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ABSTRACT: Rhodium-catalyzed asymmetric addition of arylboron ArB(OH),

reagents to indene derivatives proceeded to give 2-arylindanes in good TN Rh/(R)-binap ,

. . . . .. g . . R — > R— Ar
yields with high enantioselectivity. Deuterium-labeling experiments — =

indicated that the present reaction involved a 1,4-Rh shift from an initially

protonation after 1,4-Rh shift up to 98% ee

formed benzylrhodium to an arylrhodium intermediate before protonation

leading to the corresponding addition product. The asymmetric addition
was also successful for acenaphthylene, which has a similar skeleton to
indene, where it was found that the benzylrhodium intermediate underwent

direct protonation without the 1,4-Rh shift.

hodium-catalyzed asymmetric addition reaction of

arylboron reagents to electron-deficient C—C unsatu-
rated bonds has gained an established position in
enantioselective C—C bond formation reactions." In 1998,
Hayashi, Miyaura, and co-workers reported the first
enantioselective conjugate addition of arylboronic acids to
enones.” The reaction involves transmetalation of the
arylboronic acid with the rhodium complex to give an
arylthodium species, and subsequent alkene insertion
generates oxa-7-allyl species, which readily undergoes
hydrolysis to form a formal hydroarylation product and to
regenerate the Rh catalyst.” Following the report, a large
number of successful examples of the rhodium-catalyzed
asymmetric addition to electron-deficient alkenes have
appeared. In contrast, the enantioselective addition to alkenes
without electron-deficient substituents has been under-
developed because of undesired f-hydrogen elimination
from an alkylrhodium intermediates. Lautens and co-workers
reported that the Rh-catalyzed addition—elimination reaction
of styrene proceeded to give trans-stilbene, whereas the
addition reaction was successful for 2- or 4-vinylpyridine.*
Lam and co-workers disclosed that introducing an electron-
withdrawing NO, group at the para position of the styrene
derivatives enabled the asymmetric addition suppressing f-
hydrogen elimination.” There have been a few reports on the
asymmetric addition to alkenes without particular electron-
withdrawing substituents.””” Recently, Wang’ and we®
independently reported the asymmetric addition of arylbor-
onic acids to 2H-chromene derivatives. Here we report
rhodium-catalyzed asymmetric addition of arylboron reagents
to indene derivatives giving 2-arylindanes'’ in good yields
with high enantioselectivity (Scheme 1)."" To the best of our
knowledge, there have been no reports on the catalytic
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ArB(OH),

OO Rh/(S)-difluorphos ‘O

direct protonation of m-benzyl L
Rh intermediate Ar
up to 99% ee

Scheme 1. Key Intermediates in This Work
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enantioselective addition of arylmetal reagents to indene
derivatives. The reaction involves a 1,4-Rh shift from an
initially formed benzylrhodium to an arylrhodium intermedi-
ate before protonation leading to the corresponding addition
product. The asymmetric addition is also successful for
acenaphthylene, where the benzylrhodium intermediate
undergoes direct protonation without the 1,4-Rh shift.

After the reactivity of 1H-indene toward Rh-catalyzed
addition of arylboronic acids was investigated under several
reaction conditions (Table S1), conventional chiral ligands
were tested for the enantioselective addition to substituted
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indene derivatives (Table 1). Treatment of 7-phenyl-1H-
indene (1a) with 3.0 equiv of p-tolylboronic acid (2a) in the
presence of [RhCl(cod)], (5 mol % of Rh, cod = 1,5-
cyclooctadiene), (R)-binap'* (6 mol %), and an equivalent of
K;PO, in 1,4-dioxane at 60 °C for 20 h gave the addition
product 3aa in 76% yield, with 95% ee (Table 1, entry 1).

Table 1. Rh-Catalyzed Asymmetric Addition of p-
Tolylboronic Acid (2a) to 7-Phenylindene (1a)“

Ph [RhCI(cod)], (5 mol% Rh) ph

ligand (6 mol%)
O’ + (HO);B—p-tol K3POy (1.0 equiv) ’ ool
1,4-dioxane, 60 °C, 20 h
a (3.0 equiv)

PAr, PPh, PAr,
PAr, PPh, PAr,

(R)-binap (Ar = Ph) (S)-segphos (X=H) (R)-DM-segphos
(R)-xylbinap (S)-difluorphos (X = F) (Ar = 3,5-Me,CgH3)

(Ar = 3,5-Me,CgHs) (R)-DTBM-segphos
(R)-tolbinap (Ar = 3,5-(t-Bu)»-4-MeOCgH,)
(Ar = 4-MeCgH,)

entry ligand yield (%)” ee (%)°
1 (R)-binap 76 95

2 (R)-xylbinap 28 66

3 (R)-tolbinap 39 81

4 (8)-segphos 34 84

S (8)-difluorphos 71 96

6 (R)-DM-segphos 52 83

7 (R)-DTBM-segphos 11 34

8 — 12 -
9¢ (R)-binap 65 95

“Reaction conditions: 1a (0.10 mmol), 2a (0.30 mmol), [RhCI-
(cod)], (5 mol % of Rh), ligand (6 mol %), and K3PO4 (0.10 mmol)
in 14-dioxane (02 mL) at 60 °C for 20 h. PIsolated yield.
“Determined by chiral HPLC analysis. “[RhCl(coe),], was used
instead of [RhCl(cod)],

Binap analogues, xylbinap and tolbinap (entries 2 and 3), and
segphos'” (entry 4) were less effective in terms of both yields
and enantioselectivities of 3aa. (S)-Difluorphos,'* which is
known as a relatively electron-deficient ligand, displayed the
comparable enantioselectivity of 96% ee with binap (entry S).
The use of bulkier ligands, DM-segphos and DTBM-segphos,
did not improve the enantioselectivity (entries 6 and 7). The
reaction proceeded without adding the phosphine ligand
giving 3aa in 12% yield, indicating that the 1,5-cyclooctadiene
also worked as a ligand to influence the ee when the ligand
exchange is incomplete (entry 8). The reaction in the
presence of [RhCl(coe),], (coe = cyclooctene) as a precursor
with (R)-binap displayed the same enantioselectivity as that
observed with [RhCl(cod)], (entry 9). The absolute
configuration of 3aa obtained by use of (R)-binap was
assigned to be S by analogy with (S)-3ad (Table 2, entry 3),
which was determined by X-ray crystallography.

The results obtained for the asymmetric addition of p-
tolylboronic acid (2a) to several indene derivatives 1 are
summarized in Scheme 2. The addition to indenes
substituted with several aryl groups at the 7-position
proceeded to give 3ba—ga in moderate to good yields
(55—75%), with the enantioselectivity ranging between 79%
and 97% ee. A slight decrease of the enantioselectivity (79%

Table 2. Rh-Catalyzed Asymmetric Addition of Arylboron
Reagents 2 to 7-Phenylindene (1a)®

[RhCl(cod)]» (5 mol% Rh)
(R)-binap (6 mol%) Ph

Ph KsPO, (1.0 equiv)
t-amyl alcohol (X equiv)
+ ABl 7 4 dioxane, 60 °C, 20 h ©i>‘”
1a 2 (3.0 equiv) 3
o) o]
K+ Ph—iBi”O>f Ar—8 :><
0 o]
2b- 2¢’-1’
entry Ar X yield (%) ee (%)°
1 Ph (2b7) 29 72 (3ab) 92
2 4-PhC¢H, (2c) 3 44 (3ac) 92
3 4-CIC¢H, (2d") 3 64 (3ad) 91
4 4-CF,C¢H, (2¢") 3 94 (3ae) 91
S 4-MeOCOCH, (2f') 3 66 (3af) 97
6 4-NO,C¢H, (2g") S 67 (3ag) 92
7 3-MeC¢H, (2h’) 5 56 (3ah) 93
8 3-CIC¢H, (2i") 1S 79 (3ai) 93
9 2-naphthyl (2j") S 64 (3aj) 92

“Reaction conditions: 1a (0.10 mmol), 2 (0.30 mmol), [RhCl(cod)],
(5 mol % of Rh), (R)-binap (6 mol %), and tert-amyl alcohol, and
K;PO, (0 10 mmol for entries 2—9) in 1,4-dioxane (0.2 mL) at 60 °C
for 20 h. “Isolated yield. CDetermmed by HPLC analysis with chiral
stationary phase columns. “H,O was used instead of fert-amyl alcohol
without K;PO,.

Scheme 2. Rh-Catalyzed Asymmetric Addition of p-
Tolylboronic Acid to Indene Derivatives”
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“Reaction conditions: 1

3la (3ka): 46%, 77% ee

1 (0.10 mmol), 2a (0.30 mmol), [RhCl(cod)],

(5 mol % of Rh), (R)-binap (6 mol %), and K;PO, (0.10 mmol) in

1,4-dioxane (0.2 mL) at 60 °C for 20 h.

Y[RhCl(cod)], (10 mol % of

Rh) and (R)-binap (12 mol %) were used. “At 80 °C.
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ee) was observed in the addition to 3ea, which has an
electron-withdrawing CF; group. Both m-chlorophenylindene
1f and o-chlorophenylindene 1g are also good substrates to
give 3fa and 3ga, respectively, with high enantioselectivity.
Styryl-substituted indene 1h also participated in the reaction
to give 3ha in 71% vyield with 98% ee. The reaction of 3i
having a cyclopropyl group proceeded to give 3ia with 97%
ee. In contrast, the reaction of indene 1j substituted with a
less bulky bromo atom at the 7-position displayed a lower
enantioselectivity of 57% ee. The addition to indene 3k
substituted at the 6-position gave the addition product 3ka in
59% yield with 87% ee. The same product as 3ka with an
opposite absolute configuration (R) (3la) with 77% ee can be
obtained by the reaction of 31, which has a p-chlorophenyl
group at the S-position, using (R)-binap as a ligand.

Table 2 summarizes the results obtained for the addition of
several arylboron reagents 2 to 7-phenyl-1H-indene (1a). The
use of arylboron reagents, such as phenylborate (2b7)"* in
the presence of H,O (entry 1) and arylboronates (2') with
tert-amyl alcohol (entries 2—9), brought about higher yields
than the corresponding arylboronic acids. Several aryl groups
are introduced into la giving the corresponding 2-arylindanes
3 in moderate to good yields with high enantioselectivity.
Unfortunately, however, the reaction of ortho-substituted aryl
groups, such as o-tolyl, o-chlorophenyl, and o-methoxyphenyl,
failed to give the corresponding arylation products.

The alkene moiety of indene la easily isomerized into 1a’
in the presence of K;PO, (eq 1). The olefin isomerization,
however, was suppressed by p-tolylboronic acid (2a) even in
the presence of the base (eq 2), probably because the basic
character was suppressed by the formation of a borate anion.
In addition, the chlororhodium catalyst did not isomerize the
olefin (eq 3). The reaction of a 1:1 mixture of la and 1a’
gave 3aa in 45% yield, whose ee was 88% (S) (eq 4). The
result indicates that the reactivity of 1a is much higher than
1a’ in consideration of the relatively high enantioselectivity.

Ph Ph Ph
KsPO, (1.0 equiv)
e (D O o
60 °C, 20 h
1a 1a 1a’
1a:1a’ = 45:55
K3POy, (1.0 equiv)
— e, f 1 2
1a + (HO),B 1 d-dioxans recovery of 1a (2
2a(30equiv)y 60°C.20h
[RhClI(cod)], (5 mol% Rh)
_bi o,
1a (F)-binap (6 mol%) recovery of 1a (3)
1,4-dioxane
60 °C, 20 h
' e [RhCl(cod)], (5 mol% Rh) Ph
Tala (1) () Cinap (6 mol%)
2a KaPOy, (1.0 equiv) p-tol @)
(3.0 equiv) 1,4-dioxane, 60 °C, 20 h
3aa: 45% yield, 88% ee
1kl (1:1) Ar
. same as above |
2a p-tol (5)
(3.0 equiv) Ar = 4-CICgH,
3ka (3la): 50% yield
<1% ee

The low reactivity of 1a’

might be due to the steric

hindrance of the phenyl group located close to the olefin
moiety. In sharp contrast, the ee of the product was lost in

the reaction of an equimolar mixture of 1k and 11 (eq S),
indicating that the substituents far from the olefin moiety do
not influence the reactivity. It follows that the same face
selectivity of the olefin toward 1k and 1l furnishes both
enantiomers equally. The result also implies that the olefin
isomerization of the indene should be avoided to achieve the
high enantioselectivity.

The present catalytic system can also be applied to the
asymmetric addition to acenaphthylene as one of the indene
derivatives (Scheme 3), which has not been used as an

Scheme 3. Rh-Catalyzed Asymmetric Addition of
Arylboron Compounds to Acenaphthylene”

[Rh(OH)(cod)], (5 mol% Rh)
O ArB( OH (S)-difluorphos (6 mol%)
Q ArBO 1,4-dioxane, 60 °C, 6 h '
Ar
5
Ar = 4-MeCgH, (5aa): 99%, 98% ee
Ph (5ab): 94%, 97% ee ._}\7-)\{
4-MeOCgH, (5ak): 88%, 98% ee? 1\ /L PN
4-Ph,NCgH, (5al): 89%, 97% eeb ’ \,» T
' 4-CICgH, (5ad): 63%, 98% ee” AR
“ap  4BrCeHa (5am): 71%, 96% ee? N
" 4-CF4CqH, (5ae): 98%, 96% ee (S)-5am

3-MeOCgH,4 (5an): 93%, 98% ee®
3-CICgH, (5ai): 97%, 99% ee®
3-BrCgH, (5a0): 90%, 98% ee?
2-MeOCgH, (5ap): 76%, 96% ee
2-naphthyl (5aj): 90%, 96% ee

o0
5

| Ph
o I\N/I —

e PW  Ph
5aq: 94%, 95% ee®  5ar: 54%, 90% ee 5as: 87%, 95% ee®
0 O o

@ n-pent

5au: 55%, 96% ee

5at: 47%, 98% ee? 5ba: 78%, 99% ee

“Reaction conditions: 4a (0.20 mmol), 2 (0.50 mmol), [Rh(OH)-
(cod)], (5 mol % of Rh), and (S) -difluorphos (6 mol %) in 1,4-
dioxane (0.4 mL) at 60 °C for 6 h. Arylboroxme (2") (2.5 equiv of
B) and tert-amyl alcohol (3.0 equiv) were used instead of the
corresponding arylboronic acids. “Arylboroxine (2'’) (2.5 equiv of B)
and water (5.0 equiv) were used instead of the corresponding
arylboronic acids.

acceptor for Rh-catalyzed addition of arylboron reagents, to
the best of our knowledge. After the optimization of the
reaction conditions for the asymmetric addition (Table S2),
the catalytic system composed of [Rh(OH)(cod)], and (S)-
difluorphos was found to efliciently promote the reaction
with high enantioselectivity. Thus, treatment of acenaph-
thylene (4a) with 2.5 equiv of p-tolylboronic acid (2a) in the
presence of [Rh(OH)(cod)], (5 mol % of Rh) and (S)-
difluorphos (6 mol %) in 1,4-dioxane at 60 °C for 6 h gave
the addition product Saa in 99% yield with 98% ee. The
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scope of arylboronic acids is fairly broad, and a variety of aryl
groups substituted with both electron-donating and -with-
drawing groups were introduced into 4a, thus giving the
corresponding addition products § in high yield with high
enantioselectivity (90—99% ee). 2-Thiopheneboronic acid
(2t) and alkenylboronic acid 2u also participated in the
reaction to give addition products Sat and Sau in 47% and
55% vyields, respectively, with high enantioselectivity. The
reaction of acenaphthylene Sb substituted with two tert-butyl
groups also gave addition product Sba in 78% yield with 99%
ee. The absolute configuration of the (S)-Sam was
determined to be S by X-ray crystallographic analysis.
Deuterium-labeling experiments provided mechanistic in-
sight into the protonation step of the present reactions (eqs
6—8). In the reaction of indene la with phenylboroxine 2b’
in the presence of D,0, where PhB(OD), is generated in
situ, deuterium incorporation was observed at the 2'-position
of the phenyl group (eq 6). The reaction using penta-
deuteriophenylboronic acid (2b-ds) generated in situ gave the
addition product, where a transfer of deuterium from the
phenyl group to a benzylic position of the indane occurred
(eq1 7). These results indicate that the reaction involves a 1,4-
shift before protonation. On the other hand, in the
reaction of acenaphthylene (4a) with phenylboroxine 2b’ in
the presence of D,0, H/D exchange was observed at the
benzylic position (eq 8). It was also confirmed that the
deuterium on Sab-D was anti to the phenyl group. The result
indicates that an organorhodium species undergoes direct
protonation with inversion of stereochemistry at the rhodium
to give the addition product without the 1,4-Rh shift."”

Ph

[RhCl(cod)], (5 mol% Rh)
(rac)-binap (6 mol%)

1f K4PO, (1.0 equiv)
D,0 (3.0 equiv)
(PhBO)s 4% dioxane H D
(1.0 equiv) 80°C,20h 81% DzJ
3ab-D: 56% yield
Ph
[RhCl(cod)], (5 mol% Rh) Ph
’ (rac)-binap (6 mol%) b D
1a K3POy4 (1.0 equiv) ’ O 5
+ H,O (3.0 equiv)
(CgDsBO); 1,4-dioxane
60°C,20 h A0 &
2b’-d; (1.0 equiv) 86% D 13% D

3ab-D5: 53% yield

OQO [Rh(OH)(cod)], (5 mol% Rh)

(rac)-binap (6 mol%)

8)
4f D,O (5.0 equiv) ﬁ
1,4-dioxane o
(Pr;?)(,))a 60°C. 6 h 87% D1 '
<1% D
(0.8 equiv) 5ab-D: 66% yield

Based on the results of the deuterium-labeling experiments
and previous studies,”'® insertion and protonation steps of
the present reactions are proposed as illustrated in Scheme 4.
p-Tolylthodium species A, generated by transmetalation
between p-tolylboronic acid (2a) and Rh, reacts with indene
la to give benzylrhodium intermediate B, which undergoes
the 1,4-Rh shift to form arylthodium C. Protonation of C
then gives 3aa and regenerates a Rh(OH) species. In contrast
to the protonation step for indene 1la, the reaction of

Scheme 4. Protonation Steps via Key Intermediates

a
@ 1,4-Rh shift Ph

O
B Ah c AH
O’ Rh = Rh((R)-binap) Protggaﬂon leo

1a
O~
3aa H

direct protonation

acenaphthylene (4a) involves direct protonation of the
benzylrhodium intermediate as shown in Scheme 4b. The
n-benzylrhodium intermediate D, which may be stabilized not
to receive the 1,4-Rh shift, undergoes the protonation at the
benzylic position from the opposite side of rhodium to give
Saa.

In summary, we have developed Rh-catalyzed asymmetric
addition of arylboron reagents to indene derivatives giving 2-
arylindanes in good yields with high enantioselectivity. High
enantioselectivity was also observed for the addition to
acenaphthylene, which has a similar skeleton to indene.
Mechanistic investigations indicate that the present Rh-
catalyzed addition of arylboronic acids to indene derivatives
involves a 1,4-Rh shift before protonation of the benzylrho-
dium intermediate to release the product and the active Rh
species. In contrast, in the reaction of acenaphthylene, direct
protonation of the organorhodium species, which may have a
7-benzyl form, occurs without the 1,4-Rh shift to give the
addition product. Further studies on the asymmetric addition
to indene derivatives having a trisubstituted alkene moiety are
underway.
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