Mehrcyclische Azine mit Heteroatomen in 1- und 3-Stellung. 41. Mitt. Synthese heterocyclischer Immunmodulatoren. 3. Mitt.

Darstellung von N-1-substituierten 3-(2-Mercaptoethyl)chinazolin-2,4(1H,3H)-dionen über Bis[2-(2-amino-benzoylamino)ethyl]disulfane und Prüfung auf immunstimulatorische Wirksamkeit

Michael Gütschow^{a)}, Karl Drößler^{b)} und Siegfried Leistner^{*a)}

Institut für Pharmazie^{a)} und Institut für Zoologie^{b)} der Universität Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany

Eingegangen am 23. September 1994

Zur Darstellung von substituierten 3-(2-Mercaptoethyl)chinazolin-2,4(1H,3H)-dionen 4 wurde eine 3-Stufen-Synthese, ausgehend von substituierten Isatosäureanhydriden 1 beschritten. Die Reaktion von 1 mit Cystamin liefert Bis[2-(2-aminobenzoylamino)ethyl]disulfane 2. Umsetzung von 2 mit Chlorameisensäureethylester und nachfolgende Reduktion der heterocyclischen Disulfane 3 gibt die Mercaptoethylchinazolin-2,4-dione 4a-f. Die am N-1 methyl- bzw. benzylsubstituierten Derivate 4b und 4c zeigten immunstimulatorische Wirksamkeit in verschiedenen Tests.

Synthesis of N-1-Substituted 3-(2-Mercaptoethyl)quinazoline-2,4(1H,3H)-diones via Bis[2-(2-amino-benzoylamino)ethyl]sulfanes and Test for Immuno-Stimulating Activity

A 3-step synthesis, starting from substituted isatoic anhydride was used to prepare substituted 3-(2-mercaptoethyl)quinazoline-2,4(1H,3H)-diones 4. Reaction of 1 with cystamine afforded bis[2-(2-amino-benzoyl-amino)ethyl]disulfanes 2. Reaction of 2 with ethyl chloroformate and subsequent reduction of the heterocyclic disulfanes 3 gave mercaptoethylquinazoline-2,4-diones 4a-f. N-1 methyl and benzyl substituted derivatives 4b and 4c, respectively, show immuno-stimulating activity in various

Acyclische Mercaptoverbindungen, wie D-Penicillamin und Tiopronin, beinflussen in unterschiedlicher Weise immunkompetente Zellen. So wurde u.a. über die dosisabhängige Veränderung der Proliferation menschlicher Lymphozyten durch D-Penicillamin²⁾, über eine Aktivierung von Makrophagen durch N-(2-Mercapto-2-methylpropanoyl)-L-cystein (SA 96)³⁾ und über die Beeinflussung von Lymphozyten durch Tiopronin⁴⁾ berichtet. Verbindungen, in denen eine Mercaptoalkylgruppe an einen Heterocyclus gebunden vorliegt, wurden demgegenüber bislang kaum immunpharmakologisch untersucht. Ein Beispiel für einen Wirkstoff dieses Typs ist D,L-2-Oxo-3-(2mercaptoethyl)-5-phenylimidazolin (OMPI), ein Hauptmetabolit von Levamisol 5). Mit dem Mercaptoethylchinazolindion 4a (MECH) fanden wir eine Leitstruktur für neue heterocyclische Immunstimulantien^{6,7)}. Im Rahmen unserer Untersuchungen zur gezielten strukturellen Abwandlung der MECH-Struktur berichteten wir kürzlich über die Synthese und immunstimulatorische Wirksamkeit von strukturanalogen Mercaptoalkylthieno[2,3d]pyrimidindionen¹⁾.

Die vorliegende Arbeit beschreibt eine Synthese von N-1-substituierten Derivaten von MECH über Bis[2-(2-amino-benzoylamino)ethyl]disulfane sowie die Prüfung dieser Verbindungen auf immunstimulatorische Aktivität. Die Reaktion von Isatosäureanhydrid (1a) bzw. N-Methyl-isatosäureanhydrid (1b) mit prim. Aminen führt vorwiegend zu substituierten Anthranilsäureamiden 8), die in N-3-substituierte Chinazolin-4-one übergeführt werden können. Wir planten, diesen Weg für die Synthese der Zielverbindungen 4 zu nutzen. Allerdings wurde das bei der Umsetzung von 1a mit Cysteamin zu erwartende N-Anthranoyl-cysteamin als instabil beschrieben und eine nachfolgende Einführung der CO-Einheit sollte bei ungeschützten Mercaptogruppen zu unerwünschten Nebenreaktionen führen⁸⁾. Wir haben

$$R^{2} \xrightarrow{Q} Q \xrightarrow{H_{2}N} S \xrightarrow{J_{2}} R^{2} \xrightarrow{N_{1}N_{1}} S \xrightarrow{J_{2}} R^{2} \xrightarrow{N_{1}N_{1}} Q \xrightarrow{N_{$$

278 Gütschow, Drößler, Leistner

deshalb anstelle von Cysteamin dessen Disulfid Cystamin für die Umsetzungen mit den Isatosäureranhydriden 1a-f verwendet.

1a-f konnten mit Cystaminiumchlorid/Triethylamin problemlos zu den bislang unbekannten Bis[2-(2-anthranovlamino)ethyl]disulfanen 2a-f umgesetzt werden. Mit 2b-d waren damit geeignete Vorstufen zu N-1-substituierten MECH-Analoga verfügbar. Die Umsetzungen von 2a-f mit Chlorameisensäureethylester lieferte die Chinazolinylethyldisulfane 3a-f. Dabei werden beide Aminogruppen von 2 acyliert und zunächst Produktgemische gebildet, die neben den gewünschten 3 noch Intermediate (vermutlich mit doppelter Urethanstruktur bzw. halbseitig bereits cyclisierter Chinazolindion-Struktur) enthalten. Diese Mischungen konnten im alkalischen Reaktionsmilieu jedoch einheitlich zu 3a-f cyclisiert werden. Mit Zink/AcOH/HCl wurden die Disulfide 3 schließlich zu den Mercaptochinazolindionen 4a-f reduziert. Mit dieserReaktionsfolge konnten N-1-substituierte Derivate von MECH (4b-d) einfach gewonnen werden, die nach anderen, zur Synthese N-1-unsubstituierter Mercaptoalkylchinazolindione nutzbaren Verfahren⁶), nicht erhältlich sind. Weiter waren MECH (4a) selbst und mit 4e und 4f zwei am Benzolkern substituierte Derivate bequem zugänglich. Die Strukturen von 2-4 stehen mit elementaranalytischen und spektroskopischen Daten (Tab 3) im Einklang. Die Mercaptogruppe in 4 wurde auch durch positive Reaktion mit Natriumpentacyanonitrosylferrat-Lösung und durch Entfärbung von wäßriger Jod-Lösung nachgewiesen. Charakteristisch für die ms Fragmentierung der Mercaptoalkyl- chinazolindione 4 ist die Übertragung von zwei H-Atomen der Seitenkette auf den Heterocyclus, vgl.¹⁾. Das resultierende Fragmention ist in allen Fällen

Bei den in [D6]DMSO aufgenommenen ¹H-NMR Spektren von 4a-f treten die SH-Signale zusammen mit denen der vicinalen Methylenprotonen als Multiplett im Bereich von 2.49-2.80 ppm auf. In CDCl3 kommt es demgegenüber zu einer Hochfeldverschiebung der Signale der SH-Protonen von 4a und 4b, die als Tripletts bei 1.53 bzw. 1.49 ppm erscheinen, vgl. ¹⁾. Infolge der magnetischen Anisotropie durch den benachbarten Phenylring sind die arom. Protonen an C-8 von 3d und 4d zusätzlich abgeschirmt und liefern Resonanzsignale bei 6.45 ppm.

Zur Prüfung auf immunmodulierende Eigenschaften von 2 und 4 wurden Albinomeerschweinchen mit 2,4-Dinitrofluorbenzol (DNFB) sensibilisiert, und mittels DTH-Reaktion (delayed type hypersensitivity) wurde die Beeinflussung der durch DNFB-Sensibilisierung induzierten, zellvermittelten Immunprozesse ermittelt¹⁰⁾. Die Sensibilisierung löst bei Meerschweinchen auch die Bildung humoraler Antikörper (AK) mit Trinitrophenol (TNP)-Spezifität aus. Zur Bestimmung der Serumantikörperkonzentration wurde mit TNP-beladenen¹¹⁾ Schaferythrozyten (SE) als Indikatorzellen die AK-Titer-Differenz der Mittelwerte von Test- und unbehandelten Kontrollgruppen ermittelt (Tab.1).

Von den geprüften Bis(anthranoylamino)ethyldisulfanen 2 zeigt 2a in der DTH-Reaktion eine Stimulierung der zellvermittelten Immunantwort. Die Bildung TNP-spezifischer AK wird durch 2a ebenfalls gefördert. In diesem Test steigert auch das Benzyl-Derivat 2c die humorale Immunantwort deutlich, die TNP-spezifischen AK wurden im Vergleich zur Kontrolle um zwei Titerstufen erhöht. Aus der Gruppe der Mercaptoethylchinazolindione 4 sind 4b und 4c

Tab. 1: Ergebnisse^{a)} der DTH-Reaktion und Beeinflussung der Bildung TNP-spezifischer Antikörper.

Bezeichnung	DTH-Reaktion Sensibilisierung- grad (SI)		AK-Titer- Differenz
	24h	48h	
2a	150	130	+ 1.8
2b	110	120	+ 1.0
2c	115	110	+ 2.0
2d	120	110	+ 1.2
4b	150	150	+ 1.4
4c	160	150	+ 1.9
4d	120	100	+ 1.0
Isoprinosine	135	135	±0

a) Nach p.o. Applikation von 2 bzw. 4 (jeweils 2 mg/kg Körpermasse) an den Tagen +1 bis +6 bzw. Isoprinosine (10 mg/kg Körpermasse) an den Tagen +1 bis +5; Kontrolle = 100.

signifikant immunstimulatorisch wirksam; sie verstärken sowohl die zellvermittelte, als auch die humorale Immunantwort.

Daher wurden beide Verbindungen auch bezüglich einer Beeinflussung der humoralen Immunantwort von Mäusen des Inzuchtstammes CBA geprüft. Hierzu wurde der Hämolyse-Plaque-Test (HPT)¹²⁾ angewendet, der die quantitative und getrennte Erfassung IgM- und IgG-AK produzierender Zellen (= plaquebildende Zellen; PBZ) erlaubt (Tab. 2). 4b und 4c führen nach p.o. Applikation zu einer signifikanten Steigerung sowohl der IgM- als auch der IgG-PBZ. Die in verschiedenen Tests erhaltenen immunpharmakologischen Resultate zeigen. daß mit den beiden N-1-substituierten MECH-Derivaten 4b und 4c neue, immunstimulatorisch wirksame Verbindungen gefunden wurden. Danach ist die unsubstituierte Lactam-Struktur von MECH keine notwendige Voraussetzung für die immunstimulatorische Aktivität von 3-(2-Mercaptoethyl)chinazolin-2,4(1H,3H)-dionen.

Tab. 2: Ergebnisse^{a)} des HPT; Anzahl der IgM- bzw. $\lg G$ -PBZ pro 1×10^6 kernhaltige Zellem (KHZ) im Vergleich zur Kontrollgruppe.

Bezeichnung	Anzahl IgM-PBZ/ 1 × 10 ⁶ KHZ (Tag +4)	AK-Titer- IgG-PBZ/ 1×10^6 KHZ (Tag +6)	
4b	1050 ± 344*	7098 ± 1346*	
4c	1228 ± 490°	4792 ± 1444**	
Kontrolle	650 ± 274	3040 ± 1320	

a) Signifikante Unterschiede zur jeweiligen Kontrollgruppe: *p < 0.001 bzw. *** p < 0.01.</p>

Experimenteller Teil

Synthese

DC:¹³⁾ – Schmp. (unkorrigiert): Boetius-Heiztisch. – IR: Specord M80 Carl Zeiss Jena, KBr. – ¹H-NMR-Spektren: Varian Gemini 200 (200 MHz), TMS int. Stand. – UV- Spektren: Specord UV/VIS Carl Zeiss Jena, EtOH. – Massenspektren: Varian MAT CH 6, 70 eV.

Bis[2-(2-amino-benzoylamino)ethyl]disulfane 2: Allgemeine Vorschrift

Methode A

Zu 20 mmol 1 in 15 ml DMF wird die aus 2.25 g (10 mmol) Cystaminiumchlorid ((H2NC2H4S)2 · 2HCl), 10 ml DMF und 2 g (20 mmol) Triethylamin bereitete Suspension gegeben. Der Ansatz wird unter Rühren 45 min im Wasserbad auf 70 °C erwärmt. Nach dem Erkalten wird der Niederschlag abgetrennt und mit 10 ml DMF gewaschen. Das Filtrat und die Waschlösung werden vereinigt und in 75 ml H2O gegossen. Nach mehrstdg. Aufbewahrung im Kühlschrank wird der Niederschlag abgesaugt und mit H2O gewaschen.

Methode B

20 mmol 1 werden in 25 ml H₂O suspendiert und mit der aus 2.25 g (10 mmol) Cystaminiumchlorid, 5 ml H₂O und 2 g (20 mmol) Triethylamin bereiteten Lösung versetzt. Die Mischung wird unter Rühren 45 min auf dem siedenden Wasserbad erhitzt, über Nacht im Kühlschrank aufbewahrt und der Niederschlag abgesaugt.

Bis[2-(2-amino-benzoylamino)ethyl]disulfan (2a)

Nach *Methode A* aus 3.26 g **1a**: Ausb. 90%, farblose Kristalle, Schmp. 132–133°C (EtOH/H₂O) – C₁₈H₂₂N₄O₂S₂ (390.5) Ber. C 55.4 H 5.68 N 14.4 S 16.4 Gef. C 55.4 H 5.59 N 14.4 S 16.6.

Bis[2-(2-methylamino-benzoylamino)ethyl]disulfan (2b)

Nach *Methode* A aus 3.54 g 1b: Ausb. 87%, farblose Kristalle, Schmp. 110–110.5 °C (EtOH).— C₂₀H₂₆N₄O₂S₂ (418.6) Ber. C 57.4 H 6.26 N 13.4 S 15.3 Gef. C 57.5 H 6.43 N 13.5 S 14.

Bis[2-(2-benzylamino-benzoylamino)ethyl]disulfan (2c)

Nach *Methode B* aus 5.07 g 1c: Ausb. 60% (nach Umkristallisation aus EtOH), farblose Kristalle, Schmp. 126–127 °C. C32H34N4O2S2 (570.8) Ber. C 67 3 H 6.00 N 9.8 S 11.2 Gef.C 67.4 H 6.04 N 10.1 S 11.6.

Bis[2-(2-phenylamino-benzoylamino)ethyl]disulfan (2d)

Nach Methode B aus 4.78 g 1d. Es wird aus EtOH umkristallisiert, das erhaltene Produkt mit wenig Ether verrieben und abgesaugt: Ausb. 50%, farblose Kristalle, Schmp. 130–131 °C.–C30H30N4O2S2 (542.7) Ber. C 66.4 H 5.57 N 10.3 S 11.8 Gef. C 66.2 H 5.72 N 10.2 S 11.7.

Bis[2-(2-amino-5-brom-benzoylamino)ethyl]disulfan (2e)

Nach Methode B aus 4.84 g 1e: Ausb. 47% (nach Umkristallisation aus EtOH), farblose Kristalle, Schmp. 190–195 °C (CHCl3/n-Hexan).—C₁₈H₂₀Br₂N₄O₂S₂ (548.3) Ber. C 39.4 H 3.68 N 10.2 Gef. C 40.0 H 4.10 N 10.2

Bis[2-(2-amino-3-methyl-benzoylamino)ethyl]disulfan (2f)

Nach Methode A aus 3.54 g 1f: Ausb. 72%, beige Kristalle, Schmp. 152–154 °C (Ethylacetat/Cyclohexan).—C20H26N4O2S2 (418.6) Ber. C 57.4 H 6.26 N 13.4 S 15.3 Gef. C 56.9 H 6.18 N 13.0 S 15.5.

Bis[2-(2,4-dioxo-1,2,3,4-tetrahydrochinazolin-3-yl)ethyl]disulfane 3: Allgemeine Vorschrift

Methode A

5 mmol 2 werden in 20 ml Pyridin gelöst. Unter Kühlung werden 2 ml (20 mmol) Chlorameisensäureethylester zugetropft. Der Ansatz wird 1h rück-

fließend erhitzt und nach dem Erkalten zu 30 ml N HCl und 20 ml Eiswasser gegeben. Nach mehrstdg. Aufbewahrung im Kühlschrank wird der Niederschlag abgesaugt, mit $\rm H_2O$ gewaschen und getrocknet. Das erhaltene Zwischenproduct wird in gepulverter Form in der Mischung aus 16 ml 3N NaOH und 3.2 ml EtOH suspendiert und 20 h bei Raumtemp. geschüttelt. Es wird mit verd. HCl angesäuert und abgesaugt.

Methode B

5 mmol 2 und 28 ml Chlorameisensäureethylester werden 2 h rückfließend erhitzt. Es wird i. Vak. abdestilliert, der Rückstand mit wenig Ether verrieben, abgesaugt und getrocknet. Weiter nach *Methode* A.

Bis[2-(2,4-dioxo-1,2,3,4-tetrahydrochinazolin-3-yl)ethyl]disulfan (3a)

Nach *Methode A* aus 1.95 g **2a**: Ausb. 77%, farblose Kristalle, Schmp. 270–272 °C (Propan-1-ol).— C₂₀H₁₈N₄O₄S₂ (442.5) Ber. C 54.3 H 4.10 N 12.7 Gef. C 54.2 H 3.89 N 12.6.

Bis[2-(2,4-dioxo-1-methyl-1,2,3,4-tetrahydrochinazolin-3-yl)ethyl]disulfan (3h)

Nach Methode A werden 2.09 g 2b mit Chlorameisensäureethylester in Pyridin erhitzt. Nach dem Erkalten wird filtriert und das Filtrat unter Kühlung mit 100 ml 0.3 N HCl versetzt. Es wird dreimal mit je 16 ml CHCl3 ausgeschüttelt und der org. Extrakt viermal mit je 30 ml N HCl und dreimal mit je 30 ml H2O gewaschen. Die org. Phase wird über Na2SO4 getrocknet, das Lösungsmittel abdestilliert und das so erhaltene Zwischenprodukt gemäß Methode A weiterverarbeitet: Ausb. 82%, farblose Kristalle, Schmp. 186–187 °C (Methylglykol/Propan-1-ol).—C22H22N4O4S2 (470.6) Ber. C 56.2 H 4.71 N 11.9 S 13.6 Gef. C 56.1H 4.91 N 11.7 S 14.0.

Bis[2-(1-benzyl-2,4-dioxo-1,2,3,4-tetrahydrochinazolin-3-yl)ethyl]disulfan (3c)

Nach *Methode* **B** aus 2.85 g **2c**: Ausb. 81%, farblose Nadeln, Schmp. 174–176 °C (Propan-1-ol).– C₃₄H₃₀N₄O₄S₂ (622.8) Ber. C 65.6 H 4.86 N 9.0 S 10.3 Gef. C 65.2 H 5.06 N 8.8 S 10.6.

Bis[2-(2,4-dioxo-1-phenyl-1,2,3,4-tetrahydrochinazolin-3-yl)ethyl]disulfan (3d)

Nach Methode B aus 2.71 g 2d: Ausb. 74% (nach Auskochen mit Methylglykol), farblose Kristalle, Schmp. 277–280 °C (Methylglykol).— $C_{32}H_{26}N_4O_4S_2$ (594.7) Ber. C 64.6 H 4.41 N 9.4 S 10.8 Gef.C 64.2 H 4.57 N 9.1 S 11.1.

Bis[2-(6-brom-2,4-dioxo-1,2,3,4-tetrahydrochinazolin-3-yl)ethyl]disulfan

Nach Methode A werden 2.19 g (4 mmol) 2e mit 20 mmol Chlorameisensäureethylester in 20 ml Pyridin erhitzt. Nach dem Erkalten wird filtriert und das Filtrat unter Kühlung mit 100 ml 0.3 N HCl versetzt. Es wird viermal mit je 20 ml CHCl ausgeschüttelt und der org. Extrakt viermal mit je 40 ml N HCl und dreimal mit je 40 ml H₂O gewaschen. Die org. Phase wird getrocknet (Na₂SO₄), das Lösungsmittel abdestilliert und das so erhaltene Zwischen produkt gemäß Methode A weiterverarbeitet: Ausb. 60%, farblose Kristalle, Schmp. 334–336 °C (DMF).— C₂₀H₁₆Br₂N₄O₄S₂ (600.3) Ber. C 40.0 H 2.69 N 9.3 S 10.7 Gef. C 40.5 H 3.08 N 9.7 S 10.6.

 $Bis[2-(2,4-dioxo-8-methyl-1,2,3,4-tetrahydrochinazolin-3-yl) ethyl \ | \ disulfan(34)$

Nach Methode A aus 2.09 g 2f: Ausb. 68%, farblose Kristalle, Schmp. 280–282 °C (Methylglykol/Propan-1-ol).— C22H22N4O4S2 (470 6) Ber..C 56.2 H 4.71 N 11.9 S 13.6 Gef. C 55.8 H 4.92 N 11.9 S 13.3.

3-(2-Mercaptoethyl)chinazolin-2,4(1H,3H)-dione 4: Allgemeine Vorschrift

400 mg 3, 400 mg Zinkstaub und 24 ml AcOH werden 3 h rückfließend erhitzt. Der Ansatz wird mit verd. HCl versetzt und erneut zum Sieden gebracht. Es wird filtriert und das Filtrat 1-2 d verschlossen im Kühlschrank aufbewahrt. Der Niederschlag wird abgesaugt und getrocknet. Es werden analysenreine Produkte erhalten.

Tab. 3: Spektroskopische Daten der Verbindungen 2-4.

Verb.	IR (KBr) (cm ⁻¹)		UV/VIS (EtOH)	¹ H NMR ([D ₆]DMSO)	
	C=O	S-H	λ max (nm) (lg ϵ)	$\delta \left(ppm \right)^{a)}$	
2a	1635		250 (4.25),	2.94 (t, 2H, SCH ₂); 3.55 (m, 2H, NCH ₂ CH ₂); 6.41 (s, 2H,	
			329 (3.92)	NH ₂); 6.49–6.57, 6.68–6.74, 7.10–7.19, 7.47–7.52 (4m, 4H);	
			()	8.39 (t, 1H, NH)	
2b	1630	_	258 (4.37),	2.78 (d, 3H, $J = 5.1$ Hz, NHCH ₃); 2.93 (t, 2H, SCH ₂); 3.54	
			347 (4.04)	(m, 2H, NHCH ₂ CH ₂); 6.52–6.67 (m, 2H); 7.26–7.36,7.52–	
			` ′	7.58 (2m, 2H); 7.65 (q, 1H, NHCH ₃); 8.47 (t, 1H, CONH)	
2c	1650	_	258 (4.39),	2.94 (t, 2H, SCH ₂); 3.56 (m, 2H, NHC <i>H</i> ₂ CH ₂); 4.38 (d, 2H,	
			345 (3.98)	J = 5.9 Hz, NHCH ₂ C ₆ H ₅); 6.53–6.66 (m, 2H); 7.18–7.37	
			, ,	(m, 6H); 7.54–7.60 (m, 1H); 8.25, 8.52 (2t, 2H, NH)	
2d	1635	_	291 (4.50),	2.94 (t, 2H, SCH ₂); 3.57 (m, 2H, NHCH ₂ CH ₂); 6.79–7.02	
			345 (4.09)	(m, 2H); 7.12–7.18 (m, 2H); 7.25–7.37 (m, 4H); 7.64–7.79	
			,	(m, 1H); 8.73 (t, 1H, CONH); 9.64 (s, 1H, NH)	
2e	1625	_	257 (4.37),	2.93 (t, 2H, SCH ₂); 3.52 (m, 2H, NHCH ₂ CH ₂); 6.58 (s, 2H,	
			342 (3.88)	NH ₂); 6.69 (d, 1H, ${}^{3}J = 8.8 \text{ Hz}$); 7.28 (dd, 1H, ${}^{3}J = 8.8 \text{ Hz}$,	
				$^{4}J = 2.3 \text{ Hz}$; 7.66 (d, 1H, $^{4}J = 2.3 \text{ Hz}$); 8.53 (t, 1H, NH)	
2f	1630	_	248 (4.18),	2.09 (s, 3H, CH ₃); 2.94 (t, 2H, SCH ₂); 3.54 (m, 2H,	
			328 (3.89)	NHCH ₂ CH ₂); 6.22 (s, 2H, NH ₂); 6.45–6.54, 7.06–7.12, 7.35–	
			()	7.41 (3m, 3H); 8.39 (t, 1H, NH)	
3a	1710,	_	242 (4.33),	3.01 (t, 2H, SCH ₂); 4.24 (t, 2H, NCH ₂ CH ₂); 7.17–7.26 (m,	
	1645		$312(3.85)^{6}$	2H); 7.62–7.74, 7.90–7.96 (2m, 2H); 11.47 (s, 1H, NH)	
3b	1700,	_	246 (4.21),	3.01 (t, 2H, SCH ₂); 3.53 (s, 3H, CH ₃); 4.27 (t, 2H,	
	1670		313 (3.83) ^{b)}	NCH ₂ CH ₂); 7.27–7.36, 7.43–7.49, 7.74–7.84, 8.02–8.08	
			515 (5.05)	(4m, 4H)	
3c	1705,	_	245 (4.29),	3.09 (t, 2H, SCH ₂); 4.36 (t, 2H, NCH ₂ CH ₂); 5.38 (s, 2H,	
	1655		313 (3.90) ^{b)}	CH ₂ C ₆ H ₅); 7.23–7.34 (m, 7H); 7.62–7.72, 8.05–8.11	
	1000		313 (3.70)	(2m, 2H)	
3d	1710,	_	248	3.05 (t, 2H, SCH ₂); 4.31 (t, 2H, NCH ₂ CH ₂); 6.44 (d, 1H,	
	1660		248, 316 ^{b)c)}	3 J = 8.4 Hz, H-8); 7.24–7.66 (m, 7H); 8 07–8.12 (m, 1H)	
3e	1720,	_		3.00 (t, 2H, SCH ₂); 4.21 (t, 2H, NCH ₂ CH ₂); 7.15 (d, 1H,	
	1655		247, 323 ^{b)c)}	$^{3}J = 8.7 \text{ Hz}$; 7.82 (dd, 1H, $^{3}J = 8.7 \text{ Hz}$, $^{4}J = 2.3 \text{ Hz}$); 7.98	
			323	$(d. 1H, ^4J = 2.3 Hz); 11.61 (br s, 1H, NH)$	
3 f	1710,	_	247,	2.36 (s, 3H, CH ₃); 3.02 (t, 2H, SCH ₂); 4.25 (t, 2H,	
	1650		313 ^{b)c)}	NCH ₂ CH ₂); 7.05–7.14, 7.46–7.51, 7.77–7.82 (3m, 3H); 10.67	
	1050		313		
la	1725,	2540	241 (3.91),	(br s, 1H, NH)	
	1640	2340	313 (3.45)	2.57–2.80 (m, 3H, CH ₂ SH); 4.06 (t, 2H, J = 7.5 Hz,	
	10-10		313 (3.73)	NCH ₂ CH ₂); 7.16–7.25 (m, 2H); 7.62–7.71, 7.91–7.97 (2m, 2H); 11.46 (c. 1H, NH) ^(d)	
lь	1700,	2550	244 (3.93),	2H); 11.46 (s, 1H, NH) ^(l)	
	1650	2330	315 (3.54)	2.49–2.75 (m, 3H, CH ₂ SH); 3.51 (s, 3H, CH ₃); 4.09 (t, 2H,	
	1050		313 (3.3 4)	J = 7.4 Hz, NCH ₂ CH ₂); 7.26–7.35, 7.41–7.46, 7.73–7.83, 8.01–8.07 (4m, 4H) ^{e)}	
4c	1700,	2560	246 (3.96),		
-	1660	2500	314 (3.63)	2.58–2.81 (m, 3H, CH ₂ SH); 4.17 (t, 2H, J = 7.5 Hz,	
	1000		314 (3.03)	NCH ₂ CH ₂); 5.38 (s, 2H, CH ₂ C ₆ H ₅); 7.22–7.34 (m, 7H);	
d	1700	2540	241 (4.01),	7.62–7.69, 8.05–8.10 (2m, 2H)	
-	1660	2370	313 (3.60) ^{b)}	2.62–2.80 (m, 3H, CH ₂ SH); 4.14 (t, 2H, J = 7.4 Hz,	
	1000		313 (3,00)	NCH ₂ CH ₂); 6.45 (d, 1H, H-8); 7.26–7.69 (m, 7H); 8.08–8.14	
4e	1720	2560	250 (4.01),	(m, 1H)	
	1650	2500	323 (3.44) ^{b)}	2.60–2.76 (m, 3H, CH ₂ SH); 4.04 (t, 2H, J = 7.3 Hz,	
	1030		363 (3.44)	NCH_2CH_2 ; 7.15 (d, 1H, 3J = 8.7 Hz); 7.83 (dd, 1H, 3J = 8.7 Hz, 4J = 2.3 Hz); 8.00 (d. 1H, 4J = 2.3 Hz); 11.60	
				$J = 8.7 \text{ Hz}, J = 2.3 \text{ Hz}); 8.00 (d. 1H, ^{3}J = 2.3 \text{ Hz}); 11.60$	
4f	1710,	2560	247 (2.02)	(br s, 1H, NH)	
	1650	2560	247 (3.92),	2.61–2.78 (m, 3H, CH ₂ SH); 2.38 (s, 3H, CH ₃); 4.08 (t, 2H,	
	1030		315 (3.51) ^{b)}	J = 7.3 Hz, NCH ₂ CH ₂); 7.09–7.18, 7.49–7.54, 7.81–7.86	
				(3m, 3H); 10.72 (s, 1H, NH)	

a) Nicht erläuterte Signale sind aromatische Protonen. Bei den Verbindungen 2 und 3 ist die angegebene Protonenzahl jeweils auf die monomere Einheit bezogen; die Kopplungskonstante der CH₂CH₂S-Seitenkette beträgt ca. 7 Hz.

b) Aufgenommen in EtOH mit 2% Methylglykol.

c) Wegen geringer Löslichkeit nur Angaben von λ max.

d) ¹H-NMR (CDCl₃): δ (ppm) = 1.53 (t, 1H, J = 8.6 Hz, CH₂SH); 2.89 (m, 2H, CH₂SH); 4.30 (t, 2H, J = 7.3 Hz, NCH₂CH₂); 7.12–7.30 (m, 2H, aromat.); 7.60–7.70, 8.12–8.17 (2m, 2H, aromat.); 10.28 (s, 1H, NH).

e) ¹H-NMR (CDCl₃): δ (ppm) = 1.49 (t, 1H, J = 8.7 Hz, CH₂SH); 2.84 (m, 2H, CH₂SH); 3.60 (s, 3H, CH₃); 4.28 (t, 2H, J = 7.5 Hz, NCH₂CH₂); 7.18–7.31 (m, 2H, aromat.); 7.64–7.73, 8.19–8.24 (2m, 2H, aromat.).

3-(2-Mercaptoethyl)chinazolin-2,4(1H,3H)-dion (4a)

Aus 3a. Nach dem Erhitzen werden 88 ml 0.4 N HCl zugegeben: Ausb. 75%, farblose Kristalle, Schmp. 193–195 °C, Lit.Schmp. 192–193 °C (CHCl₃/Petrolether)⁶⁾. – MS: m/z (%) = 222 (3, M^{**}), 163 (M – C₂H₂SH)^{*} (100)¹⁴⁾.

3-(2-Mercaptoethyl)-1 -methylchinazolin-2,4(1H,3H)-dion (4b)

Aus 3b. Nach dem Erhitzen werden 96 ml 0.3 N HCl zugegeben: Ausb. 82%, farblose Nadeln, Schmp. 128–129 °C.– $C_{11}H_{12}N_{2}O_{2}S$ (236.3) Ber. C 55.9 H 5.12 N 11.9 S 13.6 Gef. C 55.8 H 5.24 N 11.8 S 13.7.– MS: m/z (%) = 236 (M⁺*, 6), 177 [(M – $C_{2}H_{2}SH$)*(100)].

1-Benzyl-3-(2-mercaptoethyl)chinazolin-2,4(1H,3H)-dion (4c)

Aus 3c. Nach dem Erhitzen werden 40 ml 0.8 N HCl zugegeben: Ausb. 77%, farblose Nadeln, Schmp. 143–145 °C.– $C_{17}H_{16}N_{2}O_{2}S$ (312.4) Ber..C 65.4 H 5.16 N 9.0 S 10.3 Gef. C 64.9 H 5.25 N 8.9 S 10.7.– MS: m/z (%) = 312 (M^{+*} , 8), 253 (M – $C_{2}H_{2}SH$)⁺ (100).

3-(2-Mercaptoethyl)-1-phenylchinazolin-2,4(1H,3H)-dion (4d)

Aus 3d. Nach dem Erhitzen werden 40 ml 0.8 N HCl zugegeben: Ausb. 65%, hellbraune Kristalle, Schmp. 208–210 °C.– $C_{16}H_{14}N_{2}O_{2}S$ (298.4) Ber. C 64.4 H 4.73 N 9.4 S 10.8 Gef. C 64.0 H 4.81 N 9.2 S 11.2.– MS: m/z (%) = 298 (M⁺⁺,28), 239 (M – $C_{2}H_{2}SH$)⁺(100).

6-Brom-3-(2-mercaptoethyl)chinazolin-2,4(1H,3H)-dion~(4e)

Aus 3e. Es wird in 38 ml AcOH erhitzt, dann werden 32 ml N HCl zugegeben: Ausb. 52%, farblose Kristalle, Schmp. 298–300 °C.– $C_{10}H_9BrN_2O_2S$ (301.2) Ber. C 39.9 H 3.01 N 9.3 S 10.7 Gef. C 39.5 H 3.38 N 9.0 S 10.5.–MS:m/z (%)=302(3), und 300 (M^{**}, 3), 243 (98) und 241 (M – C_2H_2SH)*(100).

3-(2-Mercaptoethyl)-8-methylchinazolin-2,4(1H,3H)-dion (4f)

Aus 3f. Nach dem Erhitzen werden 40 ml 0.8 N HCl zugegeben: Ausb. 73%, farblose Kristalle, Schmp. 234–235 °C.– $C_{11}H_{12}N_{2}O_{2}S$ (236.3) Ber. C 55.9 H 5.12N 11.9 S 13.6 Gef.C 56.1H 5.31 N 11.9 S 13.6.–MS: m/z (%)=236(M^{+*}, 5), 177 (M – $C_{2}H_{2}SH$)⁺(100).

Immunpharmakologische Untersuchungen

DTH-Reaktion und Bestimmung TNP-spezifischer Antikörper⁹⁾.

Hämolyse-Plaque-Test

Die Hämolyse-Plaque-Technik nach Cunningham und Szenberg¹²⁾ basiert auf der Erfassung und Quantifizierung von Plasmazellen/B-Lymphozyten aufgrund ihrer Fähigkeit, spezifische Antikörper vom IgM-Typ bzw. IgG-

Typ zu produzieren (IgM-PBZ, direkte Methode bzw. IgG-PBZ, indirekte Methode). Mäuse des Inzuchtstammes CBA wurden am Tag 0 mit Schaferythrozyten (SE) immunisiert, an den Tagen -1 bis +3 zur Beeinflussung der IgM-PBZ und an den Tagen +1 bis +5 zur Beeinflussung der IgG-PBZ mit jeweils 1×10^{-5} mol Substanz/kg Körpermasse p.o.behandelt. Am Tag +4 (IgM-PBZ) bzw. +6 (IgG-PBZ) wurden die Tiere getötet und die Milzzellen wurden aufgearbeitet und kultiviert. Die Milzzellen wurden zusammen mit dem Antigen (SE) und Komplement bei 37 °C 30 min inkubiert und anschließend mikroskopisch ausgewertet. In Vorversuchen war abgeklärt worden, daß am 4.Tag nach Immunisierung das Maximum an IgM-PBZ und am 6.Tag an IgG-PBZ vorliegt.

Literatur

- 1 40.Mitt.; 2.Mitt.: M. Gütschow, K. Drößler, S. Leistner, Arch. Pharm. (Weinheim), im Druck.
- P.F. Merryman, J. Nowakowski, I.A. Jaffe, Biochem. Pharmacol. 1979, 28, 2297–2302.
- M. Hayashi, C. Abe, R.T. Nozawa, T. Yokota, T. Iso, Y. Shiokawa, Int. J. Immunopharmacol. 1986, 8, 299-304.
- 4 K. Kitamura, M. Aihara, Z. Ikezawa, J. Dermatol. 1990, 17,168-175.
- 5 M. De Brabander, F. Aerts, G. Geoens, R. Van Ginckel, R. Van De Veire, H. Van Belle, Chem. Biol. Interaction, 1978, 23, 45-63.
- 6 S. Leistner, M. Gütschow, K. Drößler, H. Vieweg, G. Wagner, T. Strohscheidt, D. Lohmann, G. Laban, A. Siegling, EP 0 454 060; Chem. Abstr. 1992, 116, 83689h.
- 7 K. Drößler, S. Leistner, Immunobiol. 1993, 189, 232-233.
- 8 G. M. Coppola, Synthesis 1980, 505-536.
- D. Briel, S. Leistner, K. Drößler, Arch. Pharm. (Weinheim) 1990, 324, 959–961.
- 10 J.R. Frey, A.L. de Weck, K. Geleick, J. Invest. Dermatol. 1964, 42, 189-195.
- 11 M.B. Rittenberg, K.L. Pratt, Proc. Soc. Exp. Biol. Med. 1969, 132, 575-579.
- 12 A.J. Cunningham, A. Szenberg, J. Immunol. 1968, 14, 599-601.
- 13 S. Leistner, M. Gütschow, J. Stach, Arch. Pharm. (Weinheim) 1990, 323, 857–861.
- 14 A. Langner, S. Kempa, C. Nerlich, P. Franke, S. Pfeifer, *Pharmazie* 1994, 49, 169-175.

[Ph 291]