Total Synthesis of Grossularines-1 and -2

Tominari Choshi, Shiho Yamada, Eiichi Sugino, Takeshi Kuwada, and Satoshi Hibino*

Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-02, Japan

Received May 2, 1995[®]

The first total syntheses of grossularines-1 (1a) and -2 (1b) have been completed. The cross-coupling reaction between ethyl 3-iodoindole-2-carboxylate (6) and the directed metalation-derived imidazole **9b** gave the ethyl 3-(5-imidazolyl)indole-2-carboxylate 11b. Hydrolysis of the ester group of 11b, followed by Curtius rearrangement, yielded the 2-isocyanatoindole 13b. The thermal electrocyclic reaction of 13b was carried out to provide the desired tetracyclic pyrido[2,3-b]indole ring system 14b, which was converted into the triflate 15b. The three-component cross-coupling reaction of the triflate 15b, carbon monoxide, and p-(OMOM)phenylboronic acid (17) followed by hydrolysis gave grossularine-2 (1b) in low yield. In addition, the palladium-catalyzed carbonylation of the triflate 15b afforded the N-deprotected methyl ester 19a or the methyl ester 19b depending on the amounts of triethylamine used. Compound 19a was treated with either p-(OMOM)phenyllithium or 3-(N-TIPS)indolyllithium to obtain grossularine-2 (1b) and grossularine-1 (1a) (37%), respectively. By contrast, when 19b was treated with the same aryllithium reagents, grossularine-2 (1b) (51%) and grossularine-1 (1a) (63%) were produced, respectively.

Grossularine-1 (1a) and -2 (1b) were isolated in 1989 from *Dendrodoa grossularia* (Stylidae), a tunicate collected in Britany.¹ The structures of both compounds were determined by spectroscopic evidence including X-ray analysis² for grossularine-2 (1b). These substances are the first examples of naturally occurring pyrido[2,3b]indoles possessing interesting antitumor properties³ and are challenging targets owing to their unique tetracyclic structure. One synthetic approach to the tetracyclic pyrido[2,3-b]indole ring system based on a strategy involving the directed ortho-metalation cross-coupling reaction between 7-bromo-4,6-dichloro-2-(dimethylamino)imidazo[4,5-c]pyridine and o-iodoacetanilide and subsequent intramolecular cyclization was communicated by Achab and co-workers in 1993.⁴

We are currently interested in the synthesis of heteroaromatic compounds containing a nitrogen atom by thermal electrocyclic reactions⁵ of either conjugated hexatriene or monoazahexatriene systems including one double bond of an aromatic or heteroaromatic portion.^{6,7} Recently, we reported the first total synthesis of grossularine-2 $(1b)^8$ by using the thermal electrocyclic reaction of a 2-azahexatriene system including the indole 2,3-bond and the imidazole 4,5-bond with a tautomeric process as an extended use of the modified Eloy's pyridoannelation.⁹ We now describe the first total synthesis of grossularine-1 (1a) and the improved total synthesis of grossularine-2 (1b) together with the details of our preliminary work.

In our retrosynthetic analysis (Scheme 1), we planned that the acyl groups at the C-2 position of 1 would be derived from either the tetracyclic pyrido[2,3-b]indole 3 or its methyl ester 2. Next, we considered that the tetracyclic pyrido[2,3-b]indole 3 would be obtained by a thermal electrocyclic reaction of 3-imidazolylindole-2isocyanate 4, a 2-azahexatriene system, derived from a cleavage of the 2,3-bond of pyrido[2,3-b]indole 3. The precursor of 4 would be the carboxylic acid and its derivative 5, which might be derived from a crosscoupling reaction between the 3-iodoindole derivative 6 and the N-substituted imidazole 7.

Therefore, we preliminarily investigated a crosscoupling reaction between ethyl 3-iodoindole-2-carboxylate (6)¹⁰ and 5-bromo-1-methyl-2-(methylthio)imidazole (9a), prepared from 1-methyl-2-(methylthio)imidazole (8a)¹¹ by NBS,¹² for the synthesis of the precursor of the

Derykere, A. Bau. Chim. 1970, 7, 1191.
 (10) Sakamoto, T.; Nagano, T.; Kondo, Y.; Yamanaka, H. Chem.
 Pharm. Bull. 1990, 36, 2248.

(11) Carpenter, A. J.; Chadwick, D. J.; Ngochinko, R. I. J. Chem. Res. Synop. 1983, 196.

^{*} Abstract published in Advance ACS Abstracts, August 15, 1995.

Moquin-Pattey, C.; Guyot, M. Tetrahedron 1989, 45, 3445.
 Carre, D.; Moquin-Pattey, C.; Guyot, M. Acta Crystallogr. 1986,

C42, 483. (3) Helbecque, N.; Berbier, J. L.; Henichard, J. P.; Moquin-Pattey,

C.; Guyot, M. Cancer Biochem. Biophys. 1987, 9, 271. (4) Achab, S.; Guyot, M.; Potier, P. Tetrahedron Lett. 1993, 34, 2127.

 ^{(5) (}a) Woodward, R. B.; Hoffmann, R. J. Am. Chem. Soc. 1965, 87, 395.
 (b) Woodward, R. B.; Hoffmann, R. The Conservation of Orbital Symmetry; Verlag Chem.: Weinheim, 1970; Chapter 5.
 (c) Fleming, I. Frontier Orbitals and Organic Reactions; Wiley: London, 1976.
 (d) Marvel, E. N. Thermal Electrocyclic Reactions; Academic Press: New York, 1980; Chapter 2.
 (e) Okamura, W. H.; de Lera, A. R. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Paquette, L. A., Eds.; Pergamon Press: New York, 1991; Vol. 5, pp 699-750.

⁽⁶⁾ Hibino, S.; Sugino, E. In Advances in Nitrogen Heterocycles; Moody, C. J., Ed.; JAI Press: Greenwich, CT, 1995; Vol. 1, pp 205-227.

^{(7) (}a) Choshi, T.; Tonari, A.; Yoshioka, H.; Harada, K.; Sugino, E.; Hibino, S. J. Org. Chem. 1993, 58, 7952. (b) Yoshioka, H.; Choshi, T.; Sugino, E.; Hibino, S. Heterocycles 1995, 41, 161 and related references cited therein.

^{(8) (}a) Choshi, T.; Yamada, S.; Sugino, E.; Kuwada, T.; Hibino, S. Synlett **1995**, 147. (b) While this manuscript was under preparation, the synthesis of grossularine analogs via a similar approach appeared: Achab, S.; Guyot, M.; Potier, P. Tetrahedron Lett. **1995**, 36, 2615.

^{(9) (}a) Eloy, F.; Derykere, A. Helv. Chim. Acta 1969, 52, 1755. (b) Eloy, F.; Derykere, A. Helv. Chim. Acta 1970, 53, 645. (c) Eloy, F.; Derykere, A. Bull. Soc. Chim. Belg. 1970, 79, 301. (d) Eloy, F.; Derykere, A. Bull. Chim. Therap. 1970, 121. (e) Eloy, F.; Derykere, A. J. Heterocycl. Chem. 1970, 7, 1191.

2-azahexatriene system 4 and subsequent construction of the tetracyclic pyrido[2,3-b]indole ring (Scheme 2). Treatment of the readily available 5-bromoimidazole 9a with n-BuLi followed by addition of trimethyltin chloride gave the stannylimidazole 10a, which was used in the cross-coupling reaction¹³ with 3-iodoindole 6 in the presence of Pd(PPh₃)₄ to yield the 3-(5-imidazolyl)indole 11a (96% based on 6). Hydrolysis of the ester 11a with Na₂-CO₃ and subsequent Curtius rearrangement with diphenvl phosphorazidate (DPPA) afforded the isocyanate 13a, the so-called 2-azahexatriene system (65% from 11a). The thermal electrocyclic reaction of 13a was carried out in o-dichlorobenzene at 180 °C for 5 min to give the desired tetracyclic pyrido[2,3-b]indole 14a in 72% yield.

On the basis of this model experiment, we chose the readily available 2-(dimethylamino)-1-[[(trimethylsilyl)ethoxy]methyl]imidazole (9b), prepared from 2-(dimethylamino)imidazole (8b)¹⁴ with [(trimethylsilyl)ethoxy]methyl chloride (SEM-Cl) (83%), as the other component of the cross-coupling reaction for the synthesis of tetracyclic pyrido[2,3-b]indole 14b (Scheme 2). To this end, treatment of the SEM-imidazole 9b with t-BuLi, followed by addition of tributyltin chloride, gave the stannylimidazole 10b, which was subjected to the cross-coupling reaction with 3-iodoindole 6 in the presence of $Pd(PPh_3)_4$ to yield the 3-(5-imidazolyl)indole 11b (82% based on 6) [80% yield based on 6 in the case of $PdCl_2(PPh_3)_2$]. Hydrolysis of 11b with Na_2CO_3 gave the carboxylic acid 12b, which was treated with DPPA at 60 °C in the presence of triethylamine to provide the isocyanate 13b (86% yield from 11b) as the required 2-azahexatriene system. The thermal electrocyclic reaction of 13b was carried out in o-dichlorobenzene at 170 °C for 5 min to give the tetracyclic pyrido[2,3-b]indole 14b (88%). This compound 14b was converted into the mesylate 15a in order to elucidate the regiochemistry of the directed metalation cross-coupling reaction described above. In the 2D-NOESY NMR spectrum of 15a, the correlation was observed between methylene protons (δ 5.72) of the N-SEM group on the imidazole ring and the aromatic proton (δ 8.16) of C-5 position of pyrido[2,3-*b*]indole ring. Consequently, it was demonstrated that the proposed metalation cross-coupling reaction between 6 and 9b has regioselectively proceeded at the C-5 position of the SEMimidazole 9b.15 Furthermore, 14b was converted into the triflate 15b with trifluoromethanesulfonic anhydride and pyridine (94%) as an access to the goal.

At a final stage (Scheme 3), we attempted the Suzuki cross-coupling reaction.¹⁶ The three-component crosscoupling reaction between the triflate 15b, carbon monoxide, and 4-[(methoxymethyl)oxy]phenylboronic acid (17) ((methoxymethyl)oxy = OMOM) was carried out at 80 $^{\circ}C$ in the presence of PdCl₂(PPh₃)₂, K₂CO₃, and LiCl in anisole to provide the tetracyclic 2-benzoylpyrido[2,3-b]indole 18a (19%) along with 2-phenylpyrido[2,3-b]indole 18b (58%) (method A). Subsequent hydrolysis of the N-SEM group of 18a with diluted acid gave grossularine-2 (1b) (81%), which was confirmed by spectral data to be identical with natural grossularine-2 (1b).^{1,8} However, a similar application of the Suzuki cross-coupling reaction to the synthesis of grossularine-1 (1a) failed.

We next turned our attention toward devising an improved route for introducing the suitable acyl groups to the C-2 position of pyrido[2,3-b]indole and utilized a palladium-catalyzed carbonylation of aryl triflates by the procedure of Ortar and co-workers¹⁷ to obtain the key compound 19 (Scheme 3). Namely, the palladiumcatalyzed carbonylation was carried out under a carbon monoxide atmosphere in the presence of triethylamine, palladium acetate, 1,1-bis(diphenylphosphino)ferrocene (dppf), and methanol to yield either the N-deprotected methyl ester 19a (93%) or the methyl ester 19b (77%) depending upon the amounts of triethylamine.

The nucleophilic addition reaction of the methyl esters 19 was investigated by using the aryllithium derivatives prepared from p-(OMOM)phenyl bromide (16)¹⁸ with n-BuLi (or t-BuLi) or 3-bromo-1-(triisopropylsilyl)indole $(20)^{19}$ (triisopropylsilyl = TIPS) with *t*-BuLi in situ. For the improved synthesis of grossularine-2 (1b), the reaction of 19a with p-(OMOM)phenyllithium and subsequent hydrolysis with diluted acid gave the desired grossularine-2 (1b) (method B; 61%). By contrast, treatment of **19b** with p-(OMOM)phenyllithium followed by hydrolysis with the same acid yielded grossularine-2 (1b) (method C; 51%). On the other hand, the reaction of 19a with 3-indolyllithium and subsequent hydrolysis with diluted acid afforded grossularine-1 (1a) (method B; 37%). Moreover, treatment of 19b with 3-indolyllithium followed by hydrolysis with the same acid provided grossularine-1 (1a) (method C; 63%). The spectral data of these synthetic materials were identical with those of

^{(12) (}a) O'Connell, J. F.; Parquette, J.; Yelle, W. E.; Rapoport, H. Synthesis 1988, 767. (b) Keenan, R. M.; Weinstock, J.; Finkelstein, J. A.; Franz, R. G.; Gaitanopoulos, D. E.; Girard, G. R.; Hill, D. T.; Morgan, T. M.; Samanen, J. M.; Hempel, J.; Eggleston, D. S.; Aiyar, N.; Griffin, E.; Ohlstein, E. H.; Stack, E. J.; Weidley, E. F.; Edwards, R. J. Med. Chem. 1992, 35, 3858

⁽¹³⁾⁽a) Yang, Y.; Martin, A. R. Synth. Commun. 1992, 22, 1757.
(b) Yokoyama, Y.; Ito, S.; Takahashi, Y.; Murakami, Y. Tetrahedron Lett. 1985, 26, 6457.

⁽¹⁴⁾ Dalkafouki, A.; Ardisson, J.; Kunesch, N.; Lacombe, L.; Poisson, J. E. Tetrahedron Lett. 1991, 32, 5325.

⁽¹⁵⁾ Shapiro, G.; Gomez-Lor, B. Heterocycles 1995, 41, 215.

 ^{(16) (}a) Ishiyama, T.; Kizaki, H.; Miyaura, N.; Suzuki, A. Tetrahe-dron Lett. 1993, 34, 7595. (b) Oh-e, T.; Miyaura, N.; Suzuki, A. J. Org. Chem. 1993, 58, 2201.

¹⁷⁾ Cacci, S.; Ciatini, P. G.; Morera, E.; Ortar, G. Tetrahedron Lett. 1986, 27, 3931.

⁽¹⁸⁾ Hatanaka, Y.; Yoshida, E.; Nakayama, H.; Kanaoka, Y. Bioorg. Chem. 1989, 17, 482. (19) Lind, J.; Jonsson, M.; Xinhua, S.; Eriksen, T. E.; Merényi, G.;

Eberson, L. J. Am. Chem. Soc. 1993, 115, 3503.

previously synthesized grossularine-2 (1b) and natural grossularines-1 (1a) and -2 (1b).

Thus, this new approach based on the thermal electrocyclic reaction of the 2-azahexatriene system provided an effective route to the imidazo[4',5':3,4]pyrido[2,3-b]-indole ring. In addition, the first total synthesis of grossularine-1 (1a) and the improvement of total synthesis of grossularine-2 (1b) have been completed. The highest overall yields of 1a and 1b from the iodoindole 6 were 28% (6 \rightarrow 19b \rightarrow 1a) and 33% (6 \rightarrow 19a \rightarrow 1b), respectively.

Experimental Section

General. Most reactions were conducted in flame-dried glassware under an argon atmosphere. All air-sensitive reactions were run under an argon atmosphere, and reagents were added through septa using dried syringes. THF, ether, and anisole were freshly distilled from sodium benzophenone ketyl. DMF was freshly distilled under reduced pressure after drying over CaH₂. NBS was recrystallized from water and was dried in a desiccator under vacuum before use. Silica gel (60– 100 mesh, Merck Art 7734) and Sephadex LH-20 (Pharmacia) were used for column chromatography. Melting points are uncorrected. ¹H NMR and ¹³C NMR were taken with SiMe₄ as an internal standard unless otherwise stated. Low and high resolution mass spectra were measured at 70 eV (EI) unless otherwise stated.

5-Bromo-1-methyl-2-(methylthio)imidazole (9a). NBS (3.0 g, 17.2 mmol) was added to a stirred solution of imidazole $8a^{11}$ (2.0 g, 15.6 mmol) in THF (45 mL) under cooling with ice-water. After being stirred for 3 h at rt, the reaction mixture was diluted with EtOAc. The organic layer was washed with brine and dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatog-

raphy (silica gel, 50 g) using EtOAc/hexane (2:3) as an eluent to yield the 5-bromoimidazole **9a** (1.9 g, 58%) as an oil: bp 114–115 °C/6 Torr; ¹H NMR (CDCl₃) δ 2.56 (3H, s), 3.52 (3H, s), 6.97 (1H, s); MS *m*/z 206 (M⁺), 208 (M⁺ + 2). Anal. Calcd for C₅H₇BrN₂S: C, 29.00; H, 3.41; N, 13.53. Found: C, 29.05; H, 3.46: N, 13.51.

2-(Dimethylamino)-1-[[2'-(trimethylsilyl)ethoxy]methyl]imidazole (9b). A solution of 2-(dimethylamino)imidazole (8b) (500 mg, 4.5 mmol) in DMF (5 mL) was added to a stirred suspension of NaH (60% dispersion, 198 mg, 5.0 mmol) in DMF (10 mL) with ice cooling. After the mixture was stirred for 1 h at rt, a solution of SEM-Cl (784 mg, 4.7 mmol) in DMF (5 mL) was added under cooling with ice-water. The reaction mixture was stirred for 20 h at rt and then poured into icewater. The mixture was extracted with CHCl₃, and the organic layer was washed with water and brine and then dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography (silica gel, 30 g) using EtOAc/hexane (1:4) as an eluent to give the SEM-imidazole **9b** as an oil (902 mg, 83%): bp 112-114 °C/2 Torr; ¹H NMR $(\text{CDCl}_3) \delta 0.00 \text{ (9H, s)}, 0.91 \text{ (2H, t, } J = 9 \text{ Hz}), 2.80 \text{ (6H, s)},$ 3.53 (2H, t, J = 9 Hz), 5.08 (2H, s), 6.70 (2H, s); MS m/z 241(M⁺). Anal. Calcd for $C_{11}H_{23}N_3OSi$: C, 54.73; H, 9.60; N, 17.41. Found: C, 54.70; H, 9.63; N, 17.45.

1-Methyl-2-(methylthio)-5-(trimethylstannyl)imidazole (10a). A solution of *n*-BuLi (1.61 M in hexane, 2.2 mL, 3.48 mmol) was added dropwise to a stirred solution of 5-bromoimidazole 9a (500 mg, 2.90 mmol) in dry ether (40 mL) at -78 °C. After the mixture was stirred for 30 min at the same temperature, a solution of Me₃SnCl (693 mg, 3.48 mmol) in ether (10 mL) was added. The mixture was stirred at ambient temperature for 12 h and then diluted with ether. The ether layer was washed with aqueous saturated NH₄Cl solution and brine, dried over Na₂SO₄, and evaporated under vacuum to give the stannylimidazole 10a as an oil. This material was used in the next reaction without further purification: ¹H NMR (CDCl₃) δ 0.27 (9H, s), 2.52 (3H, s), 3.55 (3H, s), 6.91 (1H, s).

2-(Dimethylamino)-5-(tributylstannyl)-1-[[2'-(trimethylsilyl)ethoxy]methyl]imidazole (10b). A solution of t-BuLi (1.57 M in hexane, 4.0 mL, 6.3 mmol) was added dropwise to a stirred solution of the SEM-imidazole **9b** (500 mg, 2.1 mmol) in dry ether (15 mL) at -78 °C. After the mixture was stirred for 1.5 h at -78 °C, a solution of Bu₃SnCl (2.1 g, 6.5 mmol) in ether (10 mL) was added at the same temperature. The reaction mixture was slowly warmed to rt and stirred overnight. The mixture was diluted with ether, and the ether layer was washed with aqueous saturated NH₄-Cl solution and brine and then dried over Na₂SO₄. After removal of the solvent, the crude stannylimidazole 10b was used without further purification: ¹H NMR (CDCl₃) δ 0.00 (9H, s), 0.51–1.98 (29H, m), 2.71 (6H, s), 3.40 (2H, t, J = 8.0 Hz), 5.01 (2H, s), 6.69 (1H, s).

Ethyl 3-[1-Methyl-2-(methylthio)imidazol-5-yl]indole-2-carboxylate (11a). A solution of 10a (2.9 mmol) in dry DMF (30 mL) was added to a mixture of 3-iodoindole 6¹⁰ (548 mg, 1.74 mmol) and Pd(PPh₃)₄ (99.1 mg, 0.087 mmol) in dry DMF (10 mL) at rt. The reaction mixture was heated at 120 °C for 20 h. After being cooled to ambient temperature, the mixture was concentrated under reduced pressure. The residue was dissolved in EtOAc. The EtOAc layer was washed with water and brine, dried over Na₂SO₄, and then concentrated under vacuum. The residue was purified by column chromatography (silica gel, 30 g) using EtOAc/hexane (3:7) as an eluent to give the ester 11a (612 mg, 96%): mp 157-159 °C (Et₂O-petroleum ether); IR (KBr) 3054, 170 $\hat{6}$ cm⁻¹; ^{1}H NMR (CDCl₃) δ 1.63 (3H, t, J = 8.0 Hz), 2.65 (3H, s), 3.40 (3H, s), 4.27 (2H, q, J = 8.0 Hz), 7.10 (1H, s), 6.73–7.56 (4H, m); MS m/z 315 (M⁺). Anal. Calcd for C₁₆H₁₇N₃O₂S: C, 60.93; H, 5.43; N, 13.32. Found: C, 60.85; H, 5.40; N, 13.41.

Ethyl 3-[2-(Dimethylamino)-1-[[2'-(trimethylsilyl)ethoxy]methyl]imidazol-5-yl]indole-2-carboxylate (11b). A solution of 10b (2.1 mmol) in DMF (15 mL) was added to a mixture of 3-iodoindole 6^{10} (331 mg, 1.1 mmol) and Pd(PPh₃)₄ (60.7 mg, 0.053 mmol) in DMF (5 mL) through a cannula at rt. The reaction mixture was heated at 120 °C for 20 h. After the mixture was cooled to rt, the solvent was removed under vacuum. The residue was dissolved in EtOAc. The EtOAc layer was washed with brine, dried over Na₂SO₄, and evaporated under vacuum. The residue was purified by column chromatography (silica gel, 20 g) using EtOAc/hexane (3:7) as an eluent to give the ester 11b (370 mg, 82% based on **6**) [80% based on **6** by using PdCl₂(PPh₃)₂ (0.053 mmol) instead of Pd(PPh₃)₄]: mp 197-198 °C (AcOEt-hexane); IR (KBr) 3053, 1710 cm⁻¹; ¹H NMR (CDCl₃) δ 0.00 (9H, s), 0.86 (2H, t, J = 8.6 Hz), 1.54 (3H, t, J = 7.2 Hz), 3.23 (6H, s), 3.85 (2H, t, J = 8.6 Hz), 4.57 (2H, t, J = 7.2 Hz), 5.28-5.51 (2H, br s), 7.17 (1H, s), 7.29-7.94 (4H, m); MS *m/z* 428 (M⁺). Anal. Calcd for C₂₂H₃₂N₄O₃Si: C, 61.65; H, 7.53; N, 13.07. Found: C, 61.71; H, 7.55; N, 13.20.

3-[1-Methyl-2-(methylthio)imidazol-5-yl]indole-2-carboxylic Acid (12a). A mixture of the ester **11a** (180 mg, 0.57 mmol) and aqueous 10% Na₂CO₃ (5 mL) in EtOH (5 mL) was stirred at 70 °C for 3 h. After being cooled to rt, the reaction mixture was diluted with water. The mixture was washed with EtOAc. The aqueous layer was adjusted to pH 5 with AcOH under cooling with ice and then extracted with CHCl₃. The CHCl₃ layer was washed with brine, dried over Na₂SO₄, and evaporated under vacuum to give the carboxylic acid **12a** as white crystals (133 mg, 81%): mp 179–181 °C (CHCl₃); IR (KBr) 3232, 1696 cm⁻¹; ¹H NMR (CDCl₃–MeOH- d_4) δ 2.71 (3H, s), 3.49 (3H, s), 7.29 (1H, s), 7.01–7.58 (4H, m); MS *m*/2 287 (M⁺). Anal. Calcd for Cl₄H₁₃N₃O₂S: C, 58.52; H, 4.56; N, 14.62. Found: C, 58.55; H, 4.37; N, 14.65.

3-[2-(Dimethylamino)-1-[[2'-(trimethylsilyl)ethoxy]methyl]imidazol-5-yl]indole-2-carboxylic Acid (12b). A mixture of the ester 11b (217 mg, 0.51 mmol) and aqueous 10% Na₂CO₃ (15 mL) in EtOH (15 mL) was stirred at 70 °C for 2 h. After being cooled to rt, the mixture was diluted with water. The mixture was washed with EtOAc. The aqueous layer was acidified to pH 5 with AcOH under cooling with ice and extracted with i-PrOH/CHCl₃ (1:5). The organic layer was washed with brine and then dried over Na₂SO₄, and the solvent was removed under reduced pressure to yield the carboxylic acid 12b (200 mg, 99%): mp 181-183 °C (MeOH-Et₂O); IR-(KBr) 3200, 1650 cm⁻¹; ¹H NMR (DMSO- d_6) δ -0.32 (9H, s), 0.46 (2H, t, J = 8.0 Hz), 2.86 (6H, s), 2.95 (2H, t, J = 8.0 Hz),4.95-5.21 (2H, m), 6.75 (1H, br s), 7.09 (1H, t, J = 7.1, 7.1Hz), 7.29 (1H, t, J = 7.1, 7.1 Hz), 7.42 (1H, d, J = 7.1 Hz), 7.48 (1H, d, J = 7.1 Hz), 12.01 (1H, br s), 13.02 (1H, br s); MSm/z 400 (M⁺). Anal. Calcd for C₂₀H₂₈N₄O₃Si: C, 59.97; H, 7.05; N, 13.99. Found: C, 56.00; H, 6.99; N, 14.11.

2-Isocyanato-3-[1-methyl-2-(methylthio)imidazol-5-yl] indole (13a). A mixture of the carboxylic acid 12a (126 mg, 0.44 mmol), DPPA (0.284 mL, 1.32 mmol), and Et₃N (0.182 mL, 1.34 mmol) in dry benzene (10 mL) was stirred at 60 °C for 30 min. After being cooled to ambient temperature, the mixture was concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, 10 g) using EtOAc/ hexane (3:7) as an eluent to give the isocyanate 13a (100 mg, 80%): IR (KBr) 3120, 2139 cm⁻¹; ¹H NMR (CDCl₃) δ 2.67 (3H, s), 3.35 (3H, s), 7.15 (1H, s), 7.08–7.60 (4H, m); MS *m/z* 284 (M⁺); HRMS calcd for C₁₄H₁₂N₄OS 284.0723, found 284.0728.

3-[2-(Dimethylamino)-1-[[2'-(trimethylsilyl)ethoxy]methyl]imidazol-5-yl]-2-isocyanatoindole (13b). A mixture of the carboxylic acid **12b** (110 mg, 0.27 mmol), DPPA (0.176 mL, 0.82 mmol), and Et₃N (0.114 mL, 0.82 mmol) in dry benzene (10 mL) was stirred at 60 °C for 30 min. After being cooled to rt, the mixture was concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, 20 g) using EtOAc/hexane (3:7) as an eluent to yield the isocyanate **13b** as a solid (95 mg, 87%): IR (KBr) 3051, 2139 cm⁻¹; ¹H NMR (CDCl₃) δ -0.30 (9H, s), 0.58 (2H, t, J = 9.0 Hz), 3.33 (6H, s), 3.62 (2H, t, J = 9.0 Hz), 5.06 (2H, br s), 6.83 (1H, s), 7.35-7.62 (4H, m), 9.47 (1H, br s); MS *m/z* 397 (M⁺); HRMS calcd for C₂₀H₂₇N₅O₂Si 379.1918, found 379.1930.

2-Hydroxy-12-methyl-11-(methylthio)-9*H*-imidazo[4',5': 3,4]pyrido[2,3-b]indole (14a). A solution of the isocyanate 13a (60 mg, 0.21 mmol) in *o*-dichlorobenzene (5 mL) was heated at 180 °C for 5 min. After the solution was cooled to rt, the resulting precipitates were filtered off, washed with Et₂O, and dried *in vacuo* to give the analytical pure α -carboline **14a** (43 mg, 72%): mp 337-338 °C; IR (KBr) 3112 cm⁻¹; ¹H NMR (DMSO- d_6) δ 2.68 (3H, s), 4.17 (3H, s), 7.13 (1H, t, J = 7.1, 7.1 Hz), 7.18 (1H, t, J = 7.1, 7.1 Hz), 7.49 (1H, d, J = 7.1 Hz), 8.03 (1H, d, J = 7.1 Hz); MS m/z 284 (M⁺). Anal. Calcd for C₁₄H₁₂N₄OS: C, 59.14; H, 4.25; N, 19.70. Found: 59.21; H, 4.35; N, 19.85.

11-(Dimethylamino)-2-hydroxy-12-[[2'-(trimethylsilyl)ethoxy]methyl]-9H-imidazo[4',5':3,4]pyrido[2,3-b]indole (14b). A solution of the isocyanate 13b (189 mg, 0.48 mmol) in o-dichlorobenzene (20 mL) was heated at 170 °C for 5 min. After being cooled to rt, the mixture was concentrated under reduced pressure. The residue was crystallized from EtOAc to yield the α -carboline 14b (167 mg, 88%): mp 241– 243 °C (EtOAc); IR (KBr) 3100, 1680 cm⁻¹; ¹H NMR (pyridined₅, 400 MHz, 80 °C) δ 0.09 (9H, s), 1.09 (2H, t, J = 8 Hz), 3.04 (6H, s), 3.85 (2H, t, J = 8 Hz), 5.88 (2H, s), 7.38 (1H, dt, J =7.0, 7.0, 2.0 Hz), 7.41 (1H, dt, J = 7.0, 7.0, 2.0 Hz), 7.62 (1H, dd, J = 7.0, 2.0 Hz), 8.42 (1H, dd, J = 7.0, 2.0 Hz), 12.30 (1H, br s); MS m/z 397 (M⁺). Anal. Calcd for C₂₀H₂₇N₅O₂Si: C, 60.42; H, 6.85; N, 17.62. Found: C, 60.33; H, 6.97; N, 17.54.

11-(Dimethylamino)-2-[(methanesulfonyl)oxy]-12-[[2'-(trimethylsilyl)ethoxy]methyl]-9H-imidazo[4',5':3,4]pyrido[2,3-b]indole (15a). To a solution of 14b (30 mg, 0.075 mmol) and pyridine (0.018 mL, 0.22 mmol) in dry CH₂Cl₂ (5 mL) was added methanesulfonyl chloride (10.4 mg, 0.091 mmol) at 0 °C. After being stirred at rt overnight, the reaction mixture was diluted with EtOAc. The EtOAc layer was washed with water and brine, dried over Na₂SO₄, and then concentrated under vacuum. The residue was purified by column chromatography (silica gel, 10 g) with EtOAc/hexane (5:95) as an eluent to yield the mesylate 15a (35 mg, 98%): mp 197-198 °C (CHCl₃-hexane); IR (KBr) 3213, 1402, 1193 cm⁻¹; ¹H NMR (CHCl₃, 500 MHz) δ -0.07 (9H, s), 0.91 (2H, t, J = 8 Hz), 3.04 (6H, s), 3.65 (2H, t, J = 8.0 Hz), 3.80 (3H, s), 5.72 (2H, s), 7.24 (1H, dt, J = 8.0, 8.0, 1.0 Hz), 7.44 (1H, dt, J)= 8.0, 8.0, 1.0 Hz), 7.54 (1H, br d, J = 8.0 Hz), 8.16 (1H, br d, J = 8.0 Hz); MS m/z 475 (M⁺). Anal. Calcd for C₂₁H₂₉N₅O₄-SSi: C, 53.03; H, 6.15; N, 14.72. Found: C, 53.11; H, 6.30; N, 14.65

11-(Dimethylamino)-2-[(trifluoromethanesulfonyl)oxy]-12-[[2'-(trimethylsilyl)ethoxy]methyl]-9H-imidazo[4',5': 3,4]pyrido[2,3-b]indole (15b). To a solution of 14b (80 mg, 0.20 mmol) and pyridine (0.05 mL, 0.60 mmol) in dry CH₂Cl₂ (10 mL) was added trifluoromethanesulfonic anhydride (0.04 mL, 0.24 mmol) at 0 °C. After being stirred at 0 °C for 1 h, the reaction mixture was poured into ice-water, and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under vacuum. The residue was purified by column chromatography (silica gel, 10 g) using EtOAc/hexane (1:4) as eluent to yield the triflate **15b** (100 mg, 94%): mp 87-88 °C (EtOAc-hexane); IR (KBr) 3200, 1419, 1197 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.02 (9H, s), 1.06 (2H, t, J = 8.4 Hz), 3.14 (6H, s), 3.72 (2H, t, t)J = 8.4 Hz), 5.65 (2H, s), 7.30 (1H, t, J = 7.4, 7.4 Hz), 7.49 (1H, t, J = 7.4, 7.4 Hz), 7.53 (1H, d, J = 7.4 Hz), 8.20 (1H, d, J)J = 7.4 Hz), 8.77 (1H, br s); MS (CI) m/z 530 (M⁺ + 1). Anal. Calcd for C₂₁H₂₆F₃N₅O₄SSi: C, 47.63; H, 4.95; N, 13.22. Found: C, 47.59; H, 5.06; N, 13.08.

p-[(Methoxymethyl)oxy]phenylboronic Acid (17). A solution of n-BuLi (1.63 M in hexane, 7.4 mL, 12.0 mmol) was added dropwise to a stirred solution of p-(OMOM)phenyl bromide (2.0 g, 9.2 mmol) in dry THF (25 mL) at -78 °C. After the mixture was stirred for 30 min at the same temperature, a solution of triisopropyl borate (2.3 g, 12.0 mmol) in THF (5 mL) was added rapidly. The mixture was stirred for 30 min at the same temperature and then stirred for a further 1 h at rt. The reaction mixture was partitioned between EtOAc (100 mL) and 10% aqueous HCl (50 mL). The organic layer was washed with brine and dried over Na₂SO₄. Removal of the solvent under reduced pressure followed by crystallization from Et_2O afforded the boronic acid 17 (743 mg, 45%): mp 134-135 °C; ¹H NMR (CDCl₃) δ 3.50 (3H, s), 5.17 (2H, s), 7.03 (2H, d, J = 8.0 Hz), 8.03 (2H, d, J = 8.0 Hz). Anal. Calcd for C₈H₁₁-BO4: C, 52.80; H, 6.09. Found: C, 52.65; H, 6.21.

11-(Dimethylamino)-2-[4'-[(methoxymethyl)oxy]benzoy]]-12-[[2"-(trimethylsilyl)ethoxy]methyl]-9H-imidazo[4',5':3,4]pyrido[2,3-b]indole (18a) and 11-(Dimethylamino)-2-[4'-[(methoxymethyl)oxy]phenyl]-12-[[2"-(trimethylsilyl)ethoxy]methyl]-9H-imidazo[4',5': 3,4]pyrido[2,3-b]indole (18b) (Method A). Into a mixture of phenylboronic acid 17 (73 mg, 0.40 mmol), triflate 15b (97 mg, 0.18 mmol), PdCl₂(PPh₃)₂ (3.8 mg, 0.0054 mmol), K₂CO₃ (152 mg, 1.1 mmol), and LiCl (23 mg, 0.54 mmol) in dry anisole (3 mL) was bubbled carbon monoxide for 5 min, and the mixture was heated at 80 °C for 3 h under a CO atmosphere. After being cooled to rt, the mixture was dissolved in CHCl₃. The CHCl₃ layer was washed with water and brine, dried over Na₂SO₄, and evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, 10 g) using MeOH/CHCl₃ (1:99) as an eluent to yield 18a as a yellow solid (19 mg, 19%) and 18b (54 mg, 58%). 18a: mp 232-234 °C (CHCl₃-hexane); IR (KBr) 1596 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.04 (9H, s), 1.10 (2H, t, J = 8.4 Hz), 3.13 (6H, 2), 3.48 (3H, s), 3.75 (2H, t, J = 8.4 Hz), 5.24 (2H, s), 5.66 (2H, s),7.05 (2H, d, J = 8.8 Hz), 7.29 (1H, t, J = 7.9, 7.9 Hz), 7.49 (1H, t, J = 7.9, 7.9 Hz), 7.52 (1H, d, J = 7.9 Hz), 8.07 (2H, d, d)J = 8.8 Hz), 8.29 (1H, d, J = 7.9 Hz), 9.32 (1H, br s); MS m/z545 (M⁺). Anal. Calcd for $C_{29}H_{35}N_5O_4Si$: C, 63.83; H, 6.46; N, 12.83. Found: C, 63.94; H, 6.33; N, 12.82. 18b: mp 193-195 °C (CHCl₃-hexane); ¹H NMR (CDCl₃, 400 MHz) δ 0.02 (9H, s), 1.09 (2H, t, J = 8.4 Hz), 3.15 (6H, s), 3.53 (3H, s), 3.73(2H, t, J = 8.4 Hz), 5.28 (2H, s), 5.70 (2H, s), 7.07 (1H, d, J =8.0 Hz), 7.21 (1H, t, J = 8.0, 8.0 Hz), 7.22 (2H, d, J = 8.7 Hz), 7.32 (1H, t, J = 8.0, 8.0 Hz), 8.20 (1H, d, J = 8.0 Hz), 8.72 $(2H, d, J = 8.7 \text{ Hz}), 10.23 (1H, \text{ br s}); \text{MS } m/z 517 (M^+).$ Anal. Calcd for C₂₈H₃₅N₅O₃Si: C, 64.96; H, 6.81; N, 13.53. Found: C, 64.62; H, 6.92; N, 13.67.

Grossularine-2 (1b) (Method A). A mixture of 18a (20 mg, 0.037 mmol) and 6 N HCl (1 mL) in MeOH (3 mL) was heated at 60 °C for 30 min. After being cooled to rt, the reaction mixture was adjusted to pH 8-9 with 28% NH₄OH. The resulting precipitates were filtered off and dried in vacuo to give grossularine-2 (1b) (11 mg, 81%): mp 197 °C (the crystals became black at 169 °C and decomposed at 197 °C) (ČHCl₃-hexane); IR (KBr) 3432 cm⁻¹; ¹H NMR (DMSO- d_6 , 500 MHz) δ 3.28 (6H, s), 6.89 (2H, d, J = 8.5 Hz), 7.20 (1H, dt, J= 6.9, 6.9, 1.2 Hz), 7.39 (1H, dt, J = 6.9, 6.9, 1.2 Hz), 7.44 (1H, d, J = 6.9 Hz), 8.22 (1H, d, J = 6.9 Hz), 8.24 (2H, d, J = 6.9 Hz)8.5 Hz), 10.98 (1H, s), 11.52 (1H, s); ¹³C NMR (DMSO-d₆, 125 MHz) δ 191.0, 161.5, 159.9, 146.7, 146.4, 139.5, 133.5 (2C), 132.1, 128.6, 127.9, 125.7, 122.4, 119.6, 118.8, 114.7 (2C), 110.5, 104.9, 39.1 (2C); MS m/z 371 (M⁺, 100), 356 (5), 343 (15), 342 (17), 328 (10), 314 (7), 262 (6), 248 (12), 234 (16).Anal. Calcd for C₂₁H₁₇N₅O₂: C, 67.91; H, 4.61; N, 18.86. Found: C, 68.03; H, 4.61; N, 18.96.

11-(Dimethylamino)-2-(methoxycarbonyl)-9H-imidazo-[4',5':3,4]pyrido[2,3-b]indole (19a). Into a mixture of triflate 15b (145 mg, 0.27 mmol), Pd(OAc)₂ (1.8 mg, 0.0081 mmol), 1,1'-bis(diphenylphosphino)ferrocene (dppf) (9.0 mg, 0.016 mmol), MeOH (0.221 mL, 5.48 mmol), and Et₃N (0.077 mL, 0.55 mmol) in DMF (1 mL) was bubbled carbon monoxide for 5 min and the resulting mixture stirred at 80 °C for 2 h under a CO atmosphere. After being cooled to rt, the mixture was extracted with CHCl₃. The CHCl₃ layer was washed with water and brine, dried over Na₂SO₄, and evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, 10 g) using MeOH/CHCl₃ (1:99) to yield the N-deprotected methyl ester 19a as a yellow solid (79 mg, 93%): mp 279-280 °C dec (CHCl₃-hexane); IR (KBr) 3282, 1733 cm⁻¹; ¹H NMR (DMSO- d_6 , 400 MHz) δ 3.29 (6H, s), 3.97 (3H, s), 7.22 (1H, dt, J = 7.8, 7.8, 1.0 Hz), 7.42 (1H, dt, J = 7.8, 7.8, 1.0 Hz), 7.46 (1H, d, J = 7.8 Hz), 8.22 (1H, d, J = 7.8 Hz)Hz), 10.66 (1H, br s), 10.73 (1H, br s); MS m/z 309 (M⁺). Anal. Calcd for C₁₆H₁₅N₅O₂: C, 62.13; H, 4.89; N, 22.64. Found: C, 62.22; H, 5.00; N, 22.49.

11-(Dimethylamino)-2-(methoxycarbonyl)-12-[[2'-(trimethylsilyl)ethoxy]methyl]-9H-imidazo[4',5':3,4]pyrido-[2,3-b]indole (19b). A solution of triflate 15b (145 mg, 0.27 mmol), $Pd(OAc)_2$ (1.8 mg, 0.0081 mmol), dppf (9.0 mg, 0.016 mmol), MeOH (0.22 mL, 5.5 mmol), and Et_3N (0.2 mL, 1.4 mmol) in DMF (1 mL) was bubbled with CO for 5 min and stirred at 80 °C for 4 h under a CO atmosphere. After being cooled to rt, the mixture was dissolved in CHCl₃. The CHCl₃ layer was washed with water and brine, dried over Na₂SO₄, and evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, 10 g) using MeOH/CHCl₃ (1:99) as an eluent to yield the methyl ester **19b** as a yellow solid (76 mg, 77%): mp 268-269 °C (MeOH); IR (KBr) 3292, 1705 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.02 (9H, s), 1.08 (2H, t, J = 8.4 Hz), 3.24 (6H, s), 3.72 (2H, t, J = 8.4 Hz), 4.10 (3H, s), 7.27 (1H, t, J = 7.8, 7.8 Hz), 7.51 (1H, t, J = 7.8, 7.8 Hz), 7.55 (1H, d, J = 7.8 Hz), 8.30 (1H, d, J = 7.8 Hz), 10.29 (1H, br s); MS *m/z* 439 (M⁺). Anal. Calcd for C₂₂H₂₉N₅O₃-Si: C, 60.11; H, 6.65; N, 15.93. Found: C, 60.03; H, 6.71; N, 16.11.

p-[(Methoxymethyl)oxylphenyl Bromide (16).¹⁸ A solution of *p*-bromophenol (10 g, 57.8 mmol) in DMF (10 mL) was added to a stirred suspension of NaH (60% oil dispersion, 2.8 g, 6.94 mmol) in DMF (40 mL) with ice cooling. After the mixture was stirred at rt for 30 min, a solution of chloromethyl methyl ether (5.2 mL, 79.4 mmol) in DMF (10 mL) was added under cooling with ice-water, and the mixture was stirred at rt for 2 h. After being poured into ice-water, the mixture was extracted with EtOAc. The EtOAc layer was washed with water and brine, dried over Na₂SO₄, and evaporated under vacuum to give the OMOM ether 16 (11.7 g, 93%): bp 82–84 °C/1.5 Torr; ¹H NMR (CDCl₃) δ 3.42 (3H, s), 5.08 (2H, s), 6.85 (2H, d, J = 8.0 Hz), 7.30 (2H, d, J = 8.0 Hz); MS *m/z* 217 (M⁺). Anal. Calcd for C₈H₉BrO₂: C, 44.27; H, 4.18. Found: C, 44.31; H, 4.12.

3-Bromo-1-(triisopropylsilyl)indole (20). A solution of NBS (325 mg, 1.83 mmol) in THF (5 mL) was added to a stirred solution of the triisopropylindole¹⁹ (500 mg, 1.83 mmol) in THF (3 mL) at -78 °C. After the mixture was stirred at the same temperature for 1 h, water was added and the mixture was extracted with Et₂O. The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, 20 g) using hexane as an eluent to yield the 3-bromoindole **20** (569 mg, 89%): mp 56-58 °C (pentane) (lit.¹⁹ mp 62-64 °C); ¹H NMR (CDCl₃) δ 1.12 (18H, d, J = 6.0 Hz), 1.53 (3H, sep, J = 6.0 Hz), 6.85-7.62 (4H, m), 7.16 (1H, s); MS m/z 352 (M⁺), 354 (M⁺ + 2). Anal. Calcd for C1₇H₂₆-BrNSi: C, 57.94; H, 7.44; N, 3.97. Found: C, 57.78; H, 7.42; N, 4.05.

Grossularine-1 (1a) (Method B). A solution of t-BuLi (1.62 M in pentane, 0.96 mL, 1.56 mmol) was added dropwise to a stirred solution of the 3-bromoindole 20 (273 mg, 0.78 mmol) in dry THF (7 mL) at -78 °C. After being stirred at -78 °C for 30 min, a solution of **19a** (30 mg, 0.097 mmol) in dry THF (7 mL) was added and the mixture was stirred for 2 h at the same temperature. The reaction was guenched with water (3 mL) and 6 N HCl (3 mL), and then the mixture was heated at 60 °C for 30 min. The mixture was worked up with water and extracted with MeOH/CHCl₃ (1:9). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under vacuum. The residue was purified by column chromatography (Sephadex LH-20) using MeOH as an eluent to yield grossularine-1 (1a) (14 mg, 37%): mp 339-341 °C (CHCl₃) (lit.¹ mp 350 °C); IR (KBr) 3432, 3282 cm⁻¹; ¹H NMR (DMSO- d_6 , 500 MHz) δ 3.32 (6H, s), 7.23 (1H, t, J = 7.2, 7.2Hz), 7.25-7.29 (2H, M), 7.42 (1H, t, J = 7.2, 7.2 Hz), 7.50 (1H, d, J = 7.2 Hz), 7.55 (1H, m), 8.24 (1H, d, J = 7.2 Hz), 8.54– 8.57 (1H, m), 8.65 (1H, br s), 9.20 (1H, br s), 9.44 (1H, d), 9.85 (1H, br s); ¹³C NMR (DMSO- d_6 , 150 MHz) δ 187.0, 159.9, 147.0, 146.5, 139.5, 137.4, 135.8, 133.0, 127.5, 127.3, 125.7, 122.8, 122.6, 121.9, 121.8, 119.9, 119.0, 114.6, 112.2, 110.6, 104.9, 39.2 (2C); MS m/z 394 (M⁺, 100), 365 (5), 350 (5), 277 (59), 249 (43), 234 (16), 197 (23), 144 (12). Anal. Calcd for C₂₃H₁₈N₆O: C, 70.04; H, 4.60; N, 21.31. Found: C, 69.94; H, 4.77; N, 21.35.

Grossularine-1 (1a) (Method C). A solution of t-BuLi (1.62 M in pentane, 0.68 mL, 1.10 mmol) was added to a

solution of 3-bromoindole (194 mg, 0.55 mmol) in dry THF (5 mL) at -78 °C under argon. After being stirred for 30 min, a solution of **19b** (30 mg, 0.068 mmol) in THF (7 mL) was added. The mixture was stirred for 10 min at -78 °C and then stirred at -30 °C for 1.5 h. The reaction was quenched with water (3 mL) and 6 N HCl (3 mL). The mixture was heated at 60 °C for 30 min and basified to pH 8 with 28% NH₄OH. The mixture was extracted with MeOH-CHCl₃ (1:9). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure. The residue was purified by column chromatography (Sephadex LH-20) using MeOH as an eluent to yield grossularine-1 (1a) (17 mg, 63%).

Grossularine-2 (1b) (Method B). A solution of n-BuLi (1.63 M in hexane, 0.43 mL, 0.70 mmol) was added dropwise to a stirred solution of p-(OMOM)phenyl bromide (16) (151 mg, 0.70 mmol) in dry THF (3 mL) at -78 °C. After being stirred at -78 °C for 30 min, the solution of 19a (27 mg, 0.087 mmol) in dry THF (7 mL) was added. The reaction mixture was stirred for 15 min at the same temperature and then stirred for a further 2 h under cooling with ice-water. After being quenched with water (3 mL) and 6 N HCl (3 mL), the mixture was stirred at 60 °C for 30 min. At ambient temperature, the solution was adjusted to pH 8-9 with 28% NH₄OH, and the mixture was extracted with MeOH/CHCl₃ (1:9). The organic layer was washed with brine, dried over Na₂SO₄, and concentrated under vacuum. The residue was purified by column chromatography (silica gel, 10 g) with MeOH/CHCl₃ (1:98) as an eluent and column chromatography (Sephadex LH-20) using MeOH as an eluent to give the grossularine-2 (1b) (20 mg, 61%).

Grossularine-2 (1b) (Method C). A solution of t-BuLi (1.62 M in pentane, 0.34 mL, 0.55 mmol) was added to a stirred solution of *p*-(OMOM)phenyl bromide (16) (119 mg, 0.55 mmol) in dry THF (5 mL) at -78 °C. After being stirred for 30 min, the solution of 19b (30 mg, 0.068 mmol) in THF (7 mL) was added to the reaction mixture at the same temperature. The reaction mixture was stirred at -78 °C for 30 min and at -30°C for further 1.5 h. After being quenched with water (3 mL) and 6 N HCl (3 mL), the mixture was heated at 60 °C for 30 min. The mixture was basified to pH 8 with 28% NH₄OH, and the mixture was extracted with MeOH/CHCl₃ (1:9). The organic layer was washed with brine, dried over Na₂SO₄, and evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, 10 g) with MeOH/CHCl₃ (1:98) as an eluent and subsequent column chromatography (Sephadex LH-20) using MeOH as an eluent to give grossularine-2 (1b) (13 mg, 51%).

Acknowledgment. We are grateful to Dr. M. Guyot, Director of Research CNRS, Museum Nationale D' Histoire (France), for sending us a sample of natural grossularine-2 and NMR spectral data of grossularine-1 and -2. We thank Mr. T. Himoto and Y. Kumaki, JEOL Ltd., NMR Application Laboratory (Japan), for measurements of 2D NOESY, ¹H NMR, ¹³C NMR including DEPT, and HMQC spectra. We also acknowledge Miss Y. Mitsudo for the assistance in this work. This work was supported in part by Grants-in-Aid for Scientific Research (07772122) from the Ministry of Education, Science and Culture of Japan.

Supporting Information Available: Copies of ¹H NMR spectra of **14**, **15a**, **1a**, and **1b**, ¹³C NMR spectra of **1a** and **1b**, the 2D-NOESY spectrum of **15a**, and the HMQC spectrum of **1a** (13 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO9508311