BF₃-Mediated Oxidative Cross-Coupling of Pyridines with Alkynyllithium Reagents and Further Reductive Functionalizations of the Pyridine Scaffold

Thierry León, Pauline Quinio, Quan Chen, Paul Knochel*

Ludwigs-Maximilians-Universität München, Department Chemie, Butenandtstraße 5–13, Haus F, 81377 München, Germany Fax +49(89)218077680; E-mail: Paul.Knochel@cup.uni-muenchen.de *Received: 31.03.2014; Accepted: 02.04.2014*

Abstract: A set of functionalized alkynylpyridines can be readily obtained using $Et_2O \cdot BF_3$ as promoter. Alkynyllithium reagents undergo an addition reaction at position C-2 of pyridines that are rearomatized by oxidative treatment with chloranil. These substituted pyridines can be easily converted into more valuable intermediates. Examples of applications are given as well. Finally, the synthesis of piperidines and lactams via first an oxidative BF_3 -mediated addition reaction followed by a NaBH₄ reduction or acidic workup is also described.

Key words: cross-coupling, pyridines, alkynyllithiums, BF₃, piperidines, lactams

Scheme 1 Typical procedure for the transition-metal-free BF₃-mediated oxidative alkynylation of pyridines

Introduction

The pyridine scaffold has been demonstrated to be of outmost interest as building block in many compounds of pharmaceutical and biological interest.¹ The derivatization of pyridines still represents a major challenge and much efforts are made to functionalize them in a straightforward manner.² For example, the addition reaction of alkynyl moieties to the pyridine ring increases the possibility of further chemical transformations of this Nheteroaromatic ring. The introduction of alkynyl groups are usually carried out by Sonogashira cross-coupling protocol.3 These methods are well known for their generality and robustness, but they show some drawbacks, namely, toxicity and high price of the metal catalysts as well as the requirement of sophisticated ligands. A transition-metal-free protocol would be of paramount interest to circumvent these drawbacks. Recently, we have reported the beneficial effect of adding Et₂O·BF₃ to pyridines: a strong activation of the pyridine ring is produced allowing the efficient and regioselective addition of alkyl- and arylmagnesium or zinc reagents in the absence of a transition metal.⁴ Interestingly, we found that the addition of alkynyllithium derivatives to BF3-activated pyridines allowed a novel regioselective alkynylation process.⁵

SYNTHESIS 2014, 46, 1374–1379 Advanced online publication: 24.04.2014 DOI: 10.1055/s-0033-1341235; Art ID: ss-2014-t0215-psp © Georg Thieme Verlag Stuttgart · New York Subsequent oxidative treatment with chloranil resulted in rearomatization of the ring. Thus, the activation of pyridines with $Et_2O \cdot BF_3$ shows high compatibility with lithium species allowing the preparation of a new set of functionalized alkynylpyridines in good yields. Herein, we wish to demonstrate the practicality of this protocol and its scaleability.

Scope and Limitations

Typically, 4-chloropyridine (1a; 1 equiv) was activated with Et₂O·BF₃ (1.1 equiv, 0 °C, 15 min), followed by the addition of 6-chlorohex-1-ynyllithium (2a; 1.5 equiv, -30 °C, 1 h). Subsequent rearomatization by treatment with chloranil (2 equiv, 25 °C, 2 h) afforded the 2,4-disubstituted pyridine (3a) in 75% isolated yield on a 1 mmol scale (Scheme 1). This addition reaction was also performed on a larger scale as well. Thus, the upscaling of **3a** to a 10 mmol scale was performed leading to a slightly improved yield of 81% (Scheme 1). With these conditions in hand, the alkynylation of a range of pyridines was examined on a 1 mmol and 10 mmol scale (Table 1). Thus, 4-chloropyridine (1a) was alkynylated with phenylethynyllithium (2b) and with oct-1-ynyllithium (2c) to afford the expected pyridines **3b** and **3c** in 65 and 75% yield, respectively, on a 1 mmol scale. Upscaling to 10 mmol of latter reactions gave excellent yields in the range of 55-81% (Table 1, entries 1 and 2). Isonicotinonitrile (1b) reacted with (cyclohex-1-en-1-ylethynyl)lithium (2d) and with 6-chlorohex-1-ynyllithium (2a) affording the corresponding disubstituted pyridines **3d** and **3e** in 77–86% yield on a 10 mmol scale. Similar results were obtained on a 1 mmol scale (entries 3 and 4). Picolinonitrile (**1c**) was also satis-

factorily alkynylated with oct-1-ynyllithium (**2c**) to give the 2,6-disubstituted pyridine **3f** in moderate yields of 52– 55% (entry 5).

Table 1	Direct Alkynylation	of Pyridine Derivatives 1	Using Various	Alkynyllithiums 2	Leading to Products 3
			0		0

Entry	Substrate 1	RLi 2	Product 3	Scale (mmol)	Yield (%) ^a
1	CI N 1a	Li 2b		10 1	81 75
2	1a	$H_{13}C_6$	3b Cl Cl C ₆ H ₁₃ 3c	10 1	55 65
3	CN N 1b	Li 2d		10 1	77 76
4	1b	CI(H ₂ C) ₄ 2a	3d CN (CH ₂) ₄ Cl	10 1	86 89
5	Ic	2c	H ₁₃ C ₆ 3f	10 1	52 55
6	Br N 1d	MeO 2e	Junio Come	6 1	52 63
7	1d	2b	Jg Br	10 1	73 76

3h

Entry	Substrate 1	RLi 2	Product 3	Scale (mmol)	Yield (%) ^a
8	1d	Li 2f	Br N 3i	10 1	61 65
9	Br N Ie	2ь	Br N	10 1	75 82
10 ^b	r-Bu N If	2a	CH ₂) ₄ Cl	10 1	60 66
11 ^b	lg	F Li 2g	3I	8 1	60 68
12 ^b	N Ih	2b	3m	10 1	54 50

Table 1 Direct Alkynylation of Pyridine Derivatives 1 Using Various Alkynyllithiums 2 Leading to Products 3 (continued)

^a Yield of isolated analytically pure compounds.

^b Reaction time: 2 h.

Interestingly, the described protocol showed a compatibility with the use of bromopyridines such as 4-bromopyridine (1d) or 3-bromopyridine (1e). Thus, when 1c was submitted to the standard reaction conditions with arylethynyllithium species 2b and 2e, the corresponding 2,4disubstituted pyridines 3g,h were obtained in 52-76% yield (entries 6 and 7). When cyclopropylethynyllithium reagent 2f was used, 4-bromo-2-(cyclopropylethynyl)pyridine (3i) was produced in 61-65% yield (entry 8). 3-Bromopyridine (1e) was treated with phenylethynyllithium (2b) leading to the corresponding 2,3-disubtituted pyridine 3j in 82% isolated yield on a 1 mmol scale, although a slight erosion was seen on a larger scale (entry 9). Remarkably, electron-rich alkylpyridines, such as 4-tert-butylpyridine (1f) and 3-picoline (1g), also react well under the described reaction conditions. Thus, alkylpyridines 1f and 1g were independently treated with alkynyllithium reagents 2a and 2g, affording the 2,4- and 2,3-disubstituted products **3k** and **3l** in 60–68% yield (entries 10 and 11). Finally, the reaction of pyridine **1h** with phenylethynyllithium (**2b**) allowed the formation of 2-(phenylethynyl)pyridine (**3m**) in 50–54% yield (entry 12). It should be noted that alkylpyridines and unsubstituted pyridines required longer reaction time (2 h) to achieve almost full conversion, showing that they are probably less activated as substrates.

In order to show the usefulness of this method, the alkynyl groups of several alkynylpyridines obtained by our protocol were derivatized (Scheme 2). Thus, alkynes **3e** and **3i** were submitted to cobalt-mediated intermolecular Pauson–Khand reaction⁶ and the resulting adducts **4a**,**b** were obtained in 60–69% yield.⁷

Furthermore, the derivatization of BF₃-pyridine adducts obtained by oxidative addition of alkyl- or arylmagnesium reagents was studied briefly.⁴ Lately, the preparation of 1,2,5,6-tetahydropyridines through a C-2 regioselective

Scheme 2 Cobalt-mediated intermolecular Pauson–Khand reactions of alkynes 3e and 3i

Scheme 3 Oxidative BF_3 -mediated cross-coupling of ethyl nicotinate (1i) and 6-methoxyquinoline (6) and their subsequent reduction by NaBH₄, affording 5 and 7

addition of organomagnesium reagents to N-benzovliminopyridinium ylides⁸ and pyridine N-oxides⁹ followed by a NaBH₄ in methanol reduction protocol was reported. By taking advantage of these described protocols, we applied the NaBH₄ reduction to our system. After screening several proton sources, NH2OH·HCl and pyridine·HCl were found to be the best acid promoting a selective reduction. As a typical example, ethyl nicotinate (1i) was successfully treated with Et₂O·BF₃ and o-TolMgBr·LiCl. Subsequent treatment with NaBH₄/pyridine·HCl allowed the partial reduction to the 1,4,5,6-tetrahydropyridine derivative 5 in 54% yield (Scheme 3). It should be noted that the double bond conjugated to the ester was not reduced under these conditions. It was found that these reductive conditions can also be applied to quinolines. For instance, when 6-methoxyquinoline (6) was submitted to the latter reaction conditions, 4-isopropyl-6-methoxy-1,2,3,4-tetrahydroquinoline (7) was obtained in 81% yield (Scheme 3). In this particular case, the use of NH₂OH·HCl as proton source gave the best results.

Acidic hydrolysis of BF₃-pyridine intermediates bearing a methoxy group can be also carried out, allowing the efficient synthesis of γ -lactams.¹⁰ 6-Methoxynicotinate (**1j**) was successfully reacted with *i*-PrMgCl·LiCl in the presence of Et₂O·BF₃, subsequent workup with HCl in aqueous solution allowed the formation of the methyl 4-isopropyl-6-oxo-1,4,5,6-tetrahydropyridine-3-carboxylate (**8**) in 97% yield (Scheme 4).

Conclusion

In summary, a practical and direct oxidative crosscoupling of pyridines with alkynyllithium species is described. The absence of transition metals makes this synthesis an amenable protocol for larger preparatory scales. The method also shows a good compatibility with various functional groups. Additionally, we have also reported reductive or hydrolytic conditions to derivatize the BF₃-pyridine intermediates formed by our addition protocol leading to piperidine or lactam derivatives. We are currently extending this methodology to other heterocycles in our laboratories.

Procedures

All reactions were carried out under argon atmosphere in dried glassware. Commercially available starting materials were purchased from commercial suppliers and used without further purification, unless otherwise stated. THF was continuously refluxed and freshly distilled from sodium benzophenone ketyl under N₂. Yields refer to isolated compounds estimated to be >95% pure as determined by ¹H NMR and capillary GC analyses.

Scheme 4 Oxidative BF₃-mediated cross-coupling of 6-methoxynicotinate (1j) and subsequent acidic workup, affording 8

BF₃-Mediated Direct Alkynylation of Pyridine Derivatives Using Alkynyllithium Reagents General Procedure

A dry and argon-flushed flask, equipped with a magnetic stirring bar and a rubber septum was charged with a solution of a pyridine derivative 1 (1 equiv) in anhydrous THF (0.5 M) and cooled to 0 °C. Et₂O·BF₃ (1.1 equiv) was added dropwise and stirred for 15 min at the same temperature. Then, the reaction mixture was cooled to -30 °C. An alkynyllithium 2 [1.5 equiv; prepared by adding *n*-BuLi (1.5 equiv) to a 0.75 M solution of the alkyne in THF at 0 °C and stirring for 30 min] was cannulated to the reaction flask and the resulting mixture was stirred at the same temperature for 1 h. Then, chloranil (2 equiv) was added and the mixture was warmed to r.t. and continuously stirred for 2 h. Finally, the mixture was quenched with sat. aq NH₄Cl/NH₃ (4:1) solution and extracted with EtOAc $(2 \times 20 \text{ mL})$. The organic phases were combined and filtered through a layer of silica gel. The filtrate was concentrated in vacuo. Purification by flash chromatography furnished the desired product 3 (see Supporting Information for further details).

4-Chloro-2-(6-chlorohex-1-yn-1-yl)pyridine (3a)

To a solution of 4-chloropyridine (1 \dot{a} ; 1.14 g, 10 mmol) in THF (20 mL) was added Et₂O·BF₃ (1.56 g, 11 mmol) dropwise at 0 °C. The reaction mixture was stirred for 15 min and reacted with the lithium reagent 2a [15 mmol; prepared by adding *n*-BuLi (15 mmol) to a 0.75 M solution of 6-chlorohex-1-yne in THF (1.75 g, 15 mmol) at -10 °C and stirring for 30 min]. The crude product was purified by flash chromatography (SiO₂, EtOAc–*i*-hexane, 1:3) furnishing the compound 3a (1.85 g, 81%) as a light reddish oil.

IR (Diamond-ATR, neat): 2953, 2233, 1543, 1454, 1380, 1101, 825 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.43 (d, *J* = 5.4 Hz, 1 H), 7.38 (dd, *J* = 2.0, 0.5 Hz, 1 H), 7.21 (dd, *J* = 5.4, 2.0 Hz, 1 H), 3.59 (t, *J* = 6.4 Hz, 2 H), 2.50 (t, *J* = 6.9 Hz, 2 H), 2.01–1.90 (m, 2 H), 1.84–1.72 (m, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 2.00, 80.51, 44.70, 31.73, 25.53, 18.75.

MS (EI, 70 eV): *m*/*z* (%) = 227 (5), 192 (90), 164 (100), 151 (25).

HRMS (EI): m/z (M⁺) calcd for $C_{11}H_{11}Cl_2N$: 227.0269; found: 227.0262.

Cobalt-Mediated Intermolecular Pauson–Khand Reaction; 2-[(3aS,7aR)-2-(4-Chlorobutyl)-1-oxo-3a,4,7,7a-tetrahydro-1*H*-4,7-methanoinden-3-yl)isonicotinonitrile (4a); Typical Procedure

A dry and argon flushed flask, equipped with a magnetic stirring bar and a rubber septum was charged with $Co_2(CO)_8$ (0.464 g, 1.36 mmol, 1.1 equiv), alkyne **3e** (0.270 g, 1.23 mmol, 1 equiv), and anhydrous toluene (4 mL) at r.t. during 1 h. Then, norbornadiene (0.38 mL, 3.69 mmol, 3 equiv) was added via a syringe and the reaction mixture was heated to 90 °C. The resulting mixture was stirred at the same temperature for 16 h. Finally, the crude was concentrated in vacuo and purified by flash chromatography (SiO₂, EtOAc– *i*-hexane, 2:8) furnishing the compound **4a** (0.287 g, 69%) as a beige solid; mp 119.3–121.8 °C.

IR (Diamond-ATR, neat): 2941, 1688, 1584, 1353, 667 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.94 (br s, 1 H), 7.76 (br s, 1 H), 7.53 (br s, 1 H), 6.35 (br s, 1 H), 6.29 (br s, 1 H), 3.54 (m, 2 H), 3.27 (br s, 1 H), 3.02 (br s, 1 H), 2.65 (br s, 1 H), 2.59 (m, 2 H), 2.49 (br s, 1 H), 1.86–1.76 (m, 2 H), 1.71–1.56 (m, 2 H), 1.43 (m, 1 H), 1.25 (m, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 209.16, 162.70, 155.67, 150.88, 149.11, 138.21, 137.66, 124.59, 124.20, 121.14, 116.24, 52.33, 48.92, 44.57, 43.97, 43.29, 41.77, 32.47, 25.33, 23.43.

MS (EI, 70 eV): m/z (%) = 341 (75), 273 (31), 209 (35), 66 (100).

HRMS (EI): m/z (M⁺) calcd for C₂₀H₁₉ClN₂O: 338.1186); found: 338.1188.

G 11 · 2014 16 1274 1270

pyridine-3-carboxylate (5); Typical Procedure A dry and argon flushed 10 mL flask, equipped with a magnetic stirring bar and a rubber septum was charged with a solution of ethyl nicotinate (1i; 149 mg, 1.0 mmol) in anhydrous THF (2 mL) and cooled to 0 °C. Et₂O·BF₃ (156 mg, 1.1 mmol) was added dropwise and stirred for 15 min at the same temperature. The reaction mixture was cooled to -30 °C followed by the dropwise addition of a THF solution of o-TolMgBr·LiCl (1.29 mL, 1.16 M, 1.5 mmol), the mixture was stirred at the same temperature for 2 h. A solution of NaBH₄ (114 mg, 3.0 mmol in 2 mL MeOH) and a solution of pyridine HCl (347 mg, 3.0 mmol in 1 mL MeOH) were added and the mixture was warmed up to r.t. and continuously stirred for 1 h. Finally, the mixture was quenched with aq 1 M NaOH (1 mL) and extracted with EtOAc (3×20 mL). The organic phases were combined and filtered through a layer of silica gel. The filtrate was concentrated in vacuo. The crude product was purified by flash chromatography (SiO₂, EtOAc-i-hexane, 1:4) furnishing the compound 5 (131 mg, 54%) as a white solid; mp 131.0-133.1 °C.

Piperidine Derivatives; Ethyl 4-(o-Tolyl)-1,4,5,6-tetrahydro-

IR (Diamond-ATR, neat): 3293, 1644, 1599, 1218, 1064, 742 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.74 (d, *J* = 6.4 Hz, 1 H), 7.19– 6.93 (m, 4 H), 4.74 (br s, 1 H), 4.21 (d, *J* = 5.0 Hz, 1 H), 4.00 (q, *J* = 7.0 Hz, 2 H), 3.16–2.90 (m, 2 H), 2.44 (s, 3 H), 2.00–1.81 (m, 1 H), 1.68 (d, *J* = 13.0 Hz, 1 H), 1.12 (t, *J* = 7.0 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 168.30, 144.39, 143.53, 134.92, 130.20, 127.59, 125.68, 125.26, 97.31, 58.82, 36.25, 32.39, 26.57, 19.17, 14.37.

MS (70 eV, EI): *m*/*z* (%) = 245 (55), 216 (68), 200 (39), 172 (100), 154 (41).

HRMS: *m*/*z* (M⁺) calcd for C₁₅H₁₉NO₂: 245.1416; found: 245.1406.

γ-Lactam Derivatives; Methyl 4-Isopropyl-6-oxo-1,4,5,6-tetrahydropyridine-3-carboxylate (8); Typical Procedure

A dry and argon flushed 10 mL flask, equipped with a magnetic stirring bar and a rubber septum was charged with a solution of methyl 6-methoxynicotinate (1j; 167 mg, 1.0 mmol) in anhydrous THF (2 mL) and cooled to 0 °C. Et₂O·BF₃ (156 mg, 1.1 mmol) was added dropwise and stirred for 15 min at the same temperature. The reaction mixture was cooled to -50 °C followed by dropwise addition of a THF solution of *i*-PrMgCl·LiCl (0.93 mL, 1.29 M, 1.2 mmol), and the mixture was stirred at the same temperature for 30 min. Then, aq 2 M HCl (1 mL) was added and the mixture was warmed up to r.t., and stirred for another 2 h. Finally, the mixture was extracted with EtOAc (3 × 20 mL). The organic phases were combined and filtered through a layer of silica gel. The filtrate was concentrated in vacuo. The crude product was purified by flash chromatography (SiO₂, EtOAc–*i*-hexane 1:2), furnishing the compound **8** (192 mg, 97%) as a white solid; mp 159.2–161.7 °C.

IR (Diamond-ATR, neat): 2955, 2852, 1616, 1364, 1204, 1172, 804 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 8.34 (br s, 1 H), 7.36 (d, *J* = 5.5 Hz, 1 H), 3.74 (s, 3 H), 2.86–2.72 (m, 1 H), 2.65–2.51 (m, 2 H), 1.96–1.76 (m, 1 H), 0.93 (d, *J* = 6.9 Hz, 3 H), 0.85 (d, *J* = 6.9 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 172.30, 167.02, 135.07, 111.16, 51.49, 36.74, 31.89, 31.12, 19.93, 17.82.

MS (70 eV, EI): m/z (%) = 198 (12), 155 (100), 123 (40).

HRMS: *m*/*z* (M⁺) calcd for C₁₀H₁₅NO₃: 197.1052; found: 197.1056.

Acknowledgment

We thank the European Research Council (ERC) under the European Community's Seventh Framework Programme (FP7/2007-2014) ERC Grant Agreement No. 227763 for financial support. We

also thank BASF SE (Ludwigshafen); W. C. Heraeus (Hanau), and Chemetall GmbH (Frankfurt) for the generous gift of chemicals.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

References

- (a) Glorius, F.; Spielkamp, N.; Holle, S.; Goddard, R.; Lehmann, C. W. *Angew. Chem. Int. Ed.* **2004**, *43*, 2850.
 (b) *Modern Heterocyclic Chemistry*; Alvarez-Builla, J.; Vaquero, J. J.; Barluenga, J., Eds.; Wiley-VCH: Weinheim, **2011**. (c) Hardin Narayan, A. R.; Sarpong, R. *Org. Biomol. Chem.* **2012**, *10*, 70.
- (2) (a) Organotransition Metal Chemistry; Hartwig, J. F., Ed.; University Science Books: Sausalito (CA, USA), 2010.
 (b) Metal-Catalyzed Cross-Coupling Reactions; Diederich, F.; de Meijere, A., Eds.; Wiley-VCH: Weinheim, 2004.
- (3) For few examples, see: (a) Carvalho, J. F. S.; Louvel, J.; Doornbos, M. L. J.; Klaasse, E.; Yu, Z.; Brussee, J.; Ijzerman, A. P. J. Med. Chem. 2013, 56, 2828. (b) Moulton,

B. E.; Whitwood, A. C.; Duhme-Klair, A. K.; Lynam, J. M.; Fairlamb, I. J. S. *J. Org. Chem.* **2011**, *76*, 5320.

- (4) Chen, Q.; Mollat du Jourdin, X.; Knochel, P. J. Am. Chem. Soc. 2013, 135, 4958.
- (5) Chen, Q.; León, T.; Knochel, P. Angew. Chem. Int. Ed. 2014, 53, in press; DOI: 10.1002/anie.201400750.
- (6) (a) For a recent review of Pauson–Khand reaction, see: *The Pauson–Khand Reaction: Scope, Variations and Applications*; Ríos Torres, R., Ed.; Wiley-VCH: Weinheim, **2012**. For examples of application, see: (b) Vázquez-Romero, A.; Cárdenas, L.; Blasi, E.; Verdaguer, X.; Riera, A. *Org. Lett.* **2009**, *11*, 3104. (c) Kizirian, J.-C.; Aiguabella, N.; Pesquer, A.; Fustero, S.; Bello, P.; Verdaguer, X.; Riera, A. Org. Lett. **2010**, *12*, 5620.
- (7) Only one regioisomer was detected by GC analysis. For a study of regioselectivities in cobalt-mediated intermolecular Pauson–Khand reaction, see ref. 3b.
- (8) (a) Bull, J. A.; Mousseau, J. J.; Pelletier, G.; Charette, A. B. *Chem. Rev.* 2012, *112*, 2642. (b) Legault, C.; Charette, A. B. *J. Am. Chem. Soc.* 2003, *125*, 6360.
- (9) Hussain, M.; Sainte-LuceBanchelin, T.; Andersson, H.; Olsson, R.; Almqvist, F. Org. Lett. 2013, 15, 54.
- (10) Comins, D. L.; Brown, J. D. Tetrahedron Lett. 1986, 27, 4549.