400 MHz): δ = 7.53 (d, *J* = 7.6 Hz, 1 H), 7.43 (d, *J* = 8.8 Hz, 1 H), 7.31 (t, *J* = 8.4 Hz, 1 H), 7.23 (t, *J* = 8.0 Hz, 1 H), 6.88 (s, 1 H), 3.87 (t, *J* = 6.0 Hz, 2 H), 2.78 (t, *J* = 6.4 Hz, 2 H), 2.00 (br s, 1 H).

¹³C NMR (100 MHz): δ = 154.5, 138.6, 127.5, 125.3, 123.2, 121.1, 111.1, 110.8, 93.2, 72.9, 60.7, 30.9.

LRMS (EI, 70 eV): m/z (%) = 186 (M⁺, 28), 169 (26), 141 (100). HRMS (EI): m/z [M]⁺ calcd for C₁₂H₁₀O₂: 186.0681; found: 186.0680.

5-Nitro-2-(2-phenylethynyl)benzofuran (5kc)

Yellow solid; mp 131.4–135.2 °C.

¹H NMR (400 MHz): δ = 8.51 (s, 1 H), 8.26 (d, *J* = 11.6 Hz, 1 H), 7.61–7.58 (m, 2 H), 7.55 (d, *J* = 8.8 Hz, 1 H), 7.43–7.40 (m, 3 H), 7.11 (s, 1 H).

¹³C NMR (100 MHz): δ = 157.4, 148.0, 144.5, 142.0, 131.8, 129.7, 128.6, 128.2, 121.2, 121.0, 117.6, 111.5, 96.7, 78.3.

LRMS (EI, 70 eV): *m*/*z* (%) = 263 (M⁺, 63), 217 (24), 189 (15), 163 (11), 32 (28), 28 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₆H₉NO₃: 263.0582; found: 263.0582.

2-(Dec-1-ynyl)-5-nitrobenzofuran (5kd)

Red brown oil.

¹H NMR (400 MHz): δ = 8.47 (s, 1 H), 8.23 (d, *J* = 11.6 Hz, 1 H), 7.50 (d, *J* = 9.2 Hz, 1 H), 6.93 (s, 1 H), 2.51 (t, *J* = 7.2 Hz, 2 H), 1.67–1.64 (m, 2 H), 1.31–1.23 (m, 10 H), 0.88 (t, *J* = 6.8 Hz, 3 H).

¹³C NMR (100 MHz): δ = 157.1, 144.3, 142.5, 128.3, 120.8, 117.4, 111.3, 110.3, 99.3, 70.2, 31.8, 29.1, 29.0, 28.9, 28.0, 22.6, 19.6, 14.1.

LRMS (EI, 70 eV): m/z (%) = 299 (M⁺, 7), 243 (4), 202 (6), 154 (4), 40 (31), 28 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₂₁NO₃: 299.1521; found: 299.1521.

$\label{eq:2-2-2-2} 7-Methoxy-2-(2-phenylethynyl) benzofuran-5-carbaldehyde (5lc)$

Yellow solid; mp 90.1–93.2 °C.

¹H NMR (400 MHz): δ = 10.00 (s, 1 H), 7.70 (s, 1 H), 7.57 (d, *J* = 7.6 Hz, 2 H), 7.40–7.38 (m, 4 H), 7.08 (s, 1 H), 4.07 (s, 3 H).

 $^{13}\mathrm{C}$ NMR (100 MHz): δ = 191.5, 147.7, 145.8, 140.7, 133.7, 131.6, 129.4, 129.2, 128.5, 121.4, 119.5, 111.7, 105.0, 95.9, 78.7, 56.2.

LRMS (EI, 70 eV): m/z (%) = 276 (M⁺, 100).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₁₂O₃: 276.0786; found: 276.0786.

5,7-Dichloro-2-(dec-1-ynyl)benzofuran (5md)

Light yellow oil.

¹H NMR (400 MHz): δ = 7.39 (s, 1 H), 7.29 (s, 1 H), 6.76 (s, 1 H), 2.48 (t, *J* = 7.2 Hz, 2 H), 1.66–1.62 (m, 2 H), 1.46–1.27 (m, 10 H), 0.88 (t, *J* = 6.8 Hz, 3 H).

¹³C NMR (100 MHz): δ = 148.8, 141.5, 130.1, 128.9, 125.0, 119.0, 117.0, 109.9, 98.9, 70.3, 31.8, 29.1, 29.0, 28.8, 28.1, 22.6, 19.6, 14.1.

LRMS (EI, 70 eV): m/z (%) = 324 ([M⁺ + 2], 11), 323 ([M⁺ + 1], 12), 322 (M⁺, 65), 289 (10), 287 (M⁺ - Cl, 31), 267 (8), 252 (M⁺ - 2 Cl, 25), 40 (56), 28 (100).

HRMS (EI): m/z [M]⁺ calcd for C₁₈H₂₀³⁵Cl₂O: 322.0891; found: 322.0890.

Acknowledgment

The authors thank the National Natural Science Foundation of China (No 20572020), Fok Ying Tung Education Foundation (No. 101012), and Program for New Century Excellent Talents in University (No. NCET-06-0711) for financial support.

References

- For selected reviews, see: (a) Bohlmann, F. In Chemistry of Acetylenes; Viehe, H. G., Ed.; Dekker: New York, **1969**, Chap. 14, 977–986. (b) Eglinton, G.; McCrae, W. Adv. Org. Chem. **1963**, 4, 225. (c) Bu'Lock, J. D. Prog. Org. Chem. **1964**, 6, 86. (d) Bohlmann, F.; Burkhardt, H.; Zdero, C. Naturally Occurring Acetylenes; Academic Press: New York, **1973**. (e) Towers, H. N.; Page, J. E.; Hudson, J. B. Curr. Org. Chem. **1997**, 1, 395. (f) Christensen, L. P. Phytochemistry **1992**, 31, 7; and references cited therein. (g) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem. Int. Ed. **2000**, 39, 2633. (h) Shun, A. L. K. S.; Tykwinski, R. R. Angew. Chem. Int. Ed. **2006**, 45, 1034.
- (2) (a) Glaser, C. Ber. Dtsch. Chem. Ges. 1869, 2, 422.
 (b) Glaser, C. Ann. Chem. Pharm. 1870, 154, 137. (c) Hay, A. S. J. Org. Chem. 1962, 27, 3320.
- (3) For selected examples, see: (a) Niedballa, U. *Houben-Weyl*, 4th ed., Vol. 5/2a; Georg Thieme Verlag: Stuttgart, 1977, 925–937. (b) Boldi, A. M.; Anthony, J.; Gramlich, V.; Knobler, C. B.; Boudon, C.; Gisselbrecht, J. P.; Gross, M.; Diederich, F. *Helv. Chim. Acta* 1995, 78, 779.
- (4) (a) Chodkiewicz, W.; Cadiot, P. C. R. Hebd. Seances Acad. Sci. 1955, 241, 1055. (b) Chodkiewicz, W. Ann. Chim. (Paris) 1957, 2, 819.
- (5) For representative papers using copper catalysts alone, see:
 (a) Bohlmann, F.; Weber, R. *Chem. Ber.* 1972, *105*, 3036.
 (b) Fallis, A. G.; Hearn, M. T. W.; Jones, E. R. H.; Thaller, V.; Turner, J. L. *J. Chem. Soc.* 1973, 743. (c) Rösner, M.; Köbrich, G. *Angew. Chem., Int. Ed. Engl.* 1975, *14*, 708.
 (d) Villemin, D.; Cadiot, P.; Kuétegan, M. *Synthesis* 1983, 230. (e) Naemura, K.; Hokura, Y.; Nakazaki, M. *Tetrahedron* 1986, *42*, 1763. (f) Alami, M.; Ferri, F. *Tetrahedron Lett.* 1996, *37*, 2763. (g) Barbu, E.; Tsibouklis, J. *Tetrahedron Lett.* 1996, *37*, 5023. (h) Grandjean, D.; Pale, P.; Chuche, J. *Tetrahedron Lett.* 1992, *33*, 5355.
 (i) Ohba, S.; Engbersen, J. F. J. *Tetrahedron* 1991, *47*, 9947.
 (j) Mowery, M. D.; Evans, C. E. *Tetrahedron Lett.* 1997, *38*, 11. (k) Gung, B. W.; Dickson, H. *Org. Lett.* 2002, *4*, 2517.
 (l) Gung, B. W.; Kumi, G. J. *Org. Chem.* 2003, *68*, 5956.
- (6) For representative papers using copper and palladium cocatalysts, see: (a) Kitamura, T.; Tanaka, T.; Taniguchi, H.; Stang, P. J. J. Chem. Soc., Perkin Trans. 1 1991, 2892.
 (b) Wityak, J.; Chan, J. B. Synth. Commun. 1991, 21, 977.
 (c) Elbaum, D.; Nguyen, T. B.; Jorgensen, W. L.; Schreiber, S. L. Tetrahedron 1994, 50, 11503. (d) Amatore, C.; Blart, E.; Genêt, J. P.; Jutand, A.; Lemaire-Audoire, S.; Savignac, M. J. Org. Chem. 1995, 60, 6829. (e) Siegel, K.; Brückner, R. Synlett 1999, 1227. (f) Kim, S.; Kim, S.; Lee, T.; Ko, H.; Kim, D. Org. Lett. 2004, 6, 3601.
- (7) (a) Shen, W.; Thomas, S. Org. Lett. 2000, 2, 2857.
 (b) Shi Shun, A. L. K.; Chernick, E. T.; Eisler, S.; Tykwinski, R. R. J. Org. Chem. 2003, 68, 1339. (c) Luu, T.; Tykwinski, R. R. J. Org. Chem. 2006, 71, 8982.

- (8) For selected papers for Pd-catalyzed homocoupling of terminal alkynes, see: (a) Lei, A.; Srivastava, M.; Zhang, X. *J. Org. Chem.* 2002, *67*, 1969. (b) Li, J.-H.; Liang, Y.; Zhang, X.-D. *Tetrahedron* 2005, *61*, 1903. (c) Batsanov, A. S.; Collings, J. C.; Fairlamb, I. J. S.; Holland, J. P.; Howard, J. A. K.; Lin, Z.; Marder, T. B.; Parsons, A. C.; Ward, R. C.; Zhu, J. *J. Org. Chem.* 2005, *70*, 703. (d) Li, J.-H.; Liang, Y.; Wang, D.-P.; Liu, W.-J.; Xie, Y.-X.; Yin, D.-L. *J. Org. Chem.* 2005, *70*, 2832; and references cited therein.
- (9) (a) Hollins, R. A.; Campos, M. P. A. J. Org. Chem. 1979, 44, 3931. (b) Heasley, V. L.; Shellhamer, D. F.; Heasley, L. E.; Yaeger, D. B. J. Org. Chem. 1980, 45, 4649. (c) Duan, J.; Dolbier, W. R. Jr.; Chen, Q.-Y. J. Org. Chem. 1998, 63, 9486. (d) Pagni, R. M.; Kabalka, G. W.; Boothe, R.; Gaetano, K.; Stewart, L. J.; Conaway, R.; Dial, C.; Gray, D.; Larson, S.; Luidhardt, T. J. Org. Chem. 1988, 53, 4477. (e) Barluenga, J.; Montserrat, J. M.; Florez, J. J. Org. Chem. 1993, 58, 5976. (f) Hénaff, N.; Whiting, A. J. Chem. Soc., Perkin Trans. 1 2000, 395. (g) Li, J.-H.; Xie, Y.-X.; Yin, D.-L. Green Chem. 2002, 4, 505. (h) Li, J.-H.; Xie, Y.-X.; Yin, D.-L. Chin. J. Org. Chem. 2002, 22, 894.
- (10) For papers on the Heck reaction of (*E*)-1,2-diiodoalkenes with alkenes: (a) Ranu, B. C.; Chattopadhyay, K. Org. Lett. **2007**, *9*, 2409. (b) Ranu, B. C.; Adak, L.; Chattopadhyay, K. J. Org. Chem. **2008**, *73*, 5609.
- (11) Aitken, R. A.; Seth, S. Synlett 1990, 212.
- (12) Balova, I. A.; Sorokoumov, V. N.; Morozkina, S. N.; Vinogradova, O. V.; Knight, D. W.; Vasilevsky, S. F. *Eur. J.* Org. Chem. 2005, 882.
- (13) Kabalka, G. W.; Wang, L.; Pagni, R. M. Synlett 2001, 108.
- (14) Wan, S.; Yang, S. Zhiwu Baohu Xuebao 2004, 31, 299; Chem. Abstr. 2004, 143, 207550.
- (15) Muckensturm, B.; Riss, B. P.; Robert, P. C.; Simonis, M. T.; Kienlen, J. C. *Biochem. Syst. Ecol.* **1986**, *14*, 123; *Chem. Abstr.* **1986**, *104*, 220754.
- (16) Tsuge, O.; Ueno, K.; Oe, K. Chem. Lett. 1981, 135.