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Polymer light-emitting diodes (PLEDs) containing Eu(DBM)3(BrDPPz) (DBM is dibenzoylmethane, and BrDPPz is 11-bro- 
mo-dipyrido[3,2-a:2′,3′-c]phenazine) doped in a blend of poly(9,9-dioctylfluorene) (PFO) and 2-tert-butylphenyl-5-biphenyl- 
1,3,4-oxadiazole (PBD) as the host matrix are reported. Eu(DBM)3(BrDPPz) exhibited high thermal stability and intense 
UV-Vis absorption. Narrow-bandwidth red emission at 612 nm with a full width at half-maximum (FWHM) of 14.0 nm was 
observed from Eu(DBM)3(BrDPPz) in these double-layered PLEDs at dopant concentrations from 1 wt% to 8 wt%. For the 
PLED containing 1 wt% Eu(DBM)3(BrDPPz), a maximum luminance of 829 cd/m2 at 153.5 mA/cm2, highest external quan-
tum efficiency of 1.70% at 2.1 mA/cm2 and maximum luminance of 0.74 cd/A at 4.31 mA/cm2 were obtained. 
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1  Introduction 

Europium(ІІІ) complexes have been considered promising 
red-emitting materials for use in full-color displays since 
Kido et al. [1,2] initially reported the applications of euro-
pium(III) complexes. Compared to the high efficiency of 
red-emitting iridium(III) and platinum(II) complexes [3–7], 
europium(ІІІ) complexes exhibit considerable advantages 
because of their extremely narrow emission spectral band-
width. Recently, spin-casting techniques have been used to 
fabricate europium(III) complex-doped polymer light-emitt- 
ing diodes (PLEDs) containing conjugated polymers as the 
host matrix [8–20]. PLEDs formed by this method can be 
simply fabricated by solution processing, and luminescence 
quenching by concentration effects is prevented. For in-
stance, Zhang et al. [8] reported a high-efficiency PLED 

based on the europium(III) complex Eu(FTA)3Phen (FTA= 
4,4,4-trifluoro-1-phenyl-1,3-butanedione, Phen=1,10-phen- 
anthroline) with an external quantum efficiency (EQE) of 
4.3%. Recently, we reported high-efficiency PLEDs based 
on the europium(III) complex Eu(DBM)3(DTPA-Phen) 
(DBM=dibenzoylmethane, DTPA-phen=3,8-bis[4-(diphen- 
ylamino)phenyl]-1,10-phenanthroline) with a maximum 
brightness of 1333 cd/m2 and maximum EQE of 1.8%, and 
another PLED based on Eu(DBM)3(DPPz) (DPPz is dipyr-
ido[3,2-a:2′,3′-c]phenazine) with a maximum brightness of 
1783 cd/m2 and maximum EQE of 2.5% [9,11]. However, 
devices formed by this method exhibited low luminous effi-
ciency and brightness compared with those of devices 
formed by vacuum deposition [21–35]. For example, Liu et 
al. [21] made an organic light-emitting device (OLED) us-
ing Eu(DBM)3(BPhen) (Bphen=4,7-biphenyl-1,10-phenan- 
throline) doped into triphenyldiamine with a high EQE of 
7.5%±0.5% at 0.02 mA/cm2 and Ma et al. [22] used tris- 
(thenoyltrifluoroacetone)(3,4,7,8-tetramethyl-1,10-phenant- 
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hroline)europium(ІІІ) as a dopant and (dicyanomethylene)- 
2-tert-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran 
as a host to fabricate OLEDs with a high brightness of 3000 
cd/m2 at 190 mA/cm2 and high luminance efficiency of 14.5 
cd/A at 0.08 mA/cm2. 

To acquire europium(III) complexes that produce good 
device performance and charge transport characteristics, a 
variety of functional europium(III) complexes have been 
developed. Recently, the improved electroluminescence (EL) 
performance of OLEDs containing fluorine- and chlorine- 
functionalized europium(ІІІ) complexes has been reported 
[27–32]. In contrast, PLEDs using bromine-functionalized 
europium(III) complexes as emitters have seldom been in-
vestigated [17]. 

In this paper, we report the bromine-functionalized euro-
pium(III) complex Eu(DBM)3(BrDPPz) (BrDPPz=11-bro- 
modipyrido[3,2-a:2′,3′-c]phenazine), the molecular stru- 
cture of which is shown in Scheme 1. In this europium(III) 
complex, BrDPPz is used instead of 3,8-dibromo-1,10- 
phenanthroline (DBrPhen) [11] as the second ligand. This is 
expected to improve the performance of devices because the 
extended conjugation, heavy atom and steric bulk of BrD-
PPz should help to control concentration quenching 
[17,27–31]. DBM was chosen as the first ligand because of 
its relatively high photoluminescence (PL) efficiency in 
europium(III) complexes. The PL, electrochemical and 
photophysical properties of devices fabricated containing 
this europium(III) complex as a dopant at various concen-
trations from 1 wt% to 8 wt% in a blend of poly(9,9-dio- 
ctylfluorene) (PFO) and 2-tert-butylphenyl-5-biphenyl- 
1,3,4-oxadiazole (PBD) (30 wt%) as a host matrix are also 
investigated. Highly efficient monochromic red emission at 
612 nm with a maximum luminance of 829 cd/m2 at 153.5 
mA/cm2 and maximum EQE of 1.70% at 2.1 mA/cm2 are 
achieved for the device containing 1 wt% Eu(DBM)3 

(BrDPPz). 

2  Experimental 

2.1  Reagents and physical measurements 

Commercially available reagents and starting materials were 
used to synthesize Eu(DBM)3(BrDPPz). All reactions and 
manipulations were carried out under an inert gas atmos-
phere. 1H NMR spectra were measured in CDCl3 solution 
on a Bruker DPX (400 MHz) NMR spectrometer using tet-
ramethylsilane (TMS) as the internal standard. MALDI- 
TOF mass spectrometric measurements were performed on 
a Bruker Biflex III MALDI-TOF spectrometer (Switzer-
land). Elemental analyses (C, H, N) were performed with a 
Perkin-Elmer 240 instrument (USA). Thermogravimetric 
analyses (TGA) were performed under nitrogen atmosphere 
at a heating rate of 10 °C/min using a Perkin-Elmer TGA-7 
thermal analyzer (USA). UV-Vis absorption spectra were 
recorded with a Shimadzu UV-265 spectrometer (Japan) 
at room temperature. PL spectra were recorded on an 
RF-5301 PC spectrometer (Perkin Elmer, USA) under 
excitation with a He:Cd laser at 325 nm. PL quantum 
yields (ФPL) were determined using EuCl3·6H2O as a 
reference in solution [36]. Cyclic voltammetry was per-
formed on a CHI660A electrochemical workstation with a 
scan rate of 50 mV/s at room temperature under argon. A Pt 
disk, Pt plate, and Ag/AgCl electrode were used as the 
working electrode, counter electrode, and reference elec-
trode, respectively, in n-Bu4NPF6 (0.1 mol/L) in acetonitrile. 
For calibration, the redox potential of the ferrocene/ferro- 
cenium (Fc/Fc+) couple was measured under the same con-
ditions. Optical band gaps were estimated based on absorp-
tion edges. Reduction potentials were calculated from the 
corresponding optical band gap and oxidation potential. On 
the basis of the energy level of ferrocene (4.74 eV under 
vacuum), and the oxidation and reduction potentials, the 
highest occupied molecular orbital (HOMO) and lowest  

 

Scheme 1  Synthesis of the bromine-functionalized europium(III) complex Eu(DBM)3(BrDPPz).
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molecular orbital (LUMO) energy levels of the complex 
were calculated according to an empirical formula [27,34]. 
PLEDs were fabricated as we reported previously [11]. The 
devices had the following structure: indium tin oxide (ITO)/ 
poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid 
(PEDOT:PSS, 50 nm)/poly(N-vinylcarbazole) (PVK, 40 nm)/ 
Eu(DBM)3(BrDPPZ) in PFO-PBD (80 nm)/Ba (4 nm)/Al 
(150 nm). ITO was used as the anode, PEDOT:PSS as a 
hole-injection layer and Ba/Al as a cathode. The weight 
ratio of PBD in the PFO-PBD blend was 30 wt%. The dop-
ing concentration of Eu(DBM)3(BrDPPZ) in the active layer 
ranged from 1 wt% to 8 wt%. 

2.2  Synthesis of intermediates and target complex 

Intermediates 1, 2, 3 and BrDPPz were synthesized accord-
ing to our previous work [37]. Eu(DBM)3(BrDPPz) was 
synthesized by reacting europium trichloride hydrate with 
DBM and BrDPPz according to a conventional procedure 
[28]. The structures of the intermediates were confirmed by 
1H NMR spectroscopy and MALDI-TOF mass spectrometry. 
Eu(DBM)3(BrDPPz) was characterized by elemental analy-
sis and MALDI-TOF mass spectrometry. 

2.2.1  Synthesis of BrDPPz 
11-Bromo-dipyrido[3,2-a:2',3'-c]phenazine (BrDPPz) was 
synthesized according to a reported method [37]. Yield: 
72%. m.p.: 249.0–251.0 °C, 1H NMR (CDCl3, 400 MHz), δ 
(ppm): 9.47 (t, J=13.6 Hz, 2H); 9.26 (d, J=4.0 Hz, 2H); 8.43 
(s, 1H); 8.11 (d, J=8.8 Hz, 1H); 7.94 (dd, J=8.8 Hz, 1H); 
7.76–7.73 (m, 2H). MALDI-TOF MS (m/z): 361.7 for [M+]. 

2.2.2  Synthesis of Eu(DBM)3(BrDPPz) 

Eu(DBM)3(BrDPPz) was synthesized according to a re-
ported procedure [31]. Yield: 53.0%. m.p.: 251.0–253.0 °C. 
Anal. calcd for EuC63H42BrN4O6: C, 63.97; H, 3.58; N, 4.74; 
Found: C, 63.63; H, 3.45; N, 4.58. MALDI-TOF MS (m/z): 
1284.2 for [M+]. 

3  Results and discussion 

3.1  Thermal stability 

The thermal properties of Eu(DBM)3(BrDPPZ) were stud-
ied by TGA under nitrogen atmosphere, and the results are 
presented in Figure 1. Eu(DBM)3(BrDPPZ) exhibits high 
thermal stability, with a decomposition temperature (Td) at 
5% weight loss of about 363.5 °C, which is favorable for 
use in PLEDs.  

3.2  Photophysical properties 

Figure 2 shows the normalized UV-Vis absorption and PL 
spectra of Eu(DBM)3(BrDPPz) in dilute CHCl3 solution  

 

Figure 1  TGA curve of Eu(DBM)3(BrDPPz) at a heating rate of 
10 °C/min under nitrogen atmosphere.  

 

Figure 2  Normalized UV-Vis absorption spectrum and PL spectrum 
(ex=349 nm) of Eu(DBM)3(BrDPPZ) in dilute CHCl3 solution and PL 
spectra in solution and a thin film of the PFO-PBD blend.  

(about 1×106 mol/L) and a thin film of the PFO-PBD (30 
wt%) blend at 298 K. The UV-Vis absorption spectrum 
contains two major absorption peaks at 274 and 369 nm, in 
which the former is attributed to a ligand-centered -* 
electron transition of BrDPPz and the latter is assigned to a 
ligand-centered -* electron transition of DBM [31]. The 
PL spectrum of the film contains a sharp peak at 613 nm 
with a full width at half-maximum (FWHM) of 8 nm as 
well as four weak peaks at 580, 596, 654 and 700 nm, 
which correspond to the 5D0→

7Fj (j=2, 0, 1, 3, 4) electronic 
transitions of the Eu3+ ion under photoexcitation, respec-
tively. No emission from the BrDPPz ligand was observed. 
This indicates that complete energy transfer from BrDPPz 
to the Eu3+ ion occurs in this europium(ІІІ) complex, and 
modifying the DPPz ligand with a heavy atom (bromine) 
has no effect on the PL spectrum of its europium(III) com-
plex [14,15]. The absorption spectrum of Eu(DBM)3 (BrD-
PPz) (Figure 2) overlaps well with the PL spectrum of the 
PFO-PBD host. As a result, efficient energy transfer from 
the PFO-PBD to Eu(DBM)3(BrDPPz) can be expected to 
occur via Förster energy transfer [15]. ФPL of Eu(DBM)3 
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(BrDPPz) in CH2Cl2 was measured using EuCl3·6H2O 
(Фf=0.73% in water) as a reference [36]. ФPL of Eu (DBM)3 

(BrDPPz) is 28.3%, which is higher than that of Eu(DBM)3 

(DPPz) (27.1%) [9]. This exceedingly high PL efficiency 
can be ascribed to the heavy atom effect of bromine, which 
increases luminescent efficiency [27–29]. 

To investigate the efficiency of Förster energy transfer 
between the host matrix and emissive dopant, PFO-PBD 
films with various concentrations of Eu(DBM)3(BrDPPz) 
were prepared and excited by a He-Cd laser (325 nm). Fig-
ure 3 shows the PL spectra of the films of Eu(DBM)3 

(BrDPPz) (1 wt%–8 wt%) in PFO:PBD (30 wt%). Two in-
tense emission peaks at 417 and 519 nm are observed for 
these Eu(DBM)3(BrDPPz)-doped PFO-PBD blend films, 
which are assigned to PFO-PBD emission. Furthermore, a 
series of weak emission peaks from the Eu3+ ion at 612 nm 
were observed in the doped films at doping concentrations 
from 4 wt% to 8 wt%. The intensities of the peaks at around 
417 and 519 nm originating from PFO-PBD emission de-
creased with the increasing intensity of Eu(DBM)3(BrDPPz) 
emission at 612 nm with increasing concentration of 
Eu(DBM)3(BrDPPz). This indicates that Förster energy 
transfer occurred from the PFO-PBD host to the Eu(DBM)3 

(BrDPPz) guest [9,17]. Similar energy transfer from host to 
guest has been observed in some other host-guest systems 
of conjugated polymers and europium(III) complexes 
[19,20]. 

3.3  EL properties 

The EL spectra and Commission Internationale de 
L’Eclairage (CIE) chromaticity diagrams of the Eu(DBM)3 

(BrDPPz)-doped PFO-PBD PLEDs with different dopant 
concentrations are presented in Figure 4. Similar EL spectra 
are observed for these doped devices, which are different 
from the PL profiles of the Eu(DBM)3(BrDPPz)-doped 
PFO-PBD films. An EL emission maximum at 612 nm with 
a FWHM of 14 nm and three weak peaks at 574, 648 and 
702 nm are observed in these EL profiles [14,15]. The weak 
emission peaks at 400 to 550 nm also appear in the EL 
spectra, and obviously decrease in intensity with increasing 
dopant concentration. These minor high-energy emissions 
probably correspond to exciplex/electroplex emission and 
fluorenone emission from the PFO-PBD blend [12]. This 
suggests that EL emission from the Eu(DBM)3(BrDPPz)- 
doped PFO-PBD devices is mostly dominated by the dopant 
rather than the PFO-PBD host at dopant concentrations 
from 1 wt% to 8 wt% [8,12], which is the dominant mecha-
nism in OLEDs [12,35]. A dramatic difference was ob-
served between PL and EL spectra for iridium complex- 
doped PLEDs, which was attributed to different emission 
mechanisms [35]. The CIE coordinates of the PLEDs at 
near-saturated red emission change slightly from (0.591, 
0.347) to (0.607, 0.332) with increasing dopant concentra-
tion from 1 wt% to 8 wt%.  

 

Figure 3  Normalized PL spectra of a PFO-PBD blend and Eu(DBM)3 

(BrDPPz)-doped PFO-PBD blend films with different dopant concentra-
tions from 1 wt% to 8 wt%.  

 

Figure 4  Normalized EL spectra of Eu(DBM)3(BrDPPz)-doped PLEDs 
at different dopant concentrations from 1 wt% to 8 wt%. The inset is CIE 
1931 chromaticity diagrams.  

The EQE-current density (J) and brightness (B)-current 
density (J) curves of these devices with different doping 
concentrations are shown in Figure 5. The performance of 
these Eu(DBM)3(BrDPPZ)-based devices with different 
dopant concentrations is listed in Table 1. The turn-on volt-
ages of the devices increase from 11.2 to 16.8 V with in-
creasing doping level from 1 wt% to 8 wt%. This further 
indicates that the devices mainly operate by the carrier- 
trapping mechanism rather than the energy-transfer mecha-
nism [17,38]. A maximum brightness of 829 cd/m2 at 153.5 
mA/cm2 and maximum EQE of 1.7% at 2.1 mA/cm2 were 
obtained for the device with 1 wt% Eu(DBM)3 (BrDPPz). 
The present results indicate that introduction of a large 
-conjugated system is responsible for the improved device 
performance [31]. However, when the doping concentration 
was increased to 8 wt%, the EQE and brightness decreased 
to 0.94% and 344 cd/m2, which is caused by triplet-triplet 
annihilation [25]. Figure 6 presents the dependence of lu-
minance efficiency (L) and power efficiency (p) on current 
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Table 1  Performance of Eu(DBM)3(BrDPPz)-doped PFO-PBD devices with different dopant concentrations from 1 wt% to 8 wt% 

Doping ratio 
(wt%) 

Turn on 
voltage (V) 

Maximum EQE Maximum B J=100 mA/cm2 
CIE 

(X, Y) 
L 

a) (cd/A),  
J (mA/cm2) 

p 
a) (lm/W), 

J (mA/cm2) J 
(mA/cm2) 

EQE 
(%) 

J 
(mA/cm2) 

B (cd/m2) EQE (%) B (cd/m2)

1 11.2 2.1 1.70 153.5 829 0.76 742 (0.591, 0.325) 0.74, 4.31 0.18, 4.31 
4 16.2 3.2 1.14 111.2 439 0.72 435 (0.613, 0.317) 0.39, 7.67 0.06, 7.67 
8 16.8 7.0 0.94 92.2 344 0.29 332 (0.621, 0.309) 0.22, 30.59 0.04, 30.59 

a) Maximum values of each device, L=luminance efficiency, p=power efficiency. 

 

 

Figure 5  External quantum efficiency-current density (EQE-J) and 
brightness-current density (B-J) curves for the Eu(DBM)3(BrDPPz)-doped 
PFO-PBD devices with different dopant concentrations from 1 wt% to    
8 wt%.  

density (J) for Eu(DBM)3(BrDPPZ) devices with several 
doping concentrations, and the data is listed in Table 1. The 
highest L of 0.74 cd/A with a maximum p of 0.18 lm/W at 
4.31 mA/cm2 were obtained for the device with 1 wt% 
Eu(DBM)3(BrDPPz). With increasing doping concentration 
from 1 wt% to 8 wt%, the maximum L and p gradually 
decreased at high current density. This implies that effi-
ciency roll-off in the Eu(DBM)3(BrDPPZ)-based devices is 
suppressed with increasing dopant concentration and current 
density. 

3.4  Dispersibility 

To evaluate its dispersibility in a polymer matrix, a film of  
8 wt% Eu(DBM)3(BrDPPZ) doped in a blend of PFO-PBD 
was prepared. The surface morphology of the film was ex-
amined by atomic force microscopy (AFM), and the result-
ing image is shown in Figure 7. An average surface rough-
ness Ra of 1.463 nm is observed for the Eu(DBM)3(BrD- 
PPZ)-doped PFO-PBD blend film. Compared to our report-
ed complex Eu(DBM)3(DPPz) [11], Eu(DBM)3(BrDPPZ) 
exhibits poor dispersibility in the same matrix. Therefore, 
appropriate domain size and phase separation strongly in-
fluences the performance of the PLEDs [39]. 

3.5  Electrochemical properties 

The electrochemical properties of Eu(DBM)3(BrDPPz) 

 

Figure 6  Luminance efficiency-current density-power efficiency charac-
teristics of the Eu(DBM)3(BrDPPz)-doped PFO-PBD devices with differ-
ent dopant concentrations.  

 

Figure 7  Atomic force microscope (AFM) image of an Eu(DBM)3- 

(BrDPPz)-doped PFO-PBD film containing 8 wt% dopant. 

were examined by cyclic voltammetry. The measured re-
versible onset oxidation/reduction potentials (Eox/Ered) for 
Eu(DBM)3(BrDPPz) were 0.80/2.08 V, respectively. Ac-
cording to an empirical formula [34], the LUMO and 
HOMO energy levels for Eu(DBM)3(BrDPPz) were calcu-
lated to be 2.65 and 5.54 eV, respectively. Compared to 
those of Eu(DBM)3(DBrPhen) [17], Eu(DBM)3(BrDPPz) 
displayed a minor increase in HOMO level, which could 
improve its hole-transporting properties [40]. Compared to 
Eu(DBM)3(DBrPhen), Eu(DBM)3(BrDPPz) as a dopant can 
trap carriers from PFO more efficiently, which results in 
efficient EL in the corresponding devices [17,41]. However, 
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compared with Eu(DBM)3(DPPz) [11], Eu(DBM)3(BrDPPz) 
possesses a higher LUMO energy level by 0.05 eV [42]. 
This implies that Eu(DBM)3(BrDPPz) is poorer at trapping 
electrons than Eu(DBM)3(DPPz), which would decrease the 
EL efficiency of the Eu(DBM)3(BrDPPz)-doped PFO-PBD 
devices [12,43]. Therefore, to obtain the better device per-
formance, further studies on the EL properties of Eu(DBM)3 

(BrDPPz) to optimize polymeric host and device configura-
tion should be performed. 

4  Conclusions 

In conclusion, we fabricated high-efficiency europium 
complex-based PLEDs by doping Eu(DBM)3(BrDPPz) into 
a PFO-PBD blend. These devices exhibited a sharp emis-
sion at 612 nm, with a FWHM of 14 nm even at low dopant 
concentration. A maximum EQE of 1.7% at 2.1 mA/cm2, 
Lmax of 829 cd/m2 at 153.5 mA/cm2 and maximum L of 
0.74 cd/A at 4.31 mA/cm2 were obtained from a PLED 
containing 1 wt% Eu(DBM)3(BrDPPz). This initial study 
indicates that incorporation of a large -conjugated system 
into europium(III) complexes results in an efficient red- 
emitting material for use in optoelectronic devices. 
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