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required, nominally to scavenge the iodide formed during the
reaction. A typical Pd(0/Il)-type catalytic cycle (mechanistic pro-
posal A in Scheme 2), as proposed in most C-H arylation method-
ologies could account for these results. The role of the Ag(l)-salt
would be simply to abstract | from Pd-species Il, generating
Pd(I)-carboxylate 111. Species 111 would then perform C-H acti-
vation of 1 via CMD, followed by reductive elimination to form
biaryl product 3. However, during optimization of this process we
observed that lower yields were obtained when the ratio PPh,:Pd
was decreased from 4:1 to 2:1 or 0:1.2° Intrigued by these results,
we now set out to investigate whether there was an alternative
species performing the C—H activation step in this reaction.

In order to identify the species performing the C-H activation
we attempted H/D exchange experiments on arene-complex 1
(Scheme 3). Treatment of 1 under the standard reaction conditions
in the presence of D,0O, but in the absence of Ag,COs;, led to re-
covery of starting material after two hours. Similarly, treatment of
1 with, 0.75 equiv Ag,CO; afforded no deuteration of the starting
material 1. The use of 0.5 equiv of AdCO,Ag, on the other hand,
led to a small amount of deuteration (5%). Interestingly, when 0.5
equiv of AdCO,Ag were used in combination with 0.5 equiv of
PPhs, 75% deuteration to d-1 was observed. This suggested that
the additional PPh; needed in the arylation reaction was complex-
ing and solubilising an Ag-carboxylate species which then per-
forms the C—H activation. *H and *'P NMR experiments in dg-
PhCH; confirmed that the highly insoluble AdCO,Ag is fully
solubilized upon addition of 1 equiv of PPhs, leading to the for-
mation of a 1:1 complex with the empirical formula Ad-
CO,Ag(PPh,).Y Accordingly, Scheme 2b outlines mechanistic
proposal B for the arylation reaction in which AdCO,Ag(PPhs)
species (V1) would carry out C-H activation, forming Ag(l)-aryl
species V. Subsequently, V would transmetalate with Pd(Il)-
carboxylate 111 to form V.

Scheme 3. H/D exchange experiments on arene-Cr 1

Me. F conditions Me F
S o
I 10 equiv D,O |
Cr(CO)s PhCH3, 70 °C, 2 h Cr(CO)3
1 d-1
conditions | yield d-1
5 mol % Pd(PPhg),, 2.0 equiv K,CO3,
1.5 equiv 2, 0.5 equiv 1-AdCO,H 0%
0.75 equiv Ag,CO3 0%
0.5 equiv AgOCOAd 5%

0.5 equiv AQOCOAJ, 0.5 equiv PPh3 75%

To confirm this hypothesis, we monitored the kinetics of the
arylation reaction with increasing amounts of added PPh;. We
found a positive effect of the phosphine on the rate of the reaction
reaching saturation at 0.04 M (Figure 1). Considering that the
precatalyst Pd(PPhs), can liberate two molecules of PPh; into the
solution after formation of intermediate 111, the amount of PPh;
available to coordinate AgO,CAd under those conditions is ap-
proximately 0.05 M. This value is the concentration of AdCO,H
used and therefore the upper limit concentration of VI that can be
formed. These results suggest that the AdCO,Ag(PPhz) complex
VI is involved in the rate determining step of the overall reaction.

To perform further mechanistic studies of such a complex sys-
tem, we used the experimental design of reaction progress kinetic
analysis (RPKA)™® and novel analysis methods for integrative data
recently developed.'®. Under the standard conditions (Scheme 1),
same excess experiments analyzed by the time-adjusted method*
showed neither significant deactivation nor product inhibition,
indicating that the system can be studied by these methods.? Dif-
ferent excess experiments revealed a zero order in iodoarene 2
and a positive order in arene 1.° A first order in arene 1 was fur-
ther determined by initial rate measurements.

x mol % PPh;
OMe 5 mol % Pd(PPhs)s, e

Me F 0.75 equiv Ag,CO F
.75 equiv Ag;CO3,
fas ST Q < )-ome
i 2.0 equiv K,CO3, i
Cr(CO)s | 0.5 equiv 1-AdCO,H Cr(CO)s
1 2 dg-toluene, 70 °C, 24 h 3
0.10M 0.15M
w A
¥ ®a ¥ 2 o
5 -1 A A o o
%5 e o0 °
o
XOA o x
A o
%X% A
Ea 50
¥Ao

Figure 1. Determination of the saturation concentration of PPhs
using 5 mol % of Pd(PPhs),.

Measuring the order in Pd is non-trivial because the precatalyst,
Pd(PPhs),, liberates PPh; which in turn has a positive effect in the
rate of the reaction. To avoid this interference, the order in Pd
must be measured under PPh; saturation conditions. When the
reaction was performed adding 0.06 M of PPhs, the orders in io-
doarene 2 and arene 1 remained the same as under standard condi-
tions.2’ Remarkably, the order in Pd was found to be zero, as
shown by the identical kinetic profiles of the reactions with 2.5, 5
and 10 mol % of Pd(PPhs), (Figure 2).

Me E OMe  x mol % Pd(PPh3)s e F
@ PPh3 0.06 M O
H + (’) OMe
* 0.75 equiv Ag,CO3, ;
Cr(CO)3 | 2.0 equiv K,CO3, Cr(CO)3
1 2 0.5 equiv 1-AdCO,H 3
0.10M 0.15M dg-PhMe, 70 °C, 24 h
Pd(PPh,)
a0 ® PO0OAD o
31 (M qfa o 2.5 mol %
(3] (M) & o 5 mol %
féﬁ a 10 mol %
t(h)

Figure 2. Order zero in Pd under PPh; saturation.

To the best of our knowledge, this is the first time that a null ef-
fect of the palladium concentration has been observed in a Pd-
catalyzed cross-coupling. A zero order in catalyst can be observed
in cases where a process external to the catalytic cycle is limiting
the rate of the overall reaction.*’ In mechanistic proposal A
(Scheme 2a), the only out-cycle process that could limit the rate
of the overall reaction is the formation of AgO,CAd from Ag,CO,
and AdCO,H. This hypothesis would be consistent with the posi-
tive order in PPh; because its coordination would increase the
solubility of Ag(l) salts. However, it would be incompatible with
the observed positive order in arene 1. On the other hand, mecha-
nistic proposal B has an additional out-cycle process that could
limit the rate of the overall reaction: the Ag(l)-mediated C-H acti-
vation. This scenario would be compatible with the positive effect
of PPh;, its saturation above the concentration of AdCO,H and the
positive order in arene 1 since it is a driving force of this step.?

The key species in the reaction is, therefore, AdCO,Ag(PPh3) VI.
It was not possible to measure the concentration of this complex
from reaction aliquots, and so order on this catalyst was evaluated
using the deuteration system (Scheme 3) as a simplified model.
The order on Ag was found to be 0.6, consistent with an inactive
dimeric resting state of the type [AdCO,Ag(PPhs)], and a low
concentration monomeric active species VI.* The 0.6 order on
Ag, taken together with the positive order on arene 1 and the zero
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order observed on Pd in the arylation reaction, provides strong
support for mechanistic proposal B in Scheme 2b.

In addition to the kinetic evidence supporting mechanistic pro-
posal B, we were also able to identify by *H and 3P NMR trans-
(PPhj3),Pd(OCOAd)(p-CsH4OMe) (5, Figure 3) corresponding to
the trans isomer of proposed Pd(l1)-carboxylate intermediate 111,
as the major Pd-catalytic intermediate in the reaction. The identity
of 5 was confirmed by independent synthesis. This observation is
in agreement with mechanistic proposal B, where the Ag(l)-
mediated C-H activation is the rate limiting step of the entire cata-
lytic system. In this situation, the rate determining step of the Pd-
catalytic cycle must be the transmetallation of Ag(l)-aryl species
V with Pd(Il) species I11. Using species 5 as the Pd-precatalyst
instead of Pd(PPhj), for the arylation process led to identical reac-
tion kinetics, provided two additional equiv of PPh; are added.?

1.0 equiv AgO,CAd

L) |
A A L\J\

64 62 60 58 56 54 52

"H & (ppm) *P & (ppm)
Figure 3. Comparison of *H and *'P NMR of a reaction aliquot at
2 h with pure trans-(PPh3),Pd(OCOAd)(p-C¢HsOMe) (5, blue)
and in situ formed (PPh3)AgOCOAd (red). Cr-arene complex 1
and biaryl product 3 are highlighted in green and purple, respec-
tively.

Standard Conditions
aliquot taken after 2 h A

W N

This kinetic evidence points towards mechanistic proposal B
being in operation (Scheme 2b), with Ag(l)-mediated C-H activa-
tion as the rate limiting step in the process. A KIE of 2.3 had pre-
viously been measured for this reaction, in agreement with this
hypothesis.? In order to gather further evidence we tested the
reactivity of Pd-species 5, a plausible resting state for Pd during
the reaction, with arene-Cr complex 1 (Scheme 4). As expected,
Pd-carboxylate 5 did not react with 1 under a variety of condi-
tions, including addition of 2 equiv of K,CO;. No reaction was
observed either when running the reaction under O, atmosphere.?*
On the other hand, addition of AdCO,Ag and PPh; led to for-
mation of the C-H arylation product 3 in 26% yield. Decomposi-
tion of 5 is also observed, accounting for the low yield. We hy-
pothesized that this decomposition was accelerated by formation
of trace amounts of Pd(0). Indeed, when the reaction was carried
out in the presence of an iodoarene, 6, able to react rapidly with
any low valent Pd species, a yield of 72% of 3 was obtained.
These experiments reemphasize the need for the Ag(l)-
carboxylate in order for the C-H activation step to proceed. These
results are fully consistent with mechanistic proposal B (Scheme
2b) and inconsistent with mechanistic proposal A. %

Further studies will be needed to understand the exact mecha-
nism of C-H activation by AdCO,Ag(PPhs). However, by analogy
with previous studies on Pd-O,CR, a plausible CMD can be pro-
posed. This was probed by DFT calculations of the CMD pathway
of  (fluorotoluene)Cr(CO); with the simplified AcO-
Ag(PPhz)which revealed a feasible free energy barrier of 29.5

kcal/mol (Figure 4).2%%7

From a practical point of view, the observation of zero order
kinetics on the Pd-catalyst at PPh; saturation conditions suggests

Journal of the American Chemical Society

that Pd catalyst loadings could be significantly reduced below the
5 mol % typically used. Gratifyingly, we found that in the pres-
ence of 60 mol % added PPh; the reaction of 1 and 2 proceeded
efficiently with only 0.1 mol % Pd(PPh,),, affording 3 in 61%
yield in 40 h. The longer reaction times and lower yield suggest
that at low Pd-catalyst loadings this cycle becomes kinetically
relevant. Indeed, under these conditions of PPh; we observed an
order 1 for Pd at loadings below 0.5 mol %.%°

Scheme 4. Stoichiometric reactions of aryl-Pd(ll) 4 and
arene-Cr complex 2

PPh; F Additive(s) Me F
@Pd 0,CAd + ~ Ar
PPh, C dg-PhMe, 60 °C, 3 h \
r(c:O)3 Cr(CO)3
5, 0.1 equiv 1, 1 equiv 3

Additive(s) yield 3

none 0%

2 equiv K,COg3 0%

0, 0%

0.5 equiv AGOCOAd, 0.5 equiv PPh3 26%

0.5 equiv AGOCOAd, 0.5 equiv PPhj,

q ¢} q 3 72%

1.5 equiv | CF3
6

Due to the ubiquity of Pd/Ag mediated C-H functionalization
methodologies we investigated whether AdCO,Ag(PPhs) may be
also able to mediate C-H activation on other commonly used
arenes. Gratifyingly, H/D exchange experiments using 50% of
this Ag(l)-salt showed significant deuteration after 3 h at 70 °C in
benzo[b]thiophene, pyridine-N-oxide, 1,3,5-trifluorobenzene and
1,3,4,5-tetrafluorobenzene (Scheme 5). On the other hand, fluoro-
benzene and 2-phenylpyridine did not undergo deuteration. These
results suggest that Ag(l)-salts may be the actual species perform-
ing C-H activation in several previously reported Pd/Ag C-H
functionalization methodologies. More studies will be necessary
to assess the extent of the contribution of Ag(l) to C-H activation
in these cases.

T |
Giren Tha%e
&icoys ©
cmMD J
@&,
K9, 2
e | ¥ o
_______________ ‘/‘ ,.cmn
F
%} AcOAg(PPhs) @Agﬂzph3

CrCO); + AcOH

Figure 4. Computational studies for a plausible CMD-type C-H
activation step in the gas phase. Structures and energies calculated
by DFT (B3LYP/DGDZVP/SDD/6-31G(d)). Gibbs free energies
(G) in kcal/mol.

In conclusion, with a combination of stoichiometric and kinetic
mechanistic studies we have demonstrated that phosphine ligated
Ag(l)-carboxylates are excellent catalysts for C-H activation of
electron-deficient arenes. These studies show that the ratio of
PPh;, AACOOH and Pd determine the rate determining step of the
overall Pd/Ag mediated C-H arylation of (arene)-Cr(CO); com-
plexes with iodoarenes. Furthermore, deuteration studies suggest
that the role of Ag(l)-salts in C-H activation should be considered
in many other Pd/Ag mediated C-H functionalization reactions.
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Scheme 5. Ag(l)-catalyzed H/D exchange experiments on
arenes

0.5 equiv AQOCOAd, 0.5 equiv PPh3
10 equiv D,0, PhCH3, 70 °C, 2 h

sediicalivalesaly

55% 25% 0% 60% 0%
mono:bis (1.9:1)  mono:bis (11:1) (16 h) (16 h)
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cat [Pd]
Ar'-H + Ar-1 Ar'-Ar
Ag(l)-OCOR salt

kinetic and stoichiometric Ar'-Ar

evidence for A"'_l?d(”)
1 Ag(l)-C-H activation RCO,Ag Ar

11 Ag(l) C-H csF/’ fl e [Pd(O)]

12 RCO,AG activation [Ar-Ad]
5 —-_— -
13 ; ; Ar—[Pd(II)] %Ar-l

14 Ar-H  RCOH 6,CR
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