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ABSTRACT
In this study, newly synthesised compounds 6, 8, 10 and other compounds (1–5, 7 and 9) and their
inhibitory properties against the human isoforms hCA I and hCA II were reported for the first time.
Compounds 1–10 showed effective inhibition profiles with KI values in the range of 5.13–16.9 nM for hCA
I and of 11.77–67.39 nM against hCA II, respectively. Molecular docking studies were also performed with
Glide XP to get insight into the inhibitory activity and to evaluate the binding modes of the synthesised
compounds to hCA I and II. More rigorous binding energy calculations using MM-GBSA protocol which
agreed well with observed activities were then performed to improve the docking scores. Results of in sil-
ico calculations showed that all compounds obey drug likeness properties. The new compounds reported
here might be promising lead compounds for the development of new potent inhibitors as alternatives to
classical hCA inhibitors.
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1. Introduction

Carbonic anhydrases (CAs, EC 4.2.1.1) are one of the metalloen-
zymes catalysing the hydration process of CO2 to HCO3

� and Hþ.
All living organisms contain CAs encoded by six phylogenetically
gene families.1,2 Fifteen CA isoenzymes belonging to a-CA gene
family have been characterised in human-beings. Some human CA
(hCA) isoenzymes are cytosolic isoforms (hCA I, II, III, VII and XIII),
some isoenzymes are membrane-bound isoforms (hCA IV, IX, XII
and XIV), both hCA VA and VB are mitochondrial isoforms and
hCA VI isoform is involved in saliva. Three hCA isoenzymes (CA
VIII, X and XI) are characterised as acatalytic protein forms.
Inhibition and activation studies on the catalytic activity of CAs
are crucial for the treatment of numerous clinically important dis-
eases.2,3 The inhibitors of CA isoenzymes (e.g., CA I and CA II) are
used to design new class of drugs for epilepsy and glaucoma.
Therefore, new CA inhibitors have been required to develop as
therapeutic agents.2–4 Several groups have studied the inhibition
of hCAs with anions,4 catecholamines,5 thiourea derivatives,6 uracil
derivatives,7 bromophenols8 and sulphonamides.9 In addition, pyr-
azoles and chalcones have also been studied to inhibit hCAs
as well.10

Heterocyclic compounds have a vital role in medicine, phar-
macy and agriculture.11 Pyrazoles possess various important bio-
medical features.12 This type of derivatives exhibits several thera-
peutic activities such as insecticidal,13 acaricidal,14 anticonvulsant15

antidepressant,16 antiulcer, and anticancer features.17 So far to
date, many chalcone derivatives have been synthesised and their
biological activities examined.18 Several investigations have shown

that chalcones possess important pharmacological characteristics
including antitumor, anti-inflammatory, antifungal and antioxidant
properties.19 The development of effective CA inhibitors is limited
by the lack of selectivity which could lead to serious side effects.2

Hence, it has been of interest to us to develop not only potent
hCA inhibitors but also with a promising selectivity for a specific
isoform. We have previously carried out synthesis of various phe-
nols and methoxyphenols in addition to derivatives of some nat-
ural products which possess different structures.20 Some of our
recently synthesised compounds were found to inhibit CAs in the
milimolar to low nanomolar ranges.21 In the current study, we
focussed on the synthesis and inhibitory effects of some pyrazole
derivatives against hCA I and II isoforms. Computational studies
were also used to enlighten their activities based on the binding
interactions with the target enzymes and their calculated molecu-
lar properties.

2. Methods and materials

2.1. Chemistry
1H and 13 C spectra were recorded on Bruker Ascend 400
(100)–MHz spectrometers and chemical shifts were reported (k)
relative to Me4Si as internal standard. The elemental analyses
were performed on a Costech ESC 4010 instrument. The IR spectra
were determined using a Perkin Elmer 1600 Fourier Transform-
infrared (FT-IR) spectrophotometer on a KBr disc. Melting points
were determined by using a Barnstead electrothermal 9200 series
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digital apparatus. Absorption spectra were recorded on a
Shimadzu UV-1800 spectrophotometer. CA esterase activity was
determined according to Verpoorte et al.22

2.2. General methods for the synthesis of chalcones (1–5)

An aqueous solution of NaOH (60%, 10ml) was added into the
ethanol (6ml) solution of substituted carbaldehyde (20.0mmol)
and a suitable acetophenone (20.0mmol). The mixture was stirred
for a day at room temperature and it was then poured on ice-
water. The mixture was neutralised using 6M hydrochloric acid.
The yellow precipitate obtained was filtered and crystallized from
ethanol-water. (E)-1-(4-aminophenyl)-3-(3,4,5-trimethoxyphenyl)-
prop-2-en-1-one (1), (E)-1-(4-bromophenyl)-3-(3,4,5-trimethoxyphe-
nyl)prop-2-en-1-one (2), (E)-1-p-tolyl-3-(3,4,5-trimethoxyphenyl)
prop-2-en-1-one (3), (E)-1-(4-aminophenyl)-3-(3,4-dimethoxyphenyl)
prop-2-en-1-one (4), (E)-3-(4-(dimethylamino)phenyl)-1-(4-hydroxy-
phenyl)prop-2-en-1-one (5) were synthesised according to the lit-
erature,23 respectively.

2.2.1. General methods for the synthesis of pyrazoles (6–10)
A mixture of (0.007mol) chalcone and (0.014mol) thiosemicarba-
zide were refluxed in ethanol (15ml) while stirring vigorously.
After complete dissolution of the reactants, a solution of
(0.014mol) of KOH in ethanol (15ml) was added dropwise. The
solution was refluxed for another 18 h, allowed to warm at room
temperature and then stirred for 4 h. The crude product was refri-
gerated overnight. The precipitate formed was filtered off and
crystallized from ethanol twice yielding yellow crystals.

2.2.2. 3-(4-Aminophenyl)-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-
1H-pyrazole-1-carbothioamide (6)
IR (ATR), �/cm�1: 3439, 3331, 1591, 1342. 1H-NMR (DMSO-d6),
(d:ppm): 3.10 (1H, dd, J¼ 3.2 and 3.2 Hz), 3.62 (3H, s), 3.70 (6H, s),
3.86 (1H, dd, J¼ 13.6 and 10.8 Hz), 5.80 (1H, dd, J¼ 3.2 and
2.8 Hz), 6.40 (2H, s), 6.56 (2H, d, J¼ 8.8 Hz), 7.53 (2H, d, J¼ 8.4 Hz).
13C-NMR (DMSO-d6), (d:ppm): 175.80, 156.52, 153.35, 151.91,
139.31, 136.82, 129.21, 118.08, 113.71, 103.07, 62.93, 60.38, 56.59,
42.95. Anal. calcd. for: C19H22N4O3S: C, 59.05; H, 5.74; N, 14.50;
Found: C, 59.07; H, 5.71; N, 14.48.

2.2.3. 3-(4-Bromophenyl)-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-
1H-pyrazole-1-carbothioamide (7)
IR (ATR), �/cm�1: 3439, 3263, 1587, 1334. 1H-NMR (DMSO-d6),
(d:ppm): 3.21 (1H, dd, J¼ 3.6 and 3.2 Hz), 3.64 (3H, s), 3.71 (6H, s),
3.90 (1H, dd, J¼ 12.6 and 12.0 Hz), 5.89 (1H, dd, J¼ 2.8 and
2.8 Hz), 6.43 (2H, s), 7.65 (2H, d, J¼ 8.4 Hz), 7.82 (2H, d, J¼ 8.4 Hz).
13C-NMR (DMSO-d6), (d:ppm): 176.20, 154.52, 153.80, 139.64,
136.90, 132.07, 130.42, 129.54, 124.46, 104.37, 63.57, 59.99, 55.98,
42.75. Anal. calcd. for: C19H20BrN3O3S: C, 50.67; H, 4.48; N, 9.33;
Found: C, 50.65; H, 4.47; N, 9.29.

2.2.4. 3-p-Tolyl-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyra-
zole-1-carbothioamide (8)
IR (ATR), �/cm�1: 3433, 3263, 1580, 1338. 1H-NMR (DMSO-d6),
(d:ppm): 2.35 (3H, s), 3.20 (1H, dd, J¼ 3.6 and 3.2 Hz), 3.64 (3H, s),
3.71 (6H, s), 3.92 (1H, dd, J¼ 12.0 and 11.0Hz), 5.88 (1H, dd,
J¼ 3.2 and 2.8 Hz), 6.43 (2H, s), 7.27 (2H, d, J¼ 4Hz), 7.76 (2H, d,
J¼ 4Hz). 13C-NMR (DMSO-d6), (d:ppm): 176.76, 155.73, 153.40,

141.02, 139.18, 136.88, 129.74, 128.59, 127.59, 103.05, 63.34, 60.38,
56.63, 39.68, 21.50. Anal. calcd. for: C20H23N3O3S: C, 62.32; H, 6.01;
N, 10.90; Found: C, 62.31; H, 6.02; N, 10.89.

2.2.5. 3-(4-Aminophenyl)-5-(3,4-dimethoxyphenyl)-4,5-dihydro-1H-
pyrazole-1-carbothioamide (9)
IR (ATR), �/cm�1: 3443, 3304, 1576, 1357. 1H-NMR (DMSO-d6),
(d:ppm): 3.06 (1H, dd, J¼ 2.8 and 2.8 Hz), 3.70 (3H, s), 3.71 (3H, s),
3.82 (1H, dd, J¼ 7.2 and 6Hz), 5.73 (1H, s), 5.81 (1H, dd, J¼ 2.8
and 2.4 Hz), 6.57 (2H, d, J¼ 8.8 Hz), 6.77 (1H, d, J¼ 2), 6.85 (1H, d,
J¼ 8.4), 7.53 (2H, d, J¼ 8.8 Hz). 13C-NMR (DMSO-d6), (d:ppm):
175.51, 156.48, 151.87, 149.08, 148.16, 136.04, 130.61, 129.17,
114.78, 113.73, 112.29, 110.21, 65.92, 55.99, 55.93, 42.93. Anal.
calcd. for: C18H20N4O2S: C, 60.65; H, 5.66; N, 15.72; Found: C, 60.64;
H, 5.63; N, 15.72.

2.2.6. 5-(4-(Dimethylamino)phenyl)-3-(4-hydroxyphenyl)-4,5-dihy-
dro-1H-pyrazole-1-carbothioamide (10)
IR (ATR), �/cm�1: 3430, 3260, 1580, 1346. 1H-NMR (DMSO-d6),
(d:ppm): 2.99 (6H, s), 3.06 (1H, dd, J¼ 2.8 and 2.0 Hz), 3.72 (1H, dd,
J¼ 10.8 and 11.2 Hz), 5.78 (1H, dd, J¼ 2.4 and 2.4 Hz), 6.65 (2H, d,
J¼ 8.8 Hz), 6.83 (2H, d, J¼ 8.8 Hz), 6.95 (2H, d, J¼ 8.4 Hz), 7.71 (2H,
d, J¼ 8.4 Hz), 7.82 (br, –NH2), 11.20 (br, –OH). 13C-NMR (DMSO-d6),
(d:ppm): 175.75, 160.32, 156.50, 151.91, 130.31, 129.21, 127.15,
119.01, 113.95, 63.81, 42.05, 41.78. Anal. calcd. for: C18H20N4OS: C,
63.50; H, 5.92; N, 16.46; Found: C, 63.54; H, 5.88; N, 16.44.

2.3. Biological activity

2.3.1. Inhibition studies of carbonic anhydrase I and II isoforms
Enzyme activity was determined spectrophotometrically by follow-
ing the change in absorbance at 348 nm of 4-nitrophenylacetate
to 4-nitrophenolate over a period of 3min at 25 �C.21 The enzym-
atic reaction contained 1.4ml 0.05M Tris-SO4 buffer (pH 7.4), 1ml
3mM 4-nitrophenylacetate, 0.5ml H2O and 0.1ml enzyme solu-
tion, in a total volume of 3.0ml.24 Inhibitory effects of compounds
1–10 were compared with acetazolamide (AZA). Different inhibitor
concentrations were used and all compounds were tested in tripli-
cate at each concentration used. Control cuvette activity was
acknowledged as 100% in the absence of inhibitor. An Activity% –
[Inhibitor] graph was drawn for each inhibitor.25 The curve-fitting
algorithm allowed for obtaining the IC50 values, working at the
lowest concentration of substrate of 0.15mM, from which Ki val-
ues were calculated.20,21 The catalytic activity of these enzymes
was calculated from Lineweaver-Burk plots, as reported previously,
and represent the mean from at least three different determina-
tions. The hCA I and II isoenzymes used here were purified from
human blood as previously described.21

2.4. Computational section

2.4.1. Ligand and protein preparation
As a crucial step to meet minimum requirements for further com-
putational calculations, all the studied ligands and target proteins
were prepared. LigPrep tool26 interfaced with Maestro module of
Schr€odinger26 suite was used for the ligand preparation. The 3D
structures including all possible tautomers and ionisation states at
pH 7.0 ± 2.0 of all the ligands 1–10 and the reference compound
AZA were generated and geometrically minimised using opti-
mised potential liquid simulations (OPLS3) force field.27
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Schr€odinger’s multi-step Protein Preparation Wizard
PrepWizard)28 were used for the protein preparations. As an initial
step, high-resolution protein crystal structures of CA I and II (PDB
Ids: 2NMX and 3HS4, respectively), both in complexed with a

native ligand, were retrieved from RCSB Protein Data Bank.
Charges and bond orders were assigned, hydrogens were added
to the heavy atoms, all water molecules and heteroatoms were
then removed keeping the native ligands and zinc metals in the

Figure 1. (a) 60% Aq NaOH, EtOH, 24 h; (b) Thiosemicarbazide, KOH, EtOH, reflux 18 h.

Figure 2. 13C NMR spectrum of compound 6.
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active site. The final structures were optimised and finally mini-
mised using OPLS3 force field to avoid steric clashes between
the atoms.

2.4.2. Molecular docking
A grid representing the binding pocket was generated using the
centroid of co-crystallized native ligands. Default settings were
kept in each case. Glide XP (extra precision)29 module of
Schr€odinger Suite was used to dock the synthesised compounds
into the active site of the crystal structures. The rescoring was per-
formed to calculate and improved binding energy calculations
with Prime’s Molecular Mechanics-Generalized Born Surface Area
(MM-GBSA) protocol using VSGB solvation model.26,30

2.4.3. Calculation of physicochemical and ADME properties
QikProp26 module of Schrodinger was used to calculate some
commonly used molecular descriptors such as dipole moment,
logarithm of octanol-water partition coefficient (QPlogPo/w), per-
cent human oral absorption, polar surface area (PSA) and viola-
tions to the Lipinski’s rule of five.30

3. Results and discussion

3.1. Chemistry

The new 4,5-dihydro-1H-pyrazole-1-carbothioamide derivatives
(6–10) were prepared from the chalcones 1and 5 according to
the reactions outlined in Figure 1. Initially, chalcones (1–5) were
prepared through Claisen-Schmidt condensation, which is the
most important reaction in the formation of 1,3-diphenyl-2-pro-
pene-1-ones (chalcones), of various benzaldehydes with 4-amino,
bromo, methyl and hydroxyl acetophenones. The reaction was car-
ried out in 60% sodium hydroxide: ethanol for 24 h as stated in
previous works.23 Then, new 1-thiocarbamoyl-3,5-diaryl-4,5-dihy-
dro-(1H)-pyrazole derivatives (6–10) were obtained by cyclisation
of chalcones (1–5) with two equivalents of thiosemicarbazide with
sodium hydroxide presence in ethanol. Compound 7–9 was
reported in a previous study.23 The synthesis of the compounds 6,
8 and 10 is being reported for the first time in this work. At the
end of the synthesis, the crude product was purified by recrystal-
lization two times from EtOH: H2O to obtain yellow crystals. The
structures of all the compounds were confirmed by spectral FT-IR,
1H and 13C NMR and elemental analyses. 1H NMR spectra of the
title compounds were consistent with expected resonance signals
in terms of chemical shifts and integrations. All the 13 C NMR find-
ings confirmed the structures proposed. Selected 13 C NMR spec-
trum are given in Figure 2.

Table 1. The data of hCA I and II inhibition with compounds 1–10 and AZA.

Ki (nM)
a

Compound Yield (%) M.p. (�C) hCA I hCA II

1 76 159–161 10.17 33.75
2 93 130–132 8.03 17.09
3 90 106–108 16.90 67.39
4 92 132–134 9.71 21.50
5 85 122–124 8.28 11.77
6 65 121–123 12.19 16.94
7 62 119–121 12.57 18.45
8 60 102–104 10.99 26.09
9 35 175–177 5.13 20.45
10 52 180–182 11.94 41.31
AZA 250b 12b

aMean from at least three determinations. Errors in the range of 3% of the
reported value (data not shown). bFrom Ref. 31.

Figure 3. A representative hydrophobic/philic surfaces of the active site of hCA I
complexed with a native ligand. (PDB ID: 2NMX; hydrophilic surfaces cyan colour;
hydrophobic surfaces: orange colour).

Table 2. Glide XP Docking scores, MM-GBSA DGbinding energy values and selected molecular properties of compounds 1–10 and AZA.

Comp

Dscore (GlideXP)(kcal/mol) MMGBSAdG Bind (kcal/mol)

Dipole l (D) QPlogPo/wa %Human oral absorptionb PSAc Rule of fivehCA I hCA II hCA I hCA II

1 �4.59 �4.05 �33.89 �38.42 6.19 3.11 100.00 76.58 þ
2 �4.89 �3.12 �33.83 �22.51 2.29 4.44 100.00 50.28 þ
3 �4.12 �2.69 �35.34 �28.05 3.85 4.06 100.00 50.29 þ
4 �4.35 �3.89 �35.19 �29.32 4.47 2.91 100.00 68.95 þ
5 �4.58 �3.35 �34.16 �34.74 5.18 3.35 100.00 53.94 þ
6 (R) �4.31 �4.52 �47.95 �42.91 11.54 3.15 96.37 95.65 þ
7 (S) �4.51 �3.19 �37.08 �38.80 6.26 4.67 100.00 69.34 þ
8 (S) �4.45 �3.79 �38.70 �38.47 8.63 4.40 100.00 69.38 þ
9 (S) �4.00 �3.77 �44.31 �31.38 11.23 2.97 94.83 88.11 þ
10 (S) �4.13 �3.58 �42.48 �24.89 7.82 3.34 100.00 72.54 þ
AZA �5.93 �6.34 �29.97 �35.51 13.35 �1.77 44.26 133.03 þ
aLogarithm of the partition coefficient of the compound between n-octanol and water (recommended value <5).
bPercentage of human oral absorption (<25% is weak and >80% is strong).
cPolar surface area (recommended value �140Å2).35
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3.2. Biological evaluation

The inhibitory effects of all the synthesised compounds were
investigated for the first time against hCA isozymes: hCA I and
hCA II. Human CA I and II isozymes were purified by one step

chromatography technique and the activity of the effluents was
determined by the hydratase method, using CO2 as substrate and
further kinetic studies were performed using the esterase activity
method, using 4-nitrophenyl acetate (NPA) as substrate.21

Figure 4. The 2 D and 3D ligand interaction diagrams of hCA I-6 (R) (top) and hCA II-6 (R) (bottom) complexes obtained from prime MM-GBSA using Glide XP docked
poses (In 3 D representation, hydrogen bonds are shown with yellow dashed lines, p-p interactions are shown with cyan colour. The distance between Zinc metal and
interacting atom is shown with pink colour).
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Inhibition characteristics of five pyrazoles, five chalcones and vari-
ous reference compounds are given in Table 1. It is clear from the
results that all molecules were found to act as low-nanomolar
hCA I-II inhibitors. According to the experimental findings, all chal-
cone and new pyrazole compounds used in this study had better

inhibition constants than the clinically used inhibitor acetazola-
mide (AZA) and other widely used inhibitors (11, 12, 13) and also
comparable IC50 values with AZA. However, they possessed differ-
ent selectivity against hCAI-II. The new compounds 6 and 10 with
the IC50 values ranging between 23.87 and 24.37 nM showed

Figure 5. The 2 D and 3D ligand interaction diagrams of hCA I-10 (S) (top) and hCA II-10 (S) (bottom) complexes obtained from prime MM-GBSA using Glide XP
docked poses (In 3 D representation, hydrogen bonds are shown with yellow dashed lines, p-p interactions are shown with cyan colour. The distance between zinc
metal and interacting atom is shown with pink colour).
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promising powerful inhibitory profiles compared to the standard
drug AZA and they all had comparable IC50 values against hCA I.
The amino or hydroxyl substituents on phenyl ring could easily be
predicted to be involved in making hydrogen bonds with the
active site as observed in classical hCA I sulphonamide inhibitors.
Changing the hydrophilic substituents, –NH2 (6) or –OH (10) with
hydrophilic substituents, –Br (7) or –CH3 (8) on ring A, have negli-
gible effect on the observed activity. It is clear that the lack of
moieties which can make favourable hydrogen bonding are being
compensated with hydrophobic groups that also enhance affinity
by hydrophobic interactions. Furthermore, replacing methoxy sub-
stituents with N,N-dimethylamino substituent (10) does not seem
to have much effect on the activity. It can be concluded that
methyl groups in both cases have favourable contacts with hydro-
phobic sites of the active region. Oxygen atoms in metoxy groups
could have extra interactions with the hydrophilic regions.
However, methoxy substituents on ring B have large impact on
the activity towards hCA II. The IC50 value diminishes more than
two-folds when trimethoxy phenyl is being replaced with N,N-
dimethy aniline (10) which results in a promising selectivity profile
for this compound. As a result of those observations, we found it
necessary to carry out in silico studies.

3.3. Computational study

The active site of both hCAI and II, as in all other CAs, is lined
with both hydrophobic and hydrophilic residues (Figure 3).
Hydrophobic part is believed to be responsible for entrapping the
lipophilic CO2 molecule, and the other the part of the active site
helps releasing the polar components after CO2 hydration reaction
to the environment.32 All the synthesised new compounds were
found to have low IC50 values in the low nanomolar range
(Table 1). Although it is well known that the commonly used
docking software available at the market performs well in predict-
ing the active conformations of the biologically active compounds
but the present scoring functions are not expected to discriminate
between active and inactive compounds.33 We have obtained sat-
isfying results using Glide in our recent studies.34 In the current
study, in order to improve the docking scores, we performed
more rigorous binding energy calculations using MM-GBSA proto-
col. We have let the residues in 3 Å distance from the ligands to
be relaxed during the computations. MM-GBSA DGbinding values
substantially agreed well with the experimental inhibition data.
According to the MM-GBSA calculations, compound 6 scored top
in both hCA isoforms. It is noteworthy to mention that, according
to the IC50 results listed in Table 2, the compound 10 showed a
slight hCA I versus hCA II selectivity, with a selectivity ratio (SR) of
3.46. The 2D and 3D ligand interaction diagrams of both com-
pounds with the hCA I and II isoforms are shown in Figures 4 and
5. Compound 6 binds in a rather similar manner with the active
site of both isoforms. The amino group of aniline part acts as a
hydrogen bond donor and interacts with the TYR199 residue
while the aromatic part establishes a p-p interaction with the resi-
due HIS94. It also has favourable interactions with the polar resi-
dues at the active site entrance. Compound 10 has same type of
interactions with the critical residues at the binding site of hCA I:
phenolic -OH group participates in hydrogen bonding with
THR199 and the same p-p interaction of the aromatic ring with
the residue HIS94 is observed. Interestingly, the orientation is
inverted in the active region of hCA II. The N,N-dimethyl aniline
moiety is buried deep in the active site whereas phenol interacts
with the negatively charged residue GLU69. The lack of contacts

with the key residues HIS 94 and THR 199 could be responsible
for the decreased activity towards hCA II.

We have also calculated some molecular descriptors commonly
used in absorption, distribution, metabolism and excretion (ADME)
analysis (Table 2). As could be seen from the table, all of the new
compounds obey Lipinski’s rule of five, which is an indication of
the drug-likeness of a molecule, and PSA values are within the
range that Veber et al. suggested.35

4. Conclusion

In the current study, starting from some chalcones, design, synthe-
sis and characterisation of new pyrazole derivatives were reported.
All the synthesised compounds were then evaluated for their
inhibitory properties against hCA I and hCA II isoenzymes. They
exhibited significant inhibitory features at low nanomolar concen-
trations ranging between 21.98 and 25.14 nM. Molecular docking
studies further supported observed inhibitory profiles. Compound
10 which had slight hCA I versus hCA II selectivity, binds with
hCA I in similar orientations with other compounds but it adopts
different conformation in the active site of hCA II. According to
the in silico molecular properties calculations, all compounds also
obeyed the drug likeness properties. The new compounds pre-
sented in this study, might be promising lead compounds for the
development of more selective and potent inhibitors as alterna-
tives to the classical CA inhibitors.
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