December 1993 SYNTHESIS 1257

A Simple Synthetic Method for Tetraaza[3.3.3.3]meta- and paracyclopanes by Alkylation of N-Substituted Trifluoroacetamide¹

Teruo Shinmyozu,^{a,+,*} Nobuhiko Shibakawa,^a Ken'ichi Sugimoto,^a Hiroko Sakane,^a Hiroyuki Takemura,^b Katsuya Sako,^{a,+} Takahiko Inazu^a

^a Department of Chemistry, Faculty of Science, Kyusyu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812, Japan

A simple and practical synthesis of the title compounds 1b and 2b is described. Alkylation of N-substituted trifluoroacetamides (5a and b) with appropriate dibromides (6 and 9) in the presence of sodium hydride in N,N-dimethylformamide at 100°C, or powdered potassium hydroxide in refluxing acetone, followed by removal of the trifluoroacetyl group and N-methylation of the resultant amines provides the desired 1b and 2b in 21 and 19% overall yields, respectively, along with their lower and higher homologs.

In a continuing study aimed at developing simple methods for the synthesis of tetraaza[3.3.3.3]paracyclophanes²⁻⁴ as artificial host molecules,⁵ we found that the alkylation of *N*-substituted trifluoroacetamides (**5a** and **b**) with the corresponding bis(bromomethyl)benzenes (**6** and **9**), followed by removal of the trifluoroacetyl group and *N*-methylation of the resultant amines afforded tetraaza[3.3.3.3]para- and metacyclophanes (**1b** and **2b**) in reasonable yields.

In our laboratory, two syntheses of tetraaza[3.3.3.3]paracyclophanes have been developed; the first method employed an amide formation reaction between an acid chloride and an amine in the critical coupling reaction, followed by reduction of the resultant cyclic amide.^{2,3} The second approach utilized an *N*-alkylation reaction of *p*-toluenesulfonamide and subsequent removal of the tosyl groups.^{4,6} There have been several reports on the synthesis of secondary amines by alkylation of *N*-trifluoroacetamides and subsequent removal of the trifluoroacetyl groups.^{7–9} Usui et al. have reported the successful application of the method to the synthesis of 2,11-diaza[3.3]anthracenophanes.¹⁰

Scheme 1

N-Trifluoroacetylated amines **5a,b** were readily prepared from the commercially available bis(aminomethyl)benzenes **3a,b** by treatment with trifluoroacetic anhydride in diethyl ether (Scheme 1). ^{10a,11} 1,4-Bis(bromomethyl)benzene **6** and 1,4-bis(trifluoroacetaminomethyl)benzene **5a** were coupled in the presence of sodium hydride in N,N-dimethylformamide at 100 °C to afford a mixture of cyclic amides **7a-c**. The trifluoroacetyl groups were readily removed with sodium borohydride in refluxing ethanol ¹² to give a mixture of cyclic amines **8a-c**, which were N-methylated by a modified Leuckart-Wallach reaction ¹³ using a salt of phosphonic acid as a reducing

agent¹⁴ to afford a mixture of cyclic *N*-methylamines $1\mathbf{a}-\mathbf{c}$. Separation of the mixture was accomplished by gel filtration chromatography on Sephadex LH-20 with chloroform-methanol (3:1-2:1) to provide $1\mathbf{b}$ in 21% overall yield along with $1\mathbf{c}$ (5%) and $1\mathbf{a}$ (0.5%) as shown in Scheme 2.

This method has been successfully applied to the synthesis of azametacyclophane **2b**. In the coupling reaction, the use of potassium hydroxide—acetone¹⁵ in place of sodium hydride—N,N-dimethylformamide resulted in better yields of the cyclic product **10a,b**. 1,3-Bis(bromomethyl)benzene **9** was coupled with the amide **5b** in the presence of powdered potassium hydroxide in refluxing acetone to afford a mixture of cyclic amides **10a,b**.

Scheme 2

b Laboratory of Chemistry, College of General Education, Kyusyu University, Ropponmatsu 4-2-1, Chuo-ku, Fukuoka 810, Japan Received 1 March 1993; revised 24 May 1993

1258 Papers SYNTHESIS

A similar deprotection and N-methylation provided a mixture of N-methylamines 2a,b. The crude product was triturated with acetone and the resultant crystals were isolated by filtration to afford essentially pure 2b in 19% overall yield. Separation of the filtrate by gel filtration chromatography on Sephadex LH-20 with chloroform-methanol (4:1) afforded 2a in 29% yield (Scheme 3). In general, the major product of the present coupling reaction is [3⁴]cyclophane in paracyclophane, whereas it is [3²]homolog in metacyclophane.

Separation of a mixture of the N-trifluoroacetylated amines (7a-c or 10a,b), precursors of free amines (8a-c or 11a,b), can be carried out by silica gel column chromatography with dichloromethane. Compound 7a and 10a are readily separated from their higher oligomers. However, for the isolation of 7b and 10b, a combination of silica gel chromatography and recrystallization is essential. Separation of a mixture of the free amines (8a-c or 11a,b) is effected by gel filtration chromatography with chloroform-methanol or silica gel chromatography with chloroform-methanol-28% aqueous ammonia (100:10:1).16 However, deprotection of the isolated N-trifluoroacetylated amines is preferred as a preparation method of the free amines.

Scheme 3

In conclusion, the present method offers a facile and practical synthesis of tetraaza[3⁴]meta- and paracyclophanes, **1b** and **2b** in gram quantities in a single experiment, considerably reduces the reaction time as compared with conventional methods, ²⁻⁴ and also has the great advantage that the trifluoroacetyl groups are readily removed after the coupling reaction.

Further application of this method to the synthesis of functionalized tetraaza[3⁴]cyclophanes and other novel azamacrocycles, as well as conformational analysis of diaza[3²]- and tetraaza[3⁴]cyclophanes are now in progress.

Melting points were measured on a Yanako MP-S3 melting point apparatus and are uncorrected. 1H NMR spectra were measured on JEOL JNM-EX 270 and JNM-GSX 400 spectrometers with TMS as an internal standard. DMF was dried over molecular sieves 4A. Acetone was dried over CaSO₄ and decanted before use. $R_{\rm f}$ values were determined with Merck 60 F-254 precoated silica gel on alumina sheets using CH₂Cl₂/MeOH/NH₄OH (100:10:1) solvent system except where noted. 16 Compounds 2b, 5a,b, 7a,b, 10a,b and 11b gave satisfactory microanalyses: C,H,N \pm 0.3 %.

1,4-Bis(trifluoroacetaminomethyl)benzene **5a** and its 1,3-isomer **5b** were prepared by treatment of 1,4- or 1,3-bis(bromomethyl)benzene **3a** and **b** with $(CF_3CO)_2O$ in dry Et_2O in 75 and 89% yields, respectively. 10a,11

5a: colorless needles from CHCl $_3$ -acetone, mp 190–192 °C (Lit. 10a 205–206 °C).

MS (70 eV): m/z = 328 (M⁺).

IR (KBr): v = 3282 (N-H), 1698 (C=O), 1183 (C-F) cm⁻¹.

¹H NMR (CDCl₃/DMSO- d_6): $\delta = 4.37$ (d, 4 H, J = 5.4 Hz, benzylic), 7.24 (s, 4 H, aromatic), 9.93 (t, 2 H, J = 5.4 Hz, –CONH–).

5b: colorless needles from acetone-toluene, mp 165.5-167°C.

MS (70 eV): m/z = 328 (M⁺).

IR (KBr): v = 3294 (N-H), 1702 (C=O), 1176 (C-F) cm⁻¹.

¹H NMR (CDCl₃/acetone- d_6): $\delta = 4.51$ (s, 4 H, benzylic), 7.26 (m, 4 H, aromatic), 8.7–9.3 (m, 2 H, –CONH–).

N,N',N'',N'''-Tetramethyl-2,11,20.29-tetraaza[3.3.3.3]paracyclophane (1b):

To a stirred mixture of amide 5a (6.57 g, 20.0 mmol) and DMF (200 mL) was added a 60 % dispersion of NaH in mineral oil (1.61 g, 40 mmol) at room temperature under N_2 . The mixture was stirred for 30 min at r. t. and then heated at $100\,^{\circ}\text{C}$ for 30 min. To the mixture was added dropwise a DMF solution (250 mL) of the bromide 6 (5.31 g, 20.0 mmol) over a period of 1 h, then the mixture was stirred overnight at $100\,^{\circ}\text{C}$ under N_2 . After removal of the solvent in vacuo, the residue was diluted with water (250 mL) and extracted with CH₂Cl₂ (450 mL). The combined CH₂Cl₂ extracts were washed with brine, dried over MgSO₄, filtered, and evaporated.

To residue 7 (9.75 g) were added NaBH₄ (10.5 g, 266 mmol) and EtOH (200 mL), and the mixture was refluxed for 3 h. After being cooled, the solvent was removed. The residue was diluted with water, acidified to pH 1 with concentrated HCl, and the acidic solution was washed with $\rm CH_2Cl_2$ (250 mL). The aqueous layer was made alkaline (pH 11) with dil. aq NaOH and extracted with $\rm CH_2Cl_2$ (150 mL, \times 3). The combined extracts were washed with brine, dried over MgSO₄, filtered, and evaporated.

The resultant pale yellow oil 8 (5.60 g), 37 % formalin (20 mL), 1 M aq NaH₂PO₃ (200 mL), and dioxane (200 mL) were stirred at 60 °C overnight. After being cooled, the precipitate (A) was collected by filtration and the filtrate was washed with CH₂Cl₂ (100 mL × 2). The aqueous layer was made alkaline (pH 11) with dil. aq NaOH to give a suspension. The precipitate (A) was dissolved in dilute HCl solution, filtered, and the filtrate was made alkaline (pH 11) with dil. aq NaOH to afford a white suspension. The combined suspensions were extracted with CH_2Cl_2 (150 mL × 3) and the combined CH_2Cl_2 extracts were dried over MgSO₄, filtered, and evaporated. The resultant pale yellow oil 1 (4.93 g) was triturated with MeCN (160 mL) and sonicated. The precipitate was collected by filtration (B, 3.39 g, mainly 1b and c). Concentration of the filtrate afforded a pale yellow oil (C, 760 mg). Separation of B by gel filtration chromatography on Sephadex LH-20 with CHCl₃/MeOH, 3:1-2:1) provided **1b**(1.11 g, 21 %) and **1c**(282 mg, 5 %), ¹⁷ while C was separated by preparative TLC (silica gel, CH₂Cl₂/MeOH/ NH₄OH, 100:10:1) to give 1a (25 mg, 0.5%).

December 1993 SYNTHESIS 1259

7a: colorless plates from CH_2Cl_2 -hexane, mp 211-213 °C. R_f (silica gel; $CH_2Cl_2/AcOEt$, 40:1) = 0.78.

FAB-MS (mNBA): $m/z = 430 \text{ (M}^+)$.

IR (KBr): v = 1682 (C=O), 1181 (C-F) cm⁻¹.

¹H NMR (CDCl₃): $\delta = 4.68$ (br s, 4 H benzylic), 4.77 (br s, 4 H, benzylic), 6.78 (s, aromatic), 6.78 (d, J = 8.1 Hz, aromatic), 6.83 (s, aromatic), 6.83 (d, J = 8.1 Hz, aromatic). ¹⁸

7b: colorless needles from CH_2Cl_2 -hexane, mp 238-239°C. R_f (silica gel, $CH_2Cl_2/AcOEt$, 40:1) = 0.65.

FAB-MS (mNBA): $m/z = 861 \text{ (M}^+ + 1)$.

IR (KBr): v = 1683 (C=O), 1198 (C-F) cm⁻¹.

¹H NMR (CDCl₃): $\delta = 4.1-4.6$ (m, 16 H, benzylic), 6.8-7.1 (m, 16 H, aromatic).

8a: colorless crystals from benzene-hexane, mp 219-221 °C (decomp. Lit. 227.2-234 °C).

MS (70 eV, %): m/z = 237 (M⁺ -1, 17%), 238 (M⁺, 79%), 239 (M⁺ +1, 15%).

IR (KBr): $v = 3277 \text{ (N-H) cm}^{-1}$.

¹H NMR (CDCl₃): $\delta = 1.77$ (s, 2 H, NH), 3.90 (br s, 8 H, benzylic), 6.80 (s, 8 H, aromatic).

8b: colorless needles from C₆H₆-hexane, mp 143-146°C.

MS (70 eV, %): m/z = 476 (M⁺, 12%), 477 (M⁺+1, 9%), 478 (M⁺+2, 15%), 479 (M⁺+3, 5%).

IR (KBr): v = 3231 (N-H) cm⁻¹.

¹H NMR (CDCl₃): $\delta = 1.63$ (s, 4 H, Nh), 3.70 (s, 16 H, benzylic), 7.07 (s, 16 H, aromatic). [Lit.⁴ 1.63 (NH), 3.70 (benzylic), 7.07 (aromatic)].

1a: colorless plates from MeOH, mp 144-146°C (Lit.⁴ mp 140-143°C).

 $R_{\rm f} = 0.51$.

MS (70 eV, %): $m/z = 265 (M^+ - 1, 28\%), 266 (M^+, 100\%), 267 (M^+ + 1, 40\%), 268 (M^+ + 2, 6\%).$

¹H NMR (CDCl₃): v = 2.61 (s, 6 H, -Me), 3.55 (br s, 8 H, benzylic), 6.83 (br s, 8 H, aromatic).

1b: colorless needles from EtOH, mp 195-196.5 °C (Lit. 4 mp 195.5-197 °C).

 $R_{\rm f} = 0.43$.

MS (70 eV, %): m/z = 532 (M⁺, 2%), 533 (M⁺+1, 22%), 534 (M⁺+2, 13%).

¹NMR (CD₂Cl₂): δ = 2.29 (s, 12 H, -Me), 3.29 (s, 16 H, benzylic), 7.25 (s, 16 H, aromatic).

1c: colorless needles from MeOH, mp 194–196 °C. $R_f = 0.35$. FAB-MS (mNBA): m/z = 798 (M⁺).

¹H NMR (CDCl₃): δ = 2.17 (s, 18 H, -Me), 3.45 (s, 24 H, benzylic), 7.30 (s, 24 H, aromatic). [Lit.^{5a} 2.17 (-Me), 3.47 (benzylic), 7.27 (aromatic)].

N,N',N'',N'''-Tetramethyl-2,11,20,29-tetraaza[3.3.3.3]metacyclophane (2b):

To a refluxing mixture of bromide 9 (5.28 g, 20.0 mmol), amide 5b (6.57 g, 20.0 mmol), and acetone (450 mL) was added powdered KOH in four portions (1 g \times 4) at 15 min intervals. Then the mixture was stirred for an additional 2 h at reflux. The acetone was removed and the residue was extracted with CH₂Cl₂ (700 mL). The combined CH₂Cl₂ solution was washed with brine and evaporated. To residue 10 were added NaBH $_4$ (10 g) and EtOH (350 mL), and the mixture was refluxed for 2 h with stirring. The solvent was evaporated and the residue was diluted with water, acidified (pH 1) with conc. HCl and washed with CH₂Cl₂ (100 mL × 2) to remove condensation products derived from acetone. The aqueous layer was made alkaline (pH 11) and extracted with CH₂Cl₂ (150 mL × 3). The combined extracts were washed with brine and concentrated to dryness. The resultant yellow oil 11, 1 molar aq NaH₂PO₃ (600 mL), 37% formalin (20 mL), and dioxane (280 mL) were stirred at 60° C overnight. The mixture was made alkaline (pH 11) and extracted with CH₂Cl₂ (total 1L). The combined extracts were washed with

brine, dried over MgSO₄, filtered, and evaporated to afford a colorless viscous oil, which was triturated with acetone (25 mL) and the precipitate was collected by filtration, washed with a small amount of acetone, and air-dried to give **2b** (1.03 g, 19%). Concentration of the filtrate and the separation of the residue by gel filtration chromatography on Sephadex LH-20 with CHCl₃/MeOH (4:1) afforded $Me_2N_2[3^2]MCP$ **2a** (1.54 g, 29%).

10a: colorless crystals from CH_2Cl_2 -hexane; mp 116-118°C. R_f (silica gel, CH_2Cl_2) = 0.48.

MS (70 eV): $m/z = 430 \text{ (M}^+\text{)}.$

IR (KBr): v = 1690 (C=O), 1201 (C-F) cm⁻¹.

¹H NMR (CDCl₃): $\delta = 4.62, 4.65$ (s, 8 H, benzylic), 6.13, 6.50, 6.59 (s, 2 H, aromatic Hi), 6.9–7.2 (m, 6 H, aromatic Ha and Hb).

10b: colorless crystals from CH_2Cl_2 -hexane; mp 245-246°C. R_f (silica gel, CH_2Cl_2) = 0.20.

MS (70 eV): $m/z = 860 \text{ (M}^+\text{)}.$

IR (KBr): v = 1673, 1693 (C=O), 1200 (C-F) cm⁻¹.

¹H NMR (CDCl₃): $\delta = 4.35-4.55$ (m, 16 H, benzylic), 6.74, 6.77, 6.84, 6.90 (s, 4 H, aromatic Hi), 7.10-7.50 (m, 12 H, aromatic Ha and Hb).

11a: colorless granules from C_6H_6 -hexane; mp 120–121.5 °C (Lit. 417.5–118.5 °C).

MS (70 eV, %): m/z = 238 (M⁺, 64%), 239 (M⁺+1, 37%), 240 (M⁺+2, 6%).

IR (KBr): $v = 3263 \text{ (N-H) cm}^{-1}$.

¹H NMR (CDCl₃): $\delta = 1.99$ (s, 2 H, NH), 3.91 (s, 8 H, benzylic), 6.68 (d, 4 H, J = 7.6 Hz, aromatic Ha), 6.82 (t, 2 H, J = 7.6 Hz, aromatic Hb), 7.37 (s, 2 H, aromatic Hi).

11b: colorless plates from C₆H₆; mp 151-153 °C.

MS (70 eV, %): m/z = 476 (M⁺, 11 %), 477 (M⁺+1, 34 %), 478 (M⁺+2, 12 %).

IR (KBr): $v = 3261 \text{ (N-H) cm}^{-1}$.

¹H NMR (CDCl₃): $\delta = 1.64$ (s, 4 H, -NH), 3.81 (s, 16 H, benzylic), 7.06–7.24 (m, 16 H, aromatic).

2a: colorless crystals from CH_2Cl_2 -hexane; mp 98–100 °C (Lit.⁴ 98.5–99.5 °C).

MS (70 eV, %): m/z = 265 (M⁺ -1, 13%), 266 (M⁺, 72%), 267 (M⁺ +1, 16%).

¹H NMR (CDCl₃): $\delta = 2.66$ (s, 6 H, Me), 3.61 (s, 8 H, benzylic), 6.64 (d, 4 H, J = 6.9 Hz, aromatic Ha), 6.72 (t, 2 H, J = 6.3 Hz, aromatic Hb), 7.42 (br s, 2 H, aromatic Hi).

2b: colorless plates from CH₂Cl₂; mp 200-202 °C.

MS (70 eV, %): m/z = 531 (M⁺ -1, 7%), 532 (M⁺, 9%), 533 (M⁺ + 1, 24%).

¹H NMR (CDCl₃): $\delta = 2.21$ (s, 12 H, -Me), 3.48 (s, 16 H, benzylic), 7.15-7.23 (m, 12 H, aromatic Ha and Hb), 7.40 (s, 4 H, aromatic Hi).

This work was supported by a Grant-in-Aid for Scientific Research (No. 03453030) from the Ministry of Education, Science and Culture of Japan

- + Current address: Institute for Fundamental Research of Organic Chemistry, Kyusyu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812, Japan.
- * Current address: Department of Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan.

1260 Papers SYNTHESIS

 Presented at the 12th International Symposium on Macrocyclic Chemistry, Abstract p 97 (20P-37), Hiroshima, Japan, July 1987.

- (2) Urushigawa, Y.; Inazu, T.; Yoshino, T. Bull. Chem. Soc. Jpn. 1971, 44, 2546.
- (3) Tabushi, I.; Kimura, Y.; Yamamura, K. J. Am. Chem. Soc. 1981, 103, 6486.
- (4) Takemura, H.; Suenaga, M.; Sakai, K.; Kawachi, H.; Shinmyozu, T.; Miyahara, Y.; Inazu, T. J. Inclusion Phenom. 1984, 2, 207.
- (5) For reviews, see:
 - (a) Tabushi, I.; Yamamura, K. In *Topics in Current Chemistry* 113, Cyclophane I; Boschke, F.L.; Ed.; Springer: Berlin, 1983, p 145.
 - (b) Murakami, Y. In *Topics in Current Chemistry 115, Cyclophane II*; Boschke, F. L., Ed.; Springer: Berlin, 1983, p 107.
 - (c) Odashima, K.; Koga, K. In *Cyclophanes II*; Keehn, P.M.; Rosenfeld, S.M., Eds.; Academic Press: New York, 1983; p 629.
- (6) Bottino, F.; Grazia, M.D.; Finocchiaro, P.; Fronczek, F.R.; Mamo, A.; Pappalardo, S. J. Org. Chem. 1988, 53, 3521.
- (7) Harland, P.A.; Hodge, P.; Maughan, W.; Wildsmith, E. Synthesis 1984, 941.
- (8) Nordlander, J.E.; Catalane, D.B.; Eberlein, T.H.; Farkas, L.V.; Howe, R.S.; Stevens, R.M.; Tripoulas, N.A.; Stansfield,

- R. E.; Cox, J. L.; Payne, M. J.; Viehbeck, A. Tetrahedron Lett. 1978, 4987, and references therein.
- (9) King, A.P.; Krespan, C.G. J. Org. Chem. 1974, 39, 1315.
- (10) (a) Usui, M.; Nishiwaki, T.; Anda, K.; Hida, M. Nippon Kagaku Kaishi 1988, 1052.
 (b) Usui, M.; Shindo, Y.; Nishiwaki, T.; Anda, K.; Hida, M.
 - (b) Usui, M.; Shindo, Y.; Nishiwaki, I.; Anda, K.; Hida, M. *Chem. Lett.* **1990**, 419.
- (11) Bourne, E.J.; Henry, S.H.; Tatlow, C.E.M.; Tatlow, J.C. J. Chem. Soc. 1952, 4014.
- (12) Weygand, F.; Frauendorfer, E. Chem. Ber. 1970, 103, 2437.
- (13) For a review, see: Moore, M.L. Org. React. 1949, 5, 301.
- (14) Loibner, H.; Pruckner, A.; Stütz, A. Tetrahedron Lett. 1984, 25, 2535.
- (15) Johnstone, R. A. W.; Rayling, D. W.; Thomas, C. J. Chem. Soc. (C), 1969, 2223.
- (16) Kimura, E.; Koike, T.; Takahashi, M. J. Chem. Soc., Chem. Commun. 1985, 385.
- (17) The separation was repeated three times; about 1 g of the sample per 200 g of dry Sephadex LH-20 was charged.
- (18) N-Trifluoroacetylated cyclophanes **7a,b** and **10a,b** show very complex ¹H NMR spectra due to the restricted rotation of the amide bonds. Conformational analysis of these compounds will be reported elsewhere.