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Abstract: The oxindole-embedded ortho-quinone methides, in situ generated from
oxindole-embedded ortho-hydroxybenzyl alcohols, were employed as reactive intermediates in
formal [4 + 2] annulation with 1,3-dicarbonyls, providing an efficient access to
spiro[chromen-4,3~oxindole] scaffolds via a cascade conjugate addition/ketalization/dehydration

process. This protocol featured metal-free conditions, wide substrate scope and excellent yields.
INTRODUCTION

Spirooxindoles and 4H-chromenes are privileged skeletons in an array of natural products and
pharmaceutical agents (Figure 1).12 Due to their structural complexities and diverse bioactivities,

considerable efforts have been devoted to assembling these frameworks.>* According to the
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Figure 1. Natural products and bioactive compounds containing the spirooxindole or

4H-chromene core.

principle of superposition in drug discovery, incorporation of these two motifs would provide
potential bioactivity from spiro[chromen-4,3™-oxindole] scaffolds (Scheme 1a). So far, although
spirooxindoles have been successfully hybridized with various heterocyclic rings,® there are
sporadic reports related to the synthesis of spiro[chromen-4,3~oxindole] scaffolds. And the
limited examples were realized by cascade [3 + 3] annulation-type reactions (Scheme 1b).5
Therefore, it is appealing to develop new methods for efficient construction of these intriguing
molecules.

Scheme 1. Synthesis of Spiro[Chromen-4,3-Oxindole] Scaffolds.
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(b) Formal [3 + 3] annulation reaction for synthesis of spiro[chromen-4,3'-oxindole] scaffolds
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via
oxindole-embedded o-QMs

ortho-Quinone methides (0-QMs) have emerged as highly reactive synthons for the synthesis of
complex molecules and naturally occurring products, especially for chromanes and related

analogues.® Owing to their inherent tendency of rearomatization, 0-QMs have been commonly
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exploited as electron-deficient species to participate in conjugate addition” and [4 + n] cyclization
reactions.®1° In spite of these significant progresses, to the best of our knowledge, there are no
examples of 0-QMs-involved reactions for one-pot assembly of spiro[chromen-4,3™oxindole]
scaffolds. In this context, we envisaged the introduction of an oxindole unit into the 0-QMs would
furnish a new class of oxindole-embedded 0-QMs, which could undertake a formal [4 + 2]
annulation with 1,3-dicarbonyls for rapid buildup of spiro[chromen-4,3™-oxindole] skeletons via a
cascade conjugate addition/ketalization/dehydration sequence. As our continuing interest in the
one-step assembly of molecular complexity,'* herein, we reported a formal [4 + 2] annulation of in
situ generated oxindole-embedded 0-QMs with 1,3-dicarbonyls for one-pot synthesis of
spiro[chromen-4,3~oxindole] compounds (Scheme 1c). This reaction featured metal-free
conditions, wide substrate scope and high yields.
RESULTS AND DISCUSSION

To test the feasibility of our proposal, we commenced our investigations with the reaction
between oxindole-embedded ortho-hydroxybenzyl alcohol la and 1,3-cyclohexanedione 2a
(Table 1). To our delight, the reaction proceeded smoothly and delivered the desired product 3aa
in 94% yield when 10 mol % of trifluoromethanesulfonic acid (TfOH) was used as the catalyst in
DCE at 80 < (Table 1, entry 1). Then a series of Brensted acids were screened, such as
p-toluenesulfonic acid monohydrate (TsOH H,0), methanesulfonic acid (MsOH) and
trifluoroacetic acid (TFA). However, all of them led to inferior results (Table 1, entries 2-7).
Afterwards, Lewis acids were evaluated and it was found that Sc(OTf)s also exhibited a high
efficiency to furnish 3aa in 93% yield (Table 1, entries 8 and 9). Subsequently, decreasing the
catalyst loading to 5 mol % resulted in a diminished yield (Table 1, entry 10). Finally, the
exploration of solvents such as THF, toluene and MeCN indicated that DCE was the best solvent
(Table 1, entries 11-13). Consequently, TfOH was selected as the best catalyst to catalyze this
reaction in DCE.

With the optimized conditions in hand, the substrate scope and generality of the developed
formal [4 + 2] annulation were evaluated. At first, a wide range of oxindole-embedded
ortho-hydroxybenzyl alcohols 1 bearing various substituents were subjected to the reactions with

1,3-cyclohexanedione 2a, which proceeded efficiently and afforded the corresponding

ACS Paragon Plus Environment



oNOYTULT D WN =

The Journal of Organic Chemistry

Table 1. Optimization of the Reaction Conditions?

o}
catalyst (10 mol %)
+ —_—
solvent, 80 °C
(o)

2a

entry catalyst solvent yield® (%)
1 TfOH DCE 94
2 TsOH H,0 DCE 77
3 MsOH DCE 72
4 TFA DCE 26
5 (-)-CSA DCE 33
6 PhCO.H DCE 14
7 HOAc DCE <10
8 Sc(OTf)s DCE 93
9 Cu(OTf), DCE 86
10° TfOH DCE 85
11 TfOH THF 78
12 TfOH toluene 42
13 TfOH MeCN 83

@Reaction conditions: 1a (0.1 mmol), 2 (0.12 mmol) and catalyst (10 mol %) in solvent (1 mL) at 80 <C for 8 h.
TfOH = trifluoromethanesulfonic acid, TsOHH:0 = p-toluenesulfonic acid monohydrate, MsOH =
methanesulfonic acid, TFA = trifluoroacetic acid, (-)-CSA = (-)-10-camphorsulfonic acid. Plsolated yield after
column chromatography. °Catalyst (5 mol %), 24 h.

spiro[chromen-4,3™-oxindole] products in good to excellent yields (Table 2). With respect to the
R! groups, electron-donating methoxy and methyl groups were well tolerated and furnished the
desired products 3ba and 3ca in 88% and 95% yields, respectively. Moreover,
electron-withdrawing halogens (fluoro, chloro, and bromo) at different positions had negligible
influence on the transformations, giving the expected products 3da-3ja in 67-94% yields. It is
noted that the decreased yield of 3ha might be ascribed to the steric hindrance of in situ generated
oxindole-embedded 0-QM intermediate. Remarkably, the substrate incorporating the stronger
electron-withdrawing nitro group was also an ideal candidate and delivered product 3ka in 88%
yield, which could hardly be realized in previously reported 0-QMs-involved reactions. It was
worth mentioning that the achievement of fluorine- and nitro-containing substrates indicated the
great potential in the medicinal industry. With regard to the R? groups, in addition to methyl and
ethyl groups, the allyl and propargyl substituents functioned efficiently, providing the desired
products 3la-3oa in 85-97% yields. Notably, the alcohols carrying highly strained cyclopropyl and
cyclopropylmethyl groups also worked well and produced the products 3pa and 3qga in 94% and

92% yields, correspondingly. Moreover, the substrate without a protecting group was examined
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and afforded product 3ra in 85% yield. As to the R® group, satisfyingly, the oxindole-embedded
ortho-naphthoquinone methide was tolerable and gave the corresponding product 3sa in 73%
yield.

Table 2. Substrate Scope of Oxindole-Embedded ortho-Hydroxybenzyl Alcohols 12

TfOH (10 mol %)
_—
DCE, 80 °C

R
3la, R = Me, 85%
3ma, R = Et, 93%

N

N OO
H

3qa, 92% 3ra, 85% 3sa, 73%°
@Reaction conditions: 1 (0.1 mmol), 2a (0.12 mmol) and TfOH (10 mol %) in DCE (1 mL) at 80 <C for 8 h.
Isolated yield after column chromatography. "TfOH (20 mol %), 12 h. €24 h.
Next, the substrate scope of 1,3-dicarbonyls 2 was further examined, as shown in Table 3.
Substituted 1,3-cyclohexanediones were fully compatible with the reaction conditions, yielding

3ab and 3ac in 97% and 90% vyields, respectively. Notably, other 1,3-dicarbonyls such as
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1,3-cyclopentanedione, 2,4-pentanedione and 1,3-diphenyl-1,3-propanedione are also good
reaction partners for this reaction, delivering products 3ad-3af in 75-93% yields. Gratifyingly, the
employment of benzyl acetoacetate and ethyl benzoylacetate could proudce products 3ag and 3ah

in moderate yields.

Table 3. Substrate Scope of 1,3-Dicarbonyls 22

gt TFOH (10 mol %)

R2
_— >
DCE, 80 °C O NAL)

3ab, 97% 3ac, 90%, dr 1.3:1 3ad, 93%
o o o
Crow S S
/ " ), /
Lo T I
N 00 N 00 N o
Bn Bn Bn
3ae, 75%° 3af, 83%”° 3ag, 70%°
o
( o
o Ph

3ah, 61%"
@Reaction conditions: 1a (0.1 mmol), 2 (0.12 mmol) and TfOH (10 mol %) in DCE (1 mL) at 80 <C for 8 h.
Isolated yield after column chromatography. 3 h. °TfOH (20 mol %).
To substantiate the practicality of this protocol, the formal [4 + 2] annulation of 1p with 2a was
performed on a gram scale, which reacted smoothly and gave spiro[chromen-4,3~oxindole] 3pa in

95% yield (Scheme 2).

Scheme 2. Gram-Scale Synthesis

o
( o
o )
TfOH (10 mol %)
o
=l
CE, 80 °C N NoO

3pa
95% yield, 1.18 g
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On the basis of the above experimental results, a plausible mechanism was proposed, as shown
in Scheme 3. Under the catalysis of Brensted acid, the oxindole-embedded 0-QM intermediate A
is in situ generated via the dehydration of oxindole-embedded ortho-hydroxybenzyl alcohol 1a. At
the same time, 1,3-cyclohexanedione 2a tautomerizes to the enol species 2a”. Then the conjugate
addition of 2a” to intermediate A occurs and affords intermediate B, which subsequently
undertakes the intramolecular ketalization to provide intermediate C. Finally, Brensted
acid-catalyzed dehydration of C gives the desired product 3aa. Intriguingly, intermediates A and
C have been isolated and characterized by NMR, which fully proves this hypothesis.

Scheme 3. Proposed Mechanism
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CONCLUSION

In summary, the oxindole-embedded 0-QMs, in situ generated from oxindole-embedded
ortho-hydroxybenzyl alcohols, were designed as reactive intermediates in formal [4 + 2]
annulation with 1,3-dicarbonyls, which offered an efficient route to pharmaceutically important
spiro[chromen-4,3™-oxindole] scaffolds via a domino conjugate addition/ketalization/dehydration
process. This method featured metal-free conditions, wide substrate scope and excellent yields,

which exhibited promising prospects in organic synthesis and drug discovery.

Experimental Section

All commercially available reagents, unless otherwise indicated, were used without further
purification. All solvents were purified and dried according to standard methods prior to use.

Reactions were monitored by thin layer chromatography (TLC) with 0.2 mm silica gel-coated
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HSGF 254 plates, visualized by UV light at 254 or 365 nm. Products were isolated and purified by
column chromatography on 200-300 mesh silica gel. *H, 13C, and 1°F NMR spectra were recorded
on a Bruker AMX 500 (500 MHz for *H NMR, 125 MHz for *3C NMR and 470 MHz for °F
NMR) spectrometer at room temperature. The chemical shifts (3) were reported in ppm with
respect to an internal standard, tetramethylsilane (0 ppm), and the solvent (CDCls, *H: & = 7.26
ppm, 13C: § = 77.16 ppm). Coupling constants (J) are given in Hertz. Splitting patterns of apparent
multiplets associated with an averaged coupling constants were designated as s (singlet), d
(doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets) and br (broadened). All
13C spectra were recorded with broadband proton decoupling. HRMS were performed on a Waters
XEVO QTOF mass spectrometer.

General Procedure for the Synthesis of Oxindole-Embedded ortho-Hydroxybenzyl Alcohols

1'12

A round-bottom flask was charged with isatin (1 mmol), phenol (3 mmol) and H>O (6 mL). The
reaction mixture was stirred vigorously at room temperature and monitored by TLC. After the
consumption of isatin, the reaction mixture was extracted with ethyl acetate, and the combined
organic layers were dried over anhydrous Na,SO.. The solvent was concentrated under reduced
pressure, and the residue was purified by flash column chromatography (column chromatography
eluent, petroleum ether/ EtOAc = 8:1) to afford products 1. For the new compounds 1e, 1g, 1h, 1j,

1k, 1m, 1p and 1q, they have been characterized as follows.

General Procedure for Formal [4 + 2] Annulation of Oxindole-Embedded

ortho-Hydroxybenzyl Alcohols 1 with 1,3-Dicarbonyls 2.

An oven-dried reaction tube was charged with oxindole-embedded ortho-hydroxybenzyl
alcohols 1 (1.0 equiv, 0.1 mmol), 1,3-dicarbonyls 2 (1.2 equiv, 0.12 mmol), DCE (1 mL) and
TfOH (10 mol %). The reaction mixture was stirred vigorously at 80 <C in oil bath for appropriate

time and monitored by TLC. After the consumption of 1, the reaction mixture was concentrated
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under reduced pressure and then purified by flash column chromatography (column
chromatography eluent, petroleum ether/EtOAC) to afford products 3.
General Procedure for Gram-Scale Synthesis of 3pa.

An oven-dried round-bottomed flask was charged with  oxindole-embedded
ortho-hydroxybenzyl alcohol 1p (3.0 mmol, 1017 mg), 1,3-dicarbonyl 2a (3.6 mmol, 403 mg),
DCE (30 mL) and TfOH (0.3 mol, 45 mg). The reaction mixture was stirred vigorously at 80 <C in
oil bath for 8 h, and monitored by TLC. After the consumption of 1p, the reaction mixture was
concentrated under reduced pressure and then purified by flash column chromatography (column
chromatography eluent, petroleum ether/EtOAc = 6:1) to afford product 3pa as white solid in 95%
yield (1180 mg).

1-benzyl-7-fluoro-3-hydroxy-3-(6-hydroxybenzo[d][1,3]dioxol-5-yl)indolin-2-one (1e). White
solid; 358 mg, 91% yield; mp 124-126 °C; column chromatography eluent, petroleum
ether/EtOAC = 8:1; 'H NMR (500 MHz, CDCls) & 8.87 (s, 1H), 7.29-7.20 (m, 6H), 7.11-6.98 (m,
2H), 6.50 (s, 1H), 6.25 (s, 1H), 5.85 (s, 2H), 4.99 (s, 2H), 4.87 (s, 1H); 3C{*H} NMR (125 MHz,
CDCl3) 6 179.0, 151.7, 148.9, 147.8 (d, J = 244.6 Hz), 141.5, 136.0, 132.3, 129.0 (d, J = 8.8 Hz),
128.8 (2C), 127.8, 127.3 (2C), 124.8 (d, J = 6.3 Hz), 121.8, 118.5 (d, J = 19.4 Hz), 116.7, 106.5,
101.5 (comb, 2C), 79.1, 45.8 (d, J = 4.5 Hz); °F NMR (470 MHz, CDCls) & —132.6; HRMS
(ESI-TOF) m/z: [M + H]" calcd for C2H17FNOs 394.1085; found 394.1086.

1-benzyl-6-chloro-3-hydroxy-3-(6-hydroxybenzo[d][1,3]dioxol-5-yl)indolin-2-one (1g). White
solid; 364 mg, 89% yield; mp 120-122 °C; column chromatography eluent, petroleum
ether/EtOAc = 8:1; 'H NMR (500 MHz, CDCl3) & 8.87 (s, 1H), 7.38-7.22 (m, 6H), 7.12 (d, J =

7.7 Hz, 1H), 6.76 (s, 1H), 6.55 (s, 1H), 6.29 (s, 1H), 5.88 (s, 2H), 4.90 (d, J = 15.8 Hz, 1H), 4.79
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(d, J=15.8 Hz, 1H), 4.68 (s, 1H); BC{*H} NMR (125 MHz, CDCl3) 6 179.2, 151.7, 149.0, 143.6,
141.6, 136.2, 134.3, 129.1 (2C), 128.1, 127.7, 127.1 (2C), 126.9, 123.9, 116.7, 110.8, 106.5, 101.7,
101.6, 78.7, 44.2; HRMS (ESI-TOF) m/z: [M + H]* calcd for C2H17CINOs 410.0790; found
410.0795.

1-benzyl-4-bromo-3-hydroxy-3-(6-hydroxybenzo[d][1,3]dioxol-5-yl)indolin-2-one (1h). White
solid; 408 mg, 90% vyield; mp 129-131 °C; column chromatography eluent, petroleum
ether/EtOAc = 8:1; *H NMR (500 MHz, CDCls) & 8.78 (s, 1H), 7.28 (m, 4H), 7.22 (d, J = 7.3 Hz,
2H), 7.14 (t, J = 8.0 Hz, 1H), 6.71 (d, J = 7.8 Hz, 1H), 6.56 (s, 1H), 6.21 (s, 1H), 5.90 (s, 1H), 5.87
(s, 1H), 4.88 (d, J = 15.8 Hz, 1H), 4.82 (d, J = 15.8 Hz, 1H), 4.37 (s, 1H); 3C{*H} NMR (125
MHz, CDCl3) 6177.8, 152.5, 149.2, 144.5, 141.4, 134.4, 131.7, 129.0 (2C), 128.0, 127.9, 127.7,
127.1 (2C), 120.8, 113.7, 109.2, 106.7, 101.6, 101.5, 80.5, 44.2; HRMS (ESI-TOF) m/z: [M + H]*
calcd for Co2H17BrNOs 454.0285; found 454.0283.

1-benzyl-6-bromo-3-hydroxy-3-(6-hydroxybenzo[d][1,3]dioxol-5-yl)indolin-2-one (1j). White
solid; 381 mg, 84% vyield; mp 116-118 °C; column chromatography eluent, petroleum
ether/EtOAC = 8:1; *H NMR (500 MHz, CDCls) & 8.99 (s, 1H), 7.32 (m, 5H), 7.24 (m, 2H), 6.93
(s, 1H), 6.62 (s, 1H), 6.27 (s, 1H), 5.90 (s, 1H), 5.89 (s, 1H), 4.91 (d, J = 15.8 Hz, 1H), 4.82 (d, J =
15.8 Hz, 1H), 4.44 (s, 1H); ¥C{*H} NMR (125 MHz, CDCl3) & 179.2, 152.0, 149.2, 143.7, 141.7,
134.2,129.1 (2C), 128.2, 127.9, 127.4, 127.1 (2C), 126.9, 124.1, 116.9, 113.7, 106.6, 102.2, 101.6,
78.9, 44.2; HRMS (ESI-TOF) m/z: [M + H]* calcd for C22H17BrNOs 454.0285; found 454.0291.

1-benzyl-3-hydroxy-3-(6-hydroxybenzo[d][1,3]dioxol-5-ylI)-5-nitroindolin-2-one (1k). Yellow
solid; 365 mg, 87% yield; mp 140-142 °C; column chromatography eluent, petroleum

ether/EtOAC = 8:1; *H NMR (500 MHz, CDCls) § 8.31 (s, 1H), 8.23 (d, J = 8.7 Hz, 1H), 8.03 (s,
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1H), 7.32 (m, 3H), 7.25 (m, 2H), 6.86 (d, J = 8.7 Hz, 1H), 6.56 (s, 1H), 6.42 (s, 1H), 5.92 (s, 2H),
5.00 (d, J = 15.8 Hz, 1H), 4.93 (d, J = 15.8 Hz, 1H), 4.46 (s, 1H); *C{*H} NMR (125 MHz,
CDCl3) 6 179.1, 150.9, 149.3, 144.3, 142.0, 133.8, 130.4, 130.3, 129.2, 128.4, 127.2, 127.1, 121.7,
116.3, 109.9, 106.2, 101.8, 101.7, 78.1, 44.5; HRMS (ESI-TOF) m/z: [M + H]* calcd for
C22H17N207 421.1030; found 421.1034.

1-ethyl-3-hydroxy-3-(6-hydroxybenzo[d][1,3]dioxol-5-yl)indolin-2-one (1m). White solid; 297
mg, 95% yield; mp 119-121 °C; column chromatography eluent, petroleum ether/EtOACc = 8:1; 'H
NMR (500 MHz, CDCls) 6 9.37 (s, 1H), 7.47 (d, J = 7.4 Hz, 1H), 7.39 (t, J = 7.8 Hz, 1H), 7.18 (t,
J =75 Hz, 1H), 6.92 (d, J = 7.9 Hz, 1H), 6.55 (s, 1H), 6.25 (s, 1H), 5.86 (s, 1H), 5.84 (s, 1H),
4.63 (s, 1H), 3.73 (qq, J = 14.3, 7.2 Hz, 2H), 1.27 (t, J = 7.2 Hz, 3H); C{*H} NMR (125 MHz,
CDCl3) 6 178.7, 152.3, 148.8, 142.2, 141.3, 130.4, 129.4, 126.2, 123.8, 117.1, 109.4, 106.8, 101.8,
101.4, 79.3, 35.2, 12.4; HRMS (ESI-TOF) m/z: [M + H]* calcd for C17H16NOs 314.1023; found
314.1026.

1-(cyclopropylmethyl)-3-hydroxy-3-(6-hydroxybenzo[d][1,3]dioxol-5-yl)indolin-2-one  (1p).
White solid; 305 mg, 90% yield; mp 108-110 °C; column chromatography eluent, petroleum
ether/EtOAC = 8:1; *H NMR (500 MHz, CDCls) 6 9.38 (s, 1H), 7.48 (d, J = 7.4 Hz, 1H), 7.39 (t, J
= 7.8 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H), 6.98 (d, J = 7.9 Hz, 1H), 6.55 (s, 1H), 6.26 (s, 1H), 5.86 (s,
1H), 5.84 (s, 1H), 4.68 (s, 1H), 3.60 (dd, J = 14.5, 6.9 Hz, 1H), 3.52 (dd, J = 14.5, 7.0 Hz, 1H),
1.21-1.10 (m, 1H), 0.58-0.48 (m, 2H), 0.42-0.31 (m, 2H); *C{*H} NMR (125 MHz, CDCl3) &
179.0, 152.3, 148.8, 142.8, 141.3, 130.3, 129.4, 126.1, 123.8, 117.1, 109.7, 106.7, 101.7, 101.4,
79.3, 44.8, 9.4, 4.0, 4.0; HRMS (ESI-TOF) m/z: [M + H]* calcd for C1oH1sNOs 340.1179; found

340.1180.
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1-cyclopropyl-3-hydroxy-3-(6-hydroxybenzo[d][1,3]dioxol-5-yl)indolin-2-one  (1g). White
solid; 299 mg, 92% vyield; mp 108-110 °C; column chromatography eluent, petroleum
ether/EtOAC = 8:1; *H NMR (500 MHz, CDCls) § 9.27 (s, 1H), 7.42 (m, 2H), 7.18 (m, 2H), 6.55
(s, 1H), 6.21 (s, 1H), 5.86 (s, 1H), 5.84 (s, 1H), 4.53 (s, 1H), 2.69-2.60 (m, 1H), 1.12-1.00 (m,
2H), 0.96-0.84 (m, 2H); *C{*H} NMR (125 MHz, CDCls) 5 180.0, 152.2, 148.8, 143.6, 141.3,
130.4, 128.6, 125.9, 123.9, 117.2, 110.5, 106.8, 101.8, 101.4, 79.3, 22.5, 6.0, 6.0; HRMS
(ESI-TOF) m/z: [M + H]* calcd for C1sH16NOs 326.1023; found 326.1020.

1-benzyl-7°,8'-dihydrospiro[indoline-3,10'-[1,3]dioxolo[4,5-b]xanthene]-2,9'(6"H)-dione
(3aa). White solid; 42.4 mg, 94% vyield; mp 237-239 <C; column chromatography eluent,
petroleum ether/EtOAC = 6:1; 'H NMR (500 MHz, CDCls) § 7.52 (d, J = 7.4 Hz, 2H), 7.37 (t,J =
7.6 Hz, 2H), 7.28 (t, J = 7.4 Hz, 1H), 7.15-7.07 (m, 1H), 6.94-6.85 (m, 2H), 6.74 (d, J = 7.8 Hz,
1H), 6.59 (s, 1H), 6.00 (s, 1H), 5.86 (d, J = 1.2 Hz, 1H), 5.84 (d, J = 1.2 Hz, 1H), 5.09 (d, J = 15.7
Hz, 1H), 5.00 (d, J = 15.7 Hz, 1H), 2.83-2.67 (m, 2H), 2.48-2.29 (m, 2H), 2.17-2.08 (m, 1H),
2.07-1.96 (m, 1H); C{*H} NMR (125 MHz, CDCls) § 195.8, 178.6, 167.9, 147.8, 145.3, 143.5,
142. 7, 136.5, 136.2, 128.8 (2C), 128.2, 127.6 (2C), 127.5, 123.0, 122.9, 114.0, 111.0, 109.3,
105.1, 101.7, 98.5, 48.7, 44.6, 36.9, 28.1, 20.4; HRMS (ESI-TOF) m/z: [M + H]* calcd for
Ca2sH22NOs 452.1492; found 452.1497.

1-benzyl-5-methoxy-7",8'-dihydrospiro[indoline-3,10'-[1,3]dioxolo[4,5-b]xanthene]-2,9'(6'H)-
dione (3ba). White solid; 42.3 mg, 88% yield; mp 261-263 <C; column chromatography eluent,
petroleum ether/EtOAc = 6:1; *H NMR (500 MHz, CDCl3) 6 7.52 (d, J = 7.3 Hz, 2H), 7.37 (t, J =
7.6 Hz, 2H), 7.28 (t, J = 7.4 Hz, 1H), 6.62 (m, 2H), 6.59 (s, 1H), 6.52-6.48 (m, 1H), 6.02 (s, 1H),

5.88 (d, J = 1.4 Hz, 1H), 5.86 (d, J = 1.4 Hz, 1H), 5.05 (d, J = 15.7 Hz, 1H), 4.99 (d, J = 15.7 Hz,
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1H), 3.65 (s, 3H), 2.81-2.68 (m, 2H), 2.47-2.32 (m, 2H), 2.18-2.08 (m, 1H), 2.08-1.97 (m, 1H);

13C NMR{*H} (125 MHz, CDCls) & 195.8, 178.3, 167.9, 156.2, 147.8, 145.3, 143.4, 137.8, 136.3,

oNOYTULT D WN =

9 136.2, 128.8 (2C), 127.6 (2C), 127.5, 113.9, 112.0, 110.9, 110.9, 109.6, 105.2, 101.7, 98.5, 55.6,
12 49.1, 44.7, 36.9, 28.1, 20.4; HRMS (ESI-TOF) m/z: [M + H]* calcd for CoH24NOs 482.1598;
found 482.1605.

17 1-benzyl-5-methyl-7*,8'-dihydrospiro[indoline-3,10'-[1,3]dioxolo[4,5-b]xanthene]-2,9'(6'H)-d

20 ione (3ca). White solid; 44.2 mg, 95% yield; mp 250-252 °C; column chromatography eluent,
22 petroleum ether/EtOAc = 6:1; *H NMR (500 MHz, CDCl3) 6 7.52 (d, J = 7.5 Hz, 2H), 7.36 (t, J =
25 7.6 Hz, 2H), 7.28 (t, J = 7.4 Hz, 1H), 6.90 (dd, J = 7.9, 0.8 Hz, 1H), 6.70 (d, J = 0.6 Hz, 1H), 6.62
(d, 3 =7.9 Hz, 1H), 6.59 (s, 1H), 6.01 (s, 1H), 5.87 (d, J = 1.3 Hz, 1H), 5.86 (d, J = 1.3 Hz, 1H),
30 5.07 (d, J = 15.7 Hz, 1H), 4.99 (d, J = 15.7 Hz, 1H), 2.82-2.68 (m, 2H), 2.47-2.32 (m, 2H), 2.18
33 (s, 3H), 2.12 (dt, J = 17.6, 5.9 Hz, 1H), 2.09-1.99 (m, 1H); *C{*H} NMR (125 MHz, CDCls) §
35 195.9, 178.5, 167.8, 147.7, 145.2, 143.5, 140.3, 136.5, 136.3, 132.4, 128.7 (2C), 128.5, 127.6 (2C),
38 1275, 123.9, 114.2, 111.1, 109.0, 105.3, 101.7, 98.4, 48.8, 44.7, 36.9, 28.1, 21.1, 20.4; HRMS
(ESI-TOF) m/z: [M + H]* calcd for C2sH24NOs 466.1649; found 466.1657.

43 1-benzyl-5-fluoro-7°,8'-dihydrospiro[indoline-3,10'-[1,3]dioxolo[4,5-b]xanthene]-2,9*(6"H)-di

46 one (3da). White solid; 44.1 mg, 94% yield; mp 233-235 °C; column chromatography eluent,
48 petroleum ether/EtOAc = 6:1; *H NMR (500 MHz, CDCl3) § 7.50 (d, J = 7.3 Hz, 2H), 7.38 (t, J =
51 7.6 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 6.79 (td, J = 8.9, 2.6 Hz, 1H), 6.68-6.62 (m, 2H), 6.60 (s,
1H), 5.99 (s, 1H), 5.88 (d, J = 1.3 Hz, 1H), 5.87 (d, J = 1.3 Hz, 1H), 5.06 (d, J = 15.7 Hz, 1H),
56 4.99 (d, J = 15.7 Hz, 1H), 2.82-2.68 (m, 2H), 2.48-2.31 (m, 2H), 2.19-2.09 (m, 1H), 2.09-1.99

o (m, 1H); 3C{*H} NMR (125 MHz, CDCls) § 195.8, 178.3, 168.2, 159.5 (d, J = 239.6 Hz), 148.0,
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145.4, 143.5, 138.6 (d, J = 1.9 Hz), 137.9 (d, J = 7.5 Hz), 135.9, 128.8 (2C), 127.7, 127.5 (2C),
114.4 (d, J = 23.4 Hz), 113.3, 111.2 (d, J = 24.8 Hz), 110.6, 109.8 (d, J = 8.0 Hz), 105.0, 101.8,
98.6, 49.1 (d, J = 1.6 Hz), 44. 8, 36.9, 28.1, 20.4; F NMR (470 MHz, CDCls) § -120.2; HRMS
(ESI-TOF) m/z: [M + H]* calcd for CsH21FNOs 470.1398; found 470.1403.
1-benzyl-7-fluoro-7°,8'-dihydrospiro[indoline-3,10'-[1,3]dioxolo[4,5-b]xanthene]-2,9*(6"H)-di
one (3ea). White solid; 40.8 mg, 87% yield; mp 256-258 °C; column chromatography eluent,
petroleum ether/EtOAc = 6:1; *H NMR (500 MHz, CDCl3) 6 7.52 (d, J = 7.4 Hz, 2H), 7.35 (t, J =
7.4 Hz, 2H), 7.27 (t, J = 7.4 Hz, 1H), 6.95-6.86 (m, 1H), 6.84 (td, J = 7.8, 4.6 Hz, 1H), 6.68 (d, J
= 7.2 Hz, 1H), 6.58 (s, 1H), 5.92 (s, 1H), 5.86 (s, 1H), 5.84 (s, 1H), 5.22 (d, J = 15.3 Hz, 1H), 5.09
(d, J = 15.3 Hz, 1H), 2.82-2.65 (m, 2H), 2.47-2.27 (m, 2H), 2.12 (dt, J = 11.9, 5.6 Hz, 1H),
2.07-1.94 (m, 1H); BC{*H} NMR (125 MHz, CDCls) § 195.7, 178.2, 168.0, 147.9, 147.3 (d, J =
243.1 Hz), 145.3, 143.3, 139.3 (d, J = 2.9 Hz), 137.5, 129.3 (d, J = 8.6 Hz), 128.5 (2C), 127.8,
127.8, 127.5, 123.5 (d, J = 6.4 Hz), 119.0 (d, J = 2.9 Hz), 116.4 (d, J = 19.8 Hz), 113.5, 110.8,
104.9, 101.8, 98.5, 48.9 (d, J = 2.1 Hz), 46.0 (d, J = 4.4 Hz), 36.8, 28.1, 20.4; *°F NMR (470 MHz,
CDCl3) & -133.9; HRMS (ESI-TOF) m/z: [M + H]* calcd for CxsH21FNOs 470.1398; found
470.1401.
1-benzyl-5-chloro-7',8'-dihydrospiro[indoline-3,10°-[1,3]dioxolo[4,5-b]xanthene]-2,9'(6"H)-di

one (3fa). White solid; 43.7 mg, 90% yield; mp 249-251 °C; column chromatography eluent,
petroleum ether/EtOAC = 6:1; *H NMR (500 MHz, CDCls) § 7.50 (d, J = 7.4 Hz, 2H), 7.38 (t, J =
7.6 Hz, 2H), 7.29 (t, J = 7.3 Hz, 1H), 7.07 (dd, J = 8.3, 2.0 Hz, 1H), 6.87 (d, J = 2.0 Hz, 1H), 6.65
(d, J = 8.3 Hz, 1H), 6.60 (s, 1H), 5.97 (s, 1H), 5.89 (d, J = 0.9 Hz, 1H), 5.88 (s, 1H), 5.06 (d, J =

15.7 Hz, 1H), 4.99 (d, J = 15.7 Hz, 1H), 2.84-2.69 (m, 2H), 2.49-2.33 (m, 2H), 2.21-2.10 (m, 1H),
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2.09-1.98 (m, 1H); BC{*H} NMR (125 MHz, CDCls) & 195.8, 178.1, 168.2, 148.0, 145.4, 143.5,
141.3, 138.0, 135.7, 128.9 (2C), 128.2, 128.1, 127.7, 127.5 (2C), 123.6, 113.2, 110.5, 110.2, 104.9,
101.8, 98.6, 48.8, 44.8, 36.8, 28.1, 20.4; HRMS (ESI-TOF) m/z: [M + H]"* calcd for C2sH2:CINOs
486.1103; found 486.1106.
1-benzyl-6-chloro-7',8'-dihydrospiro[indoline-3,10°-[1,3]dioxolo[4,5-b]xanthene]-2,9°(6"H)-di
one (3ga). White solid; 40.8 mg, 84% yield; mp 253-255 °C; column chromatography eluent,
petroleum ether/EtOAc = 6:1; *H NMR (500 MHz, CDCl3) 6 7.50 (d, J = 7.4 Hz, 2H), 7.39 (t, J =
7.6 Hz, 2H), 7.30 (t, J = 7.4 Hz, 1H), 6.88 (dd, J = 7.9, 1.8 Hz, 1H), 6.81 (d, J = 7.9 Hz, 1H), 6.74
(d, J = 1.8 Hz, 1H), 6.59 (s, 1H), 5.97 (s, 1H), 5.88 (d, J = 1.3 Hz, 1H), 5.86 (d, J = 1.3 Hz, 1H),
5.07 (d, J = 15.7 Hz, 1H), 4.94 (d, J = 15.7 Hz, 1H), 2.81-2.67 (m, 2H), 2.47-2.30 (m, 2H),
2.17-2.08 (m, 1H), 2.02 (ddq, J = 10.8, 8.3, 5.4 Hz, 1H); BC{*H} NMR (125 MHz, CDCls) &
195.8,178.4, 168.1, 148.0, 145.4, 143.9, 143.5, 135.6, 134.9, 133.8, 128.9 (2C), 127.8, 127.5 (2C),
124.0, 122.8, 113.3, 110.6, 109.8, 104.9, 101.8, 98.5, 48.4, 44.7, 36.9, 28.1, 20.4; HRMS
(ESI-TOF) m/z: [M + H]" calcd for C2sH21CINOs 486.1103; found 486.1103.
1-benzyl-4-bromo-7',8'-dihydrospiro[indoline-3,10°-[1,3]dioxolo[4,5-b]xanthene]-2,9'(6"H)-di
one (3ha). White solid; 35.4 mg, 67% yield; mp 247-249 °C; column chromatography eluent,
petroleum ether/EtOAC = 6:1; *H NMR (500 MHz, CDCls) § 7.51 (d, J = 7.6 Hz, 2H), 7.38 (t, J =
7.5 Hz, 2H), 7.30 (t, J = 7.3 Hz, 1H), 7.02-6.96 (m, 2H), 6.70 (dd, J = 5.9, 2.7 Hz, 1H), 6.60 (s,
1H), 5.99 (s, 1H), 5.92-5.86 (m, 2H), 5.08 (d, J = 15.7 Hz, 1H), 4.99 (d, J = 15.7 Hz, 1H),
2.80-2.67 (m, 2H), 2.47-2.34 (m, 2H), 2.18-1.97 (m, 2H); *C{*H} NMR (125 MHz, CDCls) &

196.0, 177.9, 169.1, 148.1, 145.2, 144.7, 144.6, 135.8, 132.8, 129.7, 128.9 (2C), 127.7, 127.6 (2C),
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126.7, 118.9, 111.4, 109.0, 108.4, 104.6, 101.8, 98.3, 50.3, 44.8, 36.8, 28.2, 20.5; HRMS
(ESI-TOF) m/z: [M + H]* calcd for C2sH21BrNOs 530.0598; found 530.0599.
1-benzyl-5-bromo-7',8'-dihydrospiro[indoline-3,10°-[1,3]dioxolo[4,5-b]xanthene]-2,9'(6"H)-di
one (3ia). White solid; 48.6 mg, 92% yield; mp 265-267 °C; column chromatography eluent,
petroleum ether/EtOAc = 6:1; 'H NMR (500 MHz, CDCls) & 7.49 (d, J = 7.3 Hz, 2H), 7.38 (m,
2H), 7.29 (t, J = 7.4 Hz, 1H), 7.22 (dd, J = 8.3, 2.0 Hz, 1H), 6.99 (d, J = 2.0 Hz, 1H), 6.60 (m, 2H),
5.97 (s, 1H), 5.89 (d, J = 1.3 Hz, 1H), 5.88 (d, J = 1.3 Hz, 1H), 5.05 (d, J = 15.7 Hz, 1H), 4.98 (d,
J = 15.7 Hz, 1H), 2.84-2.67 (m, 2H), 2.50-2.32 (m, 2H), 2.21-2.09 (m, 1H), 2.10-1.99 (m, 1H);
BC{*H} NMR (125 MHz, CDCls) § 195.8, 178.0, 168.2, 148.0, 145.4, 143.5, 141.8, 138.3, 135.7,
131.0, 128.9 (2C), 127.7, 127.5 (2C), 126.4, 115.6, 113.1, 110.7, 110.5, 105.0, 101.8, 98.6, 48.7,
44.7, 36.8, 28.1, 20.3; HRMS (ESI-TOF) m/z: [M + H]* calcd for C2sH2:BrNOs 530.0598; found
530.0604.
1-benzyl-6-bromo-7*,8'-dihydrospiro[indoline-3,10°-[1,3]dioxolo[4,5-b]xanthene]-2,9'(6"H)-di
one (3ja). White solid; 45.0 mg, 85% yield; mp 272-274 °C; column chromatography eluent,
petroleum ether/EtOAc = 6:1; 'H NMR (500 MHz, CDCls) & 7.50 (d, J = 7.2 Hz, 2H), 7.39 (m,
2H), 7.30 (t, J = 7.4 Hz, 1H), 7.04 (dd, J = 7.9, 1.7 Hz, 1H), 6.89 (d, J = 1.6 Hz, 1H), 6.76 (d, J =
7.9 Hz, 1H), 6.59 (s, 1H), 5.96 (s, 1H), 5.88 (d, J = 1.3 Hz, 1H), 5.86 (d, J = 1.3 Hz, 1H), 5.06 (d,
J=15.7 Hz, 1H), 4.94 (d, J = 15.7 Hz, 1H), 2.82-2.67 (m, 2H), 2.46-2.30 (m, 2H), 2.17-2.07 (m,
1H), 2.07-1.96 (m, 1H); *C{*H} NMR (125 MHz, CDCls) & 195.8, 178.3, 168.1, 148.0, 145.4,
144.1, 1435, 135.6, 135.4, 128.9 (2C), 127.8, 127.5 (2C), 125.8, 124.4, 121.7, 113.2, 112.5, 110.6,
104.9, 101.8, 98.5, 48.4, 44.7, 36.8, 28.1, 20.4; HRMS (ESI-TOF) m/z: [M + H]* calcd for

CasH21BrNOs 530.0598; found 530.0597.
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1-benzyl-5-nitro-7°,8'-dihydrospiro[indoline-3,10'-[1,3]dioxolo[4,5-b]xanthene]-2,9'(6"H)-dio
ne (3ka). Yellow solid; 43.6 mg, 88% yield; mp 292-294 °C; column chromatography eluent,
petroleum ether/EtOAC = 6:1; *H NMR (500 MHz, CDCls) § 8.09 (dd, J = 8.7, 2.2 Hz, 1H), 7.79
(d, J =2.2 Hz, 1H), 7.50 (d, J = 7.5 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.33 (t, J = 7.3 Hz, 1H),
6.83 (d, J = 8.7 Hz, 1H), 6.64 (s, 1H), 5.91 (s, 1H), 5.90 (s, 1H), 5.89 (s, 1H), 5.12 (d, J = 15.7 Hz,
1H), 5.05 (d, J = 15.7 Hz, 1H), 2.80 (t, J = 6.3 Hz, 2H), 2.47-2.34 (m, 2H), 2.23-2.03 (m, 2H);
BC{*H} NMR (125 MHz, CDCl3) 5 196.1, 178.7, 168. 9, 148.5, 148.4, 145.6, 143.7, 143.6, 137.2,
135.0, 129.1 (2C), 128.1, 127.6 (2C), 125.5, 119.1, 112.2, 110.1, 108.8, 104.5, 102.0, 98.9, 48.6,
45.0, 36.7, 28.1, 20.3; HRMS (ESI-TOF) m/z: [M + H]* calcd for C2sH21N207 497.1343; found
497.1355.

1-methyl-7°,8"-dihydrospiro[indoline-3,10'-[1,3]dioxolo[4,5-b]xanthene]-2,9*(6'H)-dione (3la).
White solid; 31.9 mg, 85% yield; mp 244-246 °C; column chromatography eluent, petroleum
ether/EtOAC = 6:1; *H NMR (500 MHz, CDCls) 6 7.25 (td, J = 7.7, 1.4 Hz, 1H), 6.94 (td, J = 7.4,
0.8 Hz, 1H), 6.92-6.88 (m, 2H), 6.58 (s, 1H), 6.02 (s, 1H), 5.85 (s, 2H), 3.35 (s, 3H), 2.78-2.66
(m, 2H), 2.42-2.26 (m, 2H), 2.15-2.06 (m, 1H), 2.05-1.96 (m, 1H); C{*H} NMR (125 MHz,
CDCl3) 6 195.8, 178.6, 167.8, 147.7, 145.2, 143.6, 143.6, 136.5, 128.4, 123.0, 122.9, 113.8, 111.2,
108.1, 105.2, 101.7, 98.4, 48.8, 36.9, 28.1, 26.8, 20.4; HRMS (ESI-TOF) m/z: [M + H]* calcd for
C22H1sNOs 376.1179; found 376.1188.

1-ethyl-7",8"-dihydrospiro[indoline-3,10'-[1,3]dioxolo[4,5-b]xanthene]-2,9'(6'H)-dione (3ma).
White solid; 36.2 mg, 93% yield; mp 193-195 °C; column chromatography eluent, petroleum
ether/EtOAC = 6:1; *H NMR (500 MHz, CDCls) & 7.23 (td, J = 7.5, 1.7 Hz, 1H), 6.96-6.87 (m,

3H), 6.57 (s, 1H), 6.02 (s, 1H), 5.85 (s, 2H), 3.94 (dq, J = 14.4, 7.2 Hz, 1H), 3.83 (dq, J = 14.3, 7.2
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Hz, 1H), 2.80-2.66 (m, 2H), 2.43-2.26 (m, 2H), 2.15-2.06 (m, 1H), 2.05-1.94 (m, 1H), 1.40 (t, J
= 7.2 Hz, 3H); BC{*H} NMR (125 MHz, CDCl3) § 195.8, 178.0, 167.7, 147.7, 145.2, 143.5, 142.6,
136.8, 128.3, 123.2, 122.6, 114.0, 111.2, 108.3, 105.1, 101.7, 98.4, 48.7, 36.9, 35.1, 28.1, 20.4,
12.1; HRMS (ESI-TOF) m/z: [M + H]* calcd for C23H20NOs 390.1336; found 390.1335.
1-allyl-7°,8'-dihydrospiro[indoline-3,10°-[1,3]dioxolo[4,5-b]xanthene]-2,9'(6'H)-dione  (3na).
White solid; 38.9 mg, 97% yield; mp 192-194 °C; column chromatography eluent, petroleum
ether/EtOAC = 6:1; *H NMR (500 MHz, CDCls) § 7.21 (td, J = 7.7, 1.4 Hz, 1H), 6.98-6.87 (m,
3H), 6.58 (s, 1H), 6.03 (s, 1H), 6.03-5.95 (m, 1H), 5.86 (s, 2H), 5.52 (dd, J = 17.2, 1.2 Hz, 1H),
5.31 (dd, J = 10.3, 1.1 Hz, 1H), 4.52 (ddt, J = 16.1, 4.8, 1.5 Hz, 1H), 4.41 (dd, J = 16.2, 5.7 Hz,
1H), 2.81-2.65 (m, 2H), 2.43-2.26 (m, 2H), 2.17-2.06 (m, 1H), 2.06-1.95 (m, 1H); “C{*H}
NMR (125 MHz, CDCl3) § 195.8, 178.2, 167.8, 147.8, 145.3, 143.6, 142.7, 136.5, 131.8, 128.2,
123.1, 122.8, 118.0, 113.9, 111.1, 109.2, 105.2, 101.7, 98.5, 48.7, 43.1, 36.9, 28.1, 20.4; HRMS
(ESI-TOF) m/z: [M + H]* calcd for C2:sH20NOs 402.1336; found 402.1337.
1-(prop-2-yn-1-yl)-7*,8'-dihydrospiro[indoline-3,10'-[1,3]dioxolo[4,5-b]xanthene]-2,9'(6"H)-d
ione (30a). White solid; 36.3 mg, 91% yield; mp 211-213 °C; column chromatography eluent,
petroleum ether/EtOAc = 6:1; *H NMR (500 MHz, CDCls) & 7.31-7.26 (m, 1H), 7.13 (d, J = 7.9
Hz, 1H), 6.98 (td, J = 7.5, 0.5 Hz, 1H), 6.92 (d, J = 7.4 Hz, 1H), 6.59 (d, J = 1.6 Hz, 1H), 6.09 (d,
J = 1.6 Hz, 1H), 5.87 (d, J = 1.6 Hz, 2H), 4.92-4.79 (m, 1H), 4.51-4.38 (m, 1H), 2.81-2.67 (m,
2H), 2.46-2.27 (m, 3H), 2.11 (tt, J = 10.7, 5.3 Hz, 1H), 2.06-1.95 (m, 1H); 3C{*H} NMR (125
MHz, CDCl3) 6 195.9, 177.5, 167.9, 147.8, 145.31, 143.5, 141.6, 136.3, 128.3, 123.3, 123.1, 113.7,
110.9, 109.2, 105.2, 101.7, 98.4, 77.2, 72.4, 48.6, 36.8, 29.9, 28.1, 20.4; HRMS (ESI-TOF) m/z:

[M + H]* calcd for C24H1sNOs 400.1179; found 400.1182.
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1-(cyclopropylmethyl)-7*,8'-dihydrospiro[indoline-3,10'-[1,3]dioxolo[4,5-b]xanthene]-2,9'(6*
H)-dione (3pa). White solid; 39.0 mg, 94% yield; mp 184-186 °C; column chromatography
eluent, petroleum ether/EtOAc = 6:1; *H NMR (500 MHz, CDCls) § 7.23 (td, J = 7.7, 1.6 Hz, 1H),
6.99 (d, J = 7.8 Hz, 1H), 6.95-6.86 (m, 2H), 6.57 (s, 1H), 6.10 (s, 1H), 5.86 (d, J = 1.2 Hz, 1H),
5.85 (d, J = 1.2 Hz, 1H), 3.73 (qd, J = 14.4, 6.8 Hz, 2H), 2.79-2.65 (m, 2H), 2.44-2.26 (m, 2H),
2.16-2.06 (m, 1H), 2.00 (dtt, J = 10.8, 8.2, 5.5 Hz, 1H), 1.38-1.28 (m, 1H), 0.67-0.54 (m, 2H),
0.51-0.38 (m, 2H); *C{*H} NMR (125 MHz, CDCls)  195.7, 178.4, 167.7, 147.7, 145.2, 143.5,
143.1, 136.7, 128.2, 123.1, 122.6, 114.1, 111.1, 108.6, 105.1, 101.7, 98.4, 48. 7, 44.7, 36.8, 28.1,
20.4, 9.6, 4.0, 3.9; HRMS (ESI-TOF) m/z: [M + H]* calcd for CxsH22NOs 416.1492; found
416.1496.

1-cyclopropyl-7*,8'-dihydrospiro[indoline-3,10'-[1,3]dioxolo[4,5-b]xanthene]-2,9'(6'H)-dione
(3ga). White solid; 36.9 mg, 92% yield; mp 243-245 °C; column chromatography eluent,
petroleum ether/EtOAC = 6:1; *H NMR (500 MHz, CDCl3) § 7.24 (dd, J = 7.7, 1.2 Hz, 1H), 7.16
(d, J=7.7 Hz, 1H), 6.93 (td, J = 7.4, 0.9 Hz, 1H), 6.86 (dd, J = 7.3, 0.8 Hz, 1H), 6.57 (s, 1H), 5.96
(s, 1H), 5.86 (d, J = 0.8 Hz, 2H), 2.83 (dq, J = 6.8, 4.0 Hz, 1H), 2.77-2.65 (m, 2H), 2.39-2.25 (m,
2H), 2.14-2.05 (m, 1H), 1.99 (dtt, J = 11.0, 8.1, 5.7 Hz, 1H), 1.14-1.06 (m, 3H), 1.03 (ddd, J =
13.4, 6.3, 3.0 Hz, 1H); *C{*H} NMR (125 MHz, CDCl3) & 195.9, 179.1, 167.6, 147.7, 145.2,
144.0, 143.6, 136.0, 128.2, 123.0, 122.7, 114.1, 111.4, 109.5, 105.1, 101.7, 98.4, 48.9, 36.9, 28.0,
22.7, 20.4, 6.3, 6.2; HRMS (ESI-TOF) m/z: [M + H]* calcd for C2H20NOs 402.1336; found
402.1335.

7',8'-dihydrospiro[indoline-3,10'-[1,3]dioxolo[4,5-b]xanthene]-2,9'(6'H)-dione (3ra). White

solid; 30.7 mg, 85% vyield; mp 294-296 <C; column chromatography eluent, petroleum
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ether/EtOAC = 3:1;'H NMR (500 MHz, CDCls) & 8.14 (s, 1H), 7.16 (t, J = 7.4 Hz, 1H), 6.90 (m,
3H), 6.58 (s, 1H), 6.20 (s, 1H), 5.87 (s, 1H), 5.87 (s, 1H), 2.81-2.66 (m, 2H), 2.48-2.30 (m, 2H),
2.13 (tt, J = 10.6, 5.2 Hz, 1H), 2.08-1.97 (m, 1H); BC{*H} NMR (125 MHz, CDCls) & 196.0,
180.0, 168.0, 147.8, 145.4, 143.4, 140.5, 137.1, 128.3, 123.4, 122.8, 113.6, 111.0, 110.0, 105.4,
101.7, 98.4, 49.1, 36.9, 28.1, 20.4; HRMS (ESI-TOF) m/z: [M + H]* calcd for C21H1sNOs
362.1023; found 362.1027.
1'-benzyl-10,11-dihydrospiro[benzo[c]xanthene-7,3'-indoline]-2',8(9H)-dione  (3sa). White
solid; 33.4 mg, 73% vyield; mp 272-274 <C; column chromatography eluent, petroleum
ether/EtOAC = 6:1; 'H NMR (500 MHz, CDCls) & 8.28 (d, J = 8.3 Hz, 1H), 7.72 (d, J = 8.1 Hz,
1H), 7.57 (m, 3H), 7.50 (t, J = 7.3 Hz, 1H), 7.43-7.35 (m, 3H), 7.30 (t, J = 7.3 Hz, 1H), 7.17-7.07
(m, 1H), 6.94-6.84 (m, 2H), 6.79 (d, J = 7.8 Hz, 1H), 6.64 (d, J = 8.6 Hz, 1H), 5.18 (d, J = 15.7
Hz, 1H), 5.01 (d, J = 15.6 Hz, 1H), 2.94 (t, J = 6.2 Hz, 2H), 2.55-2.36 (m, 2H), 2.20 (it, J = 11.7,
5.7 Hz, 1H), 2.15-2.05 (m, 1H); BC{*H} NMR (125 MHz, CDCls) & 195.9, 178.6, 167.7, 143.7,
142.9, 136.7, 136.4, 133.5, 128.8 (2C), 128.3, 127.7 (2C), 127.6, 127.6, 127.0, 126.8, 125.3, 123.8,
1235, 123.3, 123.0, 121.3, 116.5, 112.1, 109.3, 48.9, 44.8, 37.0, 28.2, 20.5; HRMS (ESI-TOF)
m/z: [M + H]* calcd for Cs1H24NO3 458.1751; found 458.1748.
1-benzyl-7°,7'-dimethyl-7*,8"-dihydrospiro[indoline-3,10'-[1,3]dioxolo[4,5-b]xanthene]-2,9' (6"
H)-dione (3ab). White solid; 46.5 mg, 97% yield; mp 221-223 °C; column chromatography
eluent, petroleum ether/EtOAc = 6:1; *H NMR (500 MHz, CDCl3) & 7.52 (d, J = 7.6 Hz, 2H), 7.37
(t, J = 7.6 Hz, 2H), 7.28 (t, J = 7.4 Hz, 1H), 7.14-7.07 (m, 1H), 6.92-6.86 (m, 2H), 6.74 (d, J =
7.8 Hz, 1H), 6.58 (s, 1H), 6.01 (s, 1H), 5.86 (d, J = 1.2 Hz, 1H), 5.84 (d, J = 1.2 Hz, 1H), 5.08 (d,

J =15.7 Hz, 1H), 5.00 (d, J = 15.7 Hz, 1H), 2.66 (d, J = 17.3 Hz, 1H), 2.55 (d, J = 17.4 Hz, 1H),
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2.31 (d, J =16.2 Hz, 1H), 2.19 (d, J = 16.2 Hz, 1H), 1.16 (s, 3H), 1.10 (s, 3H); *C{*H} NMR
(125 MHz, CDCl3) & 195.6, 178.5, 166.2, 147.8, 145.3, 143.6, 142.6, 136.4, 136.2, 128.8 (2C),
128.2, 127.6 (2C), 127.5, 122.9 (2C), 114.0, 109.7, 109.3, 105.1, 101.7, 98.5, 50.7, 48.7, 44.6,
41.8, 32.2, 29.0, 27.5; HRMS (ESI-TOF) m/z: [M + H]* calcd for C3H2sNOs 480.1805; found
480.1814.
1-benzyl-7'-methyl-7*,8'-dihydrospiro[indoline-3,10°-[1,3]dioxolo[4,5-b]xanthene]-2,9'(6"H)-
dione (3ac). White solid; 41.9 mg, 90% yield; mp 224-226 °C; column chromatography eluent,
petroleum ether/EtOAc = 6:1; *H NMR (500 MHz, CDCl3) 6 7.52 (d, J = 7.5 Hz, 2H), 7.37 (t, J =
7.6 Hz, 2H), 7.28 (t, J = 7.4 Hz, 1H), 7.15-7.06 (m, 1H), 6.94-6.84 (m, 2H), 6.74 (d, J = 7.8 Hz,
1H), 6.59 (s, 1H), 6.00 (d, J = 2.7 Hz, 1H), 5.85 (d, J = 7.9 Hz, 2H), 5.15-4.93 (m, 2H), 2.75 (m,
1H), 2.55-2.22 (m, 3H), 2.11 (m, 1H), 1.11 (t, J = 6.1 Hz, 3H); *C{*H} NMR (125 MHz, CDCls)
5195.8,178.5, 166.9, 147.8, 145.3, 143.6, 142.7, 136.5, 136.2, 128.8 (2C), 128.2, 127.6 (2C), 127.
6, 123.0, 123.0, 113.9, 110.4, 109.3, 105.2, 101.7, 98.5, 48.8, 45.1, 44.7, 36.0, 28.0, 20.7; HRMS
(ESI-TOF) m/z: [M + H]" calcd for C2sH24NOs 466.1649; found 466.1659.
1'-benzyl-6,7-dihydro-8H-spiro[cyclopenta[b][1,3]dioxolo[4,5-g]chromene-9,3'-indoline]-2",8

-dione (3ad). White solid; 40.6 mg, 93% yield; mp 224-226 °C; column chromatography eluent,
petroleum ether/EtOAC = 6:1;*H NMR (500 MHz, CDCls) 6 7.48 (d, J = 7.3 Hz, 2H), 7.37 (t, J =
7.6 Hz, 2H), 7.28 (t, J = 7.4 Hz, 1H), 7.16 (ddd, J = 8.9, 7.6, 1.7 Hz, 1H), 6.99-6.91 (m, 2H), 6.75
(d, J = 7.9 Hz, 1H), 6.70 (s, 1H), 6.00 (s, 1H), 5.91 (s, 2H), 5.12 (d, J = 15.8 Hz, 1H), 4.95 (d, J =
15.8 Hz, 1H), 2.95-2.81 (m, 2H), 2.49 (qdd, J = 18.1, 6.7, 3.2 Hz, 2H); 3C{*H} NMR (125 MHz,

CDCl3) & 200.5, 179.4, 176.9, 148.2, 145.7, 145.5, 142.8, 135.5, 134.0, 128.8 (3C), 127.6, 127.3
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(2C), 124.1, 123.3, 114.2, 113.6, 109.6, 105.9, 102.0, 99.1, 48.7, 445, 33.3, 25.9; HRMS
(ESI-TOF) m/z: [M + H]* calcd for C27H20NOs 438.1336; found 438.1347.
7'-acetyl-1-benzyl-6'-methylspiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromen]-2-one (3ae).
White solid; 32.9 mg, 75% yield; mp 212-214 °C; column chromatography eluent, petroleum
ether/EtOAc = 6:1; *H NMR (500 MHz, CDCls) & 7.48 (d, J = 7.5 Hz, 2H), 7.35 (t, J = 7.6 Hz,
2H), 7.27 (t, J = 7.3 Hz, 1H), 7.13 (td, J = 7.7, 1.4 Hz, 1H), 6.98-6.88 (m, 2H), 6.77 (d, J = 7.8 Hz,
1H), 6.56 (s, 1H), 5.91 (s, 1H), 5.84 (s, 1H), 5.83 (s, 1H), 5.08 (d, J = 15.6 Hz, 1H), 4.91 (d, J =
15.6 Hz, 1H), 2.46 (s, 3H), 2.17 (s, 3H); *C{*H} NMR (125 MHz, CDCls) § 197.3, 178.9, 159.9,
147.7, 144.9, 143.9, 142.8, 136.3, 136.1, 128.8 (2C), 128.3, 127.7 (2C), 127.6, 123.1 (2C), 113.7,
113.5, 109.2, 104.8, 101.6, 98.2, 51.3, 44.6, 31.6, 20.9; HRMS (ESI-TOF) m/z: [M + H]* calcd for
C27H22NOs 440.1492; found 440.1489.
7'-benzoyl-1-benzyl-6'-phenylspiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromen]-2-one  (3af).
White solid; 46.7 mg, 83% yield; mp 227-229 <C; column chromatography eluent, petroleum
ether/EtOAC = 15:1; *H NMR (500 MHz, CDCls) 8 7.57-7.51 (m, 2H), 7.48 (d, J = 7.4 Hz, 2H),
7.44-7.39 (m, 2H), 7.36 (t, J = 7.6 Hz, 2H), 7.28 (t, J = 7.4 Hz, 1H), 7.18-7.06 (m, 6H), 7.02 (t, J
= 7.7 Hz, 2H), 6.87 (t, J = 7.2 Hz, 1H), 6.76 (s, 1H), 6.72 (d, J = 7.8 Hz, 1H), 5.99 (s, 1H), 5.89 (s,
2H), 5.14 (d, J = 15.7 Hz, 1H), 4.94 (d, J = 15.7 Hz, 1H); BC{*H} NMR (125 MHz, CDCl3) §
195.6, 178.1, 158.7, 148.0, 145.3, 145.0, 143.2, 138.7, 136.1, 134.6, 133.7, 131.8, 130.3, 129.7
(2C), 129.2 (2C), 128.8 (2C), 128.7, 127.9 (2C), 127.6 (2C), 127.6, 127.5 (2C), 123.7, 123.1,
113.9, 110.2, 109.4, 105.2, 101.7, 98.8, 52.7, 44.6; HRMS (ESI-TOF) m/z: [M + H]"* calcd for

C37H25NOs5 564.1805; found 564.1811.
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benzyl
1-benzyl-6'-methyl-2-oxospiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-7*-carboxylate (3ag).
White solid; 37.2 mg, 70% yield; mp 150-152 °C; column chromatography eluent, petroleum
ether/EtOAc = 40:1; *H NMR (500 MHz, CDCls) & 7.36-7.27 (m, 7H), 7.26 (dt, J = 3.7, 2.0 Hz,
1H), 7.12 (td, J = 7.7, 1.2 Hz, 1H), 7.01-6.98 (m, 1H), 6.94 (t, J = 7.4 Hz, 1H), 6.91-6.87 (m, 2H),
6.55 (t, J = 3.8 Hz, 2H), 5.84 (d, J = 1.3 Hz, 1H), 5.83 (s, 1H), 5.82 (d, J = 1.3 Hz, 1H), 4.90 (d, J
= 15.4 Hz, 1H), 4.77 (d, J = 11.9 Hz, 1H), 4.69 (d, J = 12.0 Hz, 1H), 3.78 (d, J = 15.4 Hz, 1H),
2.52 (s, 3H); *C{*H} NMR (125 MHz, CDCl3) 5 178.9, 165.9, 162.7, 147.8, 144.9, 143.7, 142.5,
137.0, 136.4, 135.2, 128.9 (2C), 128.7 (2C), 128.4 (2C), 128.1, 128.1, 127.8 (2C), 127.7, 123.5,
123.1,112.9, 109.3, 104.8, 101.6, 101.3, 98.4, 66.6, 50.8, 43.9, 20.2; HRMS (ESI-TOF) m/z: [M +
H]* calcd for C3sH26NOs 532.1755; found 532.1769.
ethyl

1-benzyl-2-ox0-6"-phenylspiro[indoline-3,8'-[1,3]dioxolo[4,5-g]chromene]-7*-carboxylate (3ah).
White solid; 32.4 mg, 61% yield; mp 183-185 <C; column chromatography eluent, petroleum
ether/EtOAc = 15:1; *H NMR (500 MHz, CDCls) & 7.55 (d, J = 6.5 Hz, 2H), 7.47 (d, J = 7.5 Hz,
2H), 7.45-7.39 (m, 3H), 7.36 (t, J = 7.5 Hz, 2H), 7.29 (t, J = 7.3 Hz, 1H), 7.18 (t, J = 7.7 Hz, 1H),
7.14 (d, J = 7.3 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 6.80 (d, J = 7.8 Hz, 1H), 6.64 (s, 1H), 5.95 (s,
1H), 5.87 (d, J = 4.2 Hz, 2H), 5.12 (d, J = 15.5 Hz, 1H), 4.88 (d, J = 15.5 Hz, 1H), 3.71 (dq, J =
10.8, 7.1 Hz, 1H), 3.60 (dg, J = 10.8, 7.1 Hz, 1H), 0.56 (t, J = 7.1 Hz, 3H); 33C{*H} NMR (125
MHz, CDCls) 6 178.3, 166.1, 159.9, 147.9, 145.0, 144.8, 143.0, 136.1, 135.6, 134.8, 129.8, 128.8

(2C), 128.6 (3C), 128.0 (2C), 127.8 (2C), 127.7, 123.9, 123.2, 113.2, 109.1, 105.0, 103.8, 101.7,
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98.7, 60.3, 51.6, 44.6, 13.1; HRMS (ESI-TOF) m/z: [M + H]* calcd for CasH2sNOgs 532.1755;
found 532.1759.

(E)-1-benzyl-3-(6-oxobenzo[d][1,3]dioxol-5(6H)-ylidene)indolin-2-one (A). This compound
was detected and obtained by the reaction of oxindole-embedded ortho-hydroxybenzyl alcohol 1a
(0.2 mmol, 37.5 mg) with 1,3-cyclohexanedione 2a (0.12 mmol, 13.5 mg) in the presence of 10
mol % TfOH (0.01 mmol, 1.5 mg) at 80 T for 5 min. Reddish brown oil; <10% yield; E/Z >20:1;
column chromatography eluent, petroleum ether/EtOAc = 18:1;'H NMR (500 MHz, CDCls) §
8.77 (d, J = 8.0 Hz, 1H), 8.60 (s, 1H), 7.32 (m, 5H), 7.22 (t, J = 7.8 Hz, 1H), 6.93 (t, J = 7.6 Hz,
1H), 6.65 (d, J = 7.7 Hz, 1H), 5.97 (s, 2H), 5.95 (s, 1H), 4.94 (s, 2H); *C{*H} NMR (125 MHz,
CDCls) 8 187.9, 169.2, 159.5, 150.3, 144.2, 136.6, 135.8, 132.7, 130.7, 128.8 (2C), 127.7, 127.6,
127.2 (2C), 122.4, 122.0, 108.7, 102.8, 101.5, 101.2, 43.5; HRMS (ESI-TOF) m/z: [M + H]* calcd
for C22H1sNO4 358.1047; found 358.1043.

1-benzyl-5a’-hydroxy-5a’,7°,8",9a’-tetrahydrospiro[indoline-3,10'-[1,3]dioxolo[4,5-b]xanthen
e]-2,9'(6'H)-dione (C). This compound was detected and obtained by the reaction of
oxindole-embedded  ortho-hydroxybenzyl alcohol 1a (0.1 mmol, 375 mg) with
1,3-cyclohexanedione 2a (0.12 mmol, 13.5 mg) in the presence of 10 mol % TfOH (0.01 mmol,
15 mg) at 80 <T for 1 h. White solid; 9.9 mg, 21% vyield; mp 228-230 <C; column
chromatography eluent, petroleum ether/EtOAc = 6:1; *H NMR (500 MHz, CDCls) & 8.81 (s, 1H),
7.50 (d, J = 7.3 Hz, 2H), 7.38 (t, J = 7.2 Hz, 2H), 7.30 (t, J = 7.2 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H),
6.99 (t, J = 7.3 Hz, 1H), 6.91 (d, J = 7.3 Hz, 1H), 6.83 (d, J = 7.8 Hz, 1H), 6.50 (s, 1H), 5.83 (s,
2H), 5.75 (s, 1H), 5.09 (d, J = 15.6 Hz, 1H), 4.99 (d, J = 15.7 Hz, 1H), 3.72 (s, 1H), 2.53-2.40 (m,

2H), 2.33 (td, J = 13.1, 6.8 Hz, 1H), 2.24-2.08 (m, 2H), 2.03 (m, 1H); 3C{*H} NMR (125 MHz,
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CDCl3) 6 204.1, 181.2, 148.5, 146.3, 143.9, 142.9, 135.4, 133.7, 128.9 (2C), 128.8, 127.9, 127.6

(2C), 123.7, 122.3, 112.3, 110.0, 105.2, 101.3, 100.2, 98.6, 59.6, 49.3, 44.9, 40.9, 36.8, 20.7,

HRMS (ESI-TOF) m/z: [M + H]* calcd for C2sH24NOs 470.1598; found 470.1592.

Supporting Information
NMR spectra of products. This material is available free of charge via the Internet at

http://pubs.acs.org.
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