
## **REACTIONS OF 2-AMINOBENZOTHIAZOLES** WITH PHENYL GLYCIDYL ETHER

## R. F. Ambartsumova and L. P. Kosmacheva

In acidic media 2-aminobenzothiazole and its derivatives react with phenyl glycidyl ether at the ring nitrogen atom, while in alkaline media they react at the exocyclic nitrogen atom. The structures of the compounds were proved by spectral methods and alternative synthesis.

It is known that the alkylation of 2-aminobenzothiazoles with various reagents in neutral media is most often realized at the ring nitrogen atom [1]. An alkaline medium, on the other hand, promotes reaction at the exocyclic amino group [2]. The available information regarding the effect of an acidic medium are contradictory [3, 4]. However, alkylation in neutral media that takes place at the amino group has been described in a number of reports [5-10]. In an investigation of the reaction of 2-aminobenzothiazoles with acrylic acid [11] we have previously shown that the result of the reaction is a product of alkylation at the exocyclic amino group. In a continuation of our research in the aminobenzothiazole series we have studied the reaction of unsubstituted 2-aminobenzothiazole (Ia) and its derivatives (Ib-g) with phenyl glycidyl ether (II). It should be noted that virtually no study has been devoted to the reactions of 2-aminobenzothiazoles with alkene oxides: the synthesis of oligomeric products with an amino structure in the case of treatment of Ia with ethylene oxide was reported in a single publication [12]. In addition, a paper [13] in which an imino structure was assigned to the product of the reaction of 2-aminothiazole with phenyl glycidyl ether only in analogy with aminopyridine has been published.

We have shown that both mono- and disubstituted derivatives are formed as a result of the reaction of unsubstituted heterylamine Ia with oxirane II; opening of the oxirane ring occurs in accordance with Krasuskii's rule [14]. A product with an imino structure, viz., 2-imino-3-( $\gamma$ -phenoxy- $\beta$ -hydroxypropyl)benzothiazoline (IIIa) was obtained in both acidic and neutral media (Table 1). Its low yield (up to 30%) is explained by the fact that, in addition to the principal reaction products, side products, viz., 1-ethoxy-2-hydroxyphenoxypropane (5-13%) in alcohol and 1-acetoxy-2-hydroxy-3-phenoxypropane (37-60%) and 2-acetamidobenzothiazole (1.5-4%) in acetic acid, are formed as a result of the reaction of the starting substances with the solvent; we confirmed this in special experiments. As a rule, a significant amount (20-30%) of 2-aminobenzothiazole (Ia) is detected in these reaction mixtures.



I. III a R = H; b  $R = CH_3$ ; c  $R = C_2H_5$ ; d  $R = C_6H_5$ ; e  $R = CH_2C_6H_5$ ; f  $R = C_6H_{11}$ ; g  $R = COCH_3$ 

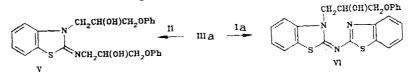
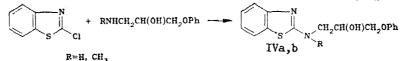

Institute of the Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR, Tashkent 700170. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 685-691, May, 1991. Original article submitted June 20, 1989; revision submitted October 10, 1990.

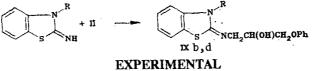
TABLE 1. Yields of the Products and Conditions for Carrying Out the Reaction of2-Aminobenzothiazole (I) with Phenyl Glycidyl Ether (II)

| Ia:II<br>ratio,<br>moles                                                                           | Solvent                                                                                                                                                                                 | T <sub>r</sub> , ℃                                                                                                    | Time, h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yields (                                                                                         | of produc | t,% (HPI                                                         | LC data) |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------|----------|
|                                                                                                    |                                                                                                                                                                                         |                                                                                                                       | Į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IIIA                                                                                             | īva       | v                                                                | VI       |
| 1:1<br>1:3<br>1:1<br>1:1<br>1:1<br>1:2<br>1:1<br>1:1<br>1:1<br>1:1<br>1:1,5<br>1:1,5<br>1:2<br>1:2 | Benzene<br>Xylene<br>Xylene<br>Alcohol<br>Alcohol<br>Chloroform<br>CH <sub>3</sub> COOH<br>CH <sub>3</sub> COOH<br>CH <sub>3</sub> COOH<br>CH <sub>3</sub> COOH<br>CH <sub>3</sub> COOH | 90<br>90<br>Refluxing<br>Refluxing<br>Refluxing<br>Refluxing<br>Refluxing<br>2025<br>65<br>65<br>65<br>65<br>65<br>65 | $     \begin{array}{r}       10 \\       10 \\       10 \\       36 \\       10 \\       10 \\       10 \\       10 \\       2 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       5 \\       10 \\       10 \\       5 \\       10 \\       10 \\       5 \\       10 \\       10 \\       5 \\       10 \\       10 \\       10 \\       5 \\       10 \\       10 \\       10 \\       5 \\       10 \\       10 \\       10 \\       5 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 \\       10 $ | $ \begin{array}{c} 4 \\ -21 \\ 27 \\ 28 \\ 14 \\ \\ -14 \\ 26 \\ 28 \\ 18 \\ 24 \\ \end{array} $ |           | 53<br>67<br>59<br>27<br>24<br>42<br>57<br>10<br>—<br>—<br>—<br>— |          |

\*The reaction was carried out in the presence of an equimolar amount of NaOH.


On the other hand, IIIa may react with the starting reagents to give diaddition products of the V and VI type. A mixture of products IIIa, V, and VI is formed in the case of refluxing the mixture in aprotic solvents (benzene, xylene); the yield of VI increases with an increase in the reaction temperature and time. Primarily V is formed in the absence of a solvent and in the case of refluxing in alcohol.




The reactions of heterylamines Ib-g carried out in excess oxirane II, as well as in benzene in the presence of boron trifluoride etherate, lead to IIIb-g.

In an alkaline medium oxirane II reacts at the exocyclic nitrogen atom of substrate Ia to give  $2-\gamma$ -phenoxy- $\beta$ -hydroxypropylaminobenzothiazole (IVa).

The structures of the synthesized compounds were established by means of IR, UV, and PMR spectroscopy and mass spectrometry (Tables 2 and 3). The structure of VI was confirmed by additionally determining the elementary composition of the molecular ion with m/z 433 as  $C_{23}H_{19}N_3O_2S_2$ . To prove the structures we also resorted to alternative synthesis and the synthesis of derivatives or isomeric compounds. Diacetyl products VII and VIII were obtained by treatment of heterylamino alcohols IIIa and IVa with acetic anhydride. The corresponding alkylaminobenz-othiazoles IVa, b were synthesized by the reaction of 2-chlorobenzothiazole with  $\gamma$ -phenoxy- $\beta$ -hydroxypropylamines.



The isomeric (with respect to IIIb, d) IXb, d were obtained by the reaction of the corresponding iminobenzothiazolines with oxirane II:



The IR spectra of KBr pellets of the compounds were recorded with a UR-20 spectrometer. The UV spectra of solutions in ethanol were obtained with a Hitachi EPS-3T spectrophotometer. The PMR spectra were recorded with a Jeol C-60 HL spectrometer with tetramethylsilane (TMS) as the internal standard. The mass spectra of IIIa, b-IV and IXb were recorded with an MKh-1303 spectrometer (with direct introduction of the samples); the input temperature was 20-100°C, and the ionizing voltage was 40 eV. The mass spectra of IIIc-g, V-VIII, and IXd and the elementary composition were determined with an MKh-1310 spectrometer; the temperature of the system for the direct

| Ĩ   | <u> </u>  |
|-----|-----------|
| -1  | 20.2      |
| l   | ે ને છે ! |
| - 4 | • Č č l   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TABLE 2. Characteristics of the Synthesized CompoundsCom-Empiricalmp, $^{\alpha}$ °C $R_{\mu}$ , $\frac{V_{\mu}}{R_{\mu}}$ , $\frac{V_{\mu}}{R_{\mu}}$ , $\frac{U_{\nu}}{R_{\mu}}$ formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | leristics o                               | oc oc                                | te Syn $_{R, \cdot \cdot}$      | IR spec                                  | sized Com<br>spectrum,<br>cm <sup>-1</sup> | pectrum,<br>t E)                                           | λ тахי                                 | PMR spectrum, δ, ppm (CDCl <sub>3</sub> )                                                                                                                                                                   | Yield, %<br>(method of<br>svnthesis) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cl <sub>6</sub> H <sub>16</sub> N <sub>2</sub> O <sub>2</sub> S 85 0.63 1610 3310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,63 1610 3310                            | I610 3310                            | ан, он<br>3310                  |                                          | 225<br>271                                 | (4,56), 265,5<br>(4,21), 276 sh                            | (4,2),<br>(4,13),                      | 4,4 (3Н, m, CH <sub>2</sub> N, CH); 6,07 (2H,<br>År)                                                                                                                                                        |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $111 b C_{17}H_{18}N_2O_2S \qquad 94,5\ldots 96 \qquad 0,42 \qquad 1630 \qquad 3180 \qquad 223 \\ 278 \qquad 278 \qquad 278 \qquad 278 \qquad 0.42 \qquad 1630 \qquad 3180 \qquad 223 \qquad 0.18 \qquad 0.$                                                                                                                                                                                                                                   | 0,42 1630 3180                            | 1630 3180                            | 3180                            | ,                                        | 296<br>223<br>278                          | (5 (3,66)<br>(4,47), 266<br>(3,70) 303                     | (3.96).                                | l, d., CH <sub>2</sub> O); 4,14,4 (3H,m.,<br>735 (9H,m., Ar)                                                                                                                                                | 42                                   |
| 3.94), 3.98 (2H, d. CH <sub>2</sub> O); 4.27 4,44 (3H, m, CH, CH <sub>2</sub> N); 5,45 (1H, (3.80) g, OH); 6.76 7.25 (14H, m, Ar)<br>(3.80), g, OH); 6.76 7.25 (14H, m, Ar)<br>(3.71) d, CH <sub>2</sub> O); 4.25 4,35 (5H, m, 2CH <sub>3</sub> N, CH); 6.75<br>(3.71) d, CH <sub>2</sub> O); 4.15 4,3 (3H, m, CH, CH <sub>2</sub> N); 6,8 7,4 (10H, m, OH, m, OH, Ar)<br>(3.71) d, CH <sub>2</sub> O); 4.15 4,3 (3H, m, CH, CH <sub>2</sub> O); 4.24 (1H, m, CH);<br>(3.71) d, CH <sub>2</sub> O); 4.15 4,3 (3H, m, CH, CH <sub>2</sub> O); 4.24 (1H, m, CH);<br>(3.71) d, CH <sub>2</sub> O); 4.15 4,3 (3H, m, Ar); 8,78 7,5 (9H, m, CH);<br>(3.71) d, CH <sub>2</sub> O); 4.15 4,3 (3H, m, Ar); 8,8 (2H, d, CH <sub>2</sub> O); 4.24 (1H, m, CH);<br>(3.66) CH); 6.73 7,58 (9H, m, Ar); 8,8 (2H, d, CH <sub>2</sub> O); 4.2 4,4 (1H, m,<br>(3.66) 2H); 6.73 7,58 (9H, m, Ar); 8,8 (2H, d, CH <sub>2</sub> O); 4.2 4,4 (1H, m,<br>(3.66) 2H); 6.73 7,58 (1H, m, Ar)<br>(3.66) 2H); 6.75 7,35 (14H, m, Ar)<br>(3.66) 2H); 6.75 7,35 (14H, m, Ar)<br>(3.66) 2H); 6.75 7,35 (14H, m, Ar)<br>(3.66) 2H; 6.75 7,35 (14H, m, Ar)<br>(3.61) 2H, 0O; 2H, d, CH <sub>2</sub> O); 4.4 4,65 (4H, m, CH <sub>2</sub> O); 4.15 (2H, d,<br>(4.27), 40 (2H, d, CH <sub>2</sub> O); 4.4 4,65 (4H, m, CH <sub>2</sub> O); 4.15 (2H, d,<br>(4.62) 1.33 (2H, d, CH <sub>2</sub> O); 4.4 4,65 (4H, m, CH <sub>2</sub> O); 4.15 (2H, d,<br>(4.62) 1.85 (2H, m, Ar)<br>(3.57) (134, m, Ar)<br>(4.62) 1.85 (2H, m, Ar)<br>(4.62) 1.85 (2H, m, Ar)<br>(4.62) 1.85 (2H, m, Ar)<br>(4.62) 1.85 (2H, m, Ar)<br>(5.75 7,63 (9H, m, Ar)<br>(5.75 7,63 (9H, m, Ar)<br>(6.8 7,8 (9H, m, Ar)<br>(7.9) 2.63 (1H, s, OH); 3.35 (5H, d, CH <sub>3</sub> ON); 4.15 (2H, d, CH);<br>(6.8 7,8 (9H, m, Ar)<br>(7.9) 2.93 (1H, s, OH); 3.34 (2H, d, CH <sub>3</sub> ON); 3.93 4.2 (3H, m)<br>(3.72) 2.93 (1H, s, OH); 3.34 (2H, d, CH <sub>3</sub> ON); 3.93 4.2 (3H, m)<br>(3.72) 2.93 (1H, s, OH); 3.34 (2H, d, CH <sub>3</sub> ON); 3.93 4.2 (3H, m)<br>(3.64) CH <sub>2</sub> O, CH); 6.55 7.5 (14H, m, Ar)                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,61 1635 3400                            | 1635 3400                            | 3400                            |                                          | 22                                         | (4.54), 266<br>8 sh (3,85), 304                            | (4.03).<br>(3,80)                      |                                                                                                                                                                                                             |                                      |
| 3,73), 3,95 (2H, d, CH <sub>2</sub> O); 4,25 4,35 (5H, m, 2CH <sub>2</sub> N, CH); 6,75<br>3,68), 7,25 (15H, m, OH, Ar)<br>3,99), 1,2 1,72 (10H, m, C <sub>8</sub> 10,0); 2,87 (1H, m, H-C <sub>6</sub> H <sub>0</sub> ); 3,95 (2H,<br>(3,71) d, CH <sub>2</sub> O); 4,15 4,3 (3H, m, CH, CH <sub>2</sub> O); 4,24 (1H, m, CH);<br>3,64), 2,23 (3H, s, CH <sub>3</sub> ); 3,95 (2H, d, CH <sub>2</sub> O); 4,24 (1H, m, CH);<br>3,66) (2H), 6,73 7,58 (9H, m, Ar) <sup>***</sup><br>(3,66) (2H), 6,73 7,58 (1H, m, CH); 6,85 7,66 (10H, m, OH, Ar)<br>(3,66) (2H), 6,75 7,35 (14H, m, Ar)<br>(3,66) (2H, d, CH <sub>3</sub> N); 3,90 4,35 (9H, m, 2CH <sub>2</sub> O); 4,2 4,4 (1H, m<br>(4,06), 3,3 (2H, d, CH <sub>3</sub> N); 3,90 4,35 (9H, m, 2CH <sub>2</sub> O); CH <sub>2</sub> N, OH<br>(4,27) (3,12 (3H, s, CH <sub>3</sub> N); 3,90 4,35 (9H, m, 2CH <sub>2</sub> O); CH <sub>2</sub> N, OH<br>(4,05) (3,3 (2H, d, CH <sub>3</sub> N); 3,90 4,35 (9H, m, 2CH <sub>2</sub> O); CH <sub>2</sub> N, OH<br>(4,05) (3,3 (2H, d, CH <sub>3</sub> N); 3,91 4,55 (4H, m, CH <sub>2</sub> N, CH, OH);<br>(4,25) (5,55 7,33 (13H, m, Ar)<br>(4,62) (5,55 7,33 (13H, m, Ar)<br>(4,62) (2H, d, CH <sub>3</sub> O); 4,4 4,65 (3H, s, CH <sub>3</sub> ON); 4,15 (2H, d,<br>(4,62) (2H, 0); 4,55 7,35 (13H, s, CH <sub>3</sub> ON); 5,4 5,75 (1H, s, CH);<br>(5,75 7,93 (13H, m, Ar)<br>(6,75 7,93 (13H, m, Ar)<br>(6,75 7,93 (13H, m, Ar)<br>(6,75 7,93 (13H, m, Ar)<br>(6,75 7,93 (13H, m, Ar)<br>(7,00); 4,45 4,75 (2H, q, CH <sub>2</sub> N); 5,4 5,75 (1H, s, CH);<br>(6,75 7,93 (11H, m, Ar)<br>(6,75 7,83 (1H, m, Ar)<br>(7,00); 4,55 7,35 (5H, d, CH <sub>2</sub> N); 5,4 5,75 (1H, m, CH);<br>(7,00); 4,55 7,34 (9H, m, Ar)<br>(7,00); 2,83 (1H, s, OH); 3,35 (5H, d, CH <sub>3</sub> N); 5,4 5,75 (1H, m, CH);<br>(7,00); 2,93 (1H, s, OH); 3,45 (5H, d, CH <sub>3</sub> N); 5,4 5,75 (1H, m, CH);<br>(7,00); 2,93 (1H, s, OH); 3,35 (5H, d, CH <sub>3</sub> N); 3,93 4,2 (3H, m, CH);<br>(3,97) (2H <sub>2</sub> O) CH); 3,4 (2H, d, CH <sub>3</sub> N); 3,93 4,2 (3H, m, CH);<br>(3,97) (2H <sub>3</sub> O) CH); 3,4 (2H, d, CH <sub>3</sub> N); 3,93 4,2 (3H, m, CH);<br>(3,97) (2H <sub>3</sub> O) CH); 3,4 (2H, d, CH <sub>3</sub> N); 3,93 4,2 (3H, m, CH);<br>(3,97) (2H <sub>3</sub> O) CH); 3,4 (2H, d, CH <sub>3</sub> N); 3,93 4,2 (3H, m, CH);<br>(3,97) (2H <sub>3</sub> O) | $111d C_{22}H_{20}N_2O_2S \qquad 123124 \qquad 0,75 \qquad 1625 \qquad 3340 \qquad 272 $ | 0,75 1625 3340                            | 1625 3340                            | 3340                            |                                          | 20                                         | 223 (4,60), 270 sh<br>278 sh (3,98), 305                   | , (3,94).<br>(3,80)                    | 3,98 (2H, d, CH <sub>2</sub> O); 4,274,44 (3H, m, CH, CH <sub>2</sub> N); 5,45 (1H,<br>5, OH); 6,767,25 (14H, m, Ar)                                                                                        | 45                                   |
| 3.99) $[12 \dots 1.72 (104, m, C_{610,0}); 2.87 (11, m, H-C_{6H_{10}}); 3.95 (2H, M, OH, Ar) (3.71) d, CH2O); 4.15 \dots 4.3 (3H, m, CH, CH2O); 6.8 \dots 7.4 (10H, m, CH); 3.76) (4.55 (2H, d, CH3O); 5.68 (1H, s. OH); 6.8 \dots 7.5 (9H, m, Ar) (3.66) (2H); 6.75 (2H, d, CH3O); 3.95 (2H, d, CH2O); 4.24 (1H, m, CH); (3.66) (2H); 6.73 \dots 7.58 (9H, m, Ar) *** (7.66 (10H, m, OH, Ar) (7.96)) (3.66) (2H); 6.73 \dots 7.58 (9H, m, Ar) *** (7.66 (10H, m, OH, Ar) (7.96)) (3.66) (3H, s. CH3O); 3.95 (2H, d, CH3O); 4.24 (1H, m, Ar) (3.66) (2H); 6.75 \dots 7.58 (9H, m, Ar) *** (7.66 (10H, m, OH, Ar) (7.96)) (3.3 (2H, d, CH3O); 3.95 (2H, d, CH3O); 4.22 (CH2O); 4.2 (1H, m, CH); (3.66) (3H, s. CH3O); 3.95 (2H, d, CH3O); 4.26 (10H, m, OH, Ar) (3.66) (3H, s. CH3O); 5.65 (3H, m, Ar) *** (7.66 (10H, m, OH, Ar) (7.96) (3H, s. CH3O); 4.16 (2H, d, CH3O); 4.15 (2H, d, CH3O); (1H, m, Ar) (1H, m, CH); (6.75 \dots 7.76 (9H, m, Ar)); 5.4 \dots 5.75 (1H, s. CH); (6.75 \dots 7.78 (9H, m, Ar)); 5.4 \dots 5.75 (1H, m, CH); (6.75 \dots 7.78 (9H, m, Ar)); 5.4 \dots 5.75 (1H, m, CH); (6.75 \dots 7.78 (9H, m, Ar)); 5.4 \dots 5.75 (1H, m, CH); (6.75 \dots 7.78 (9H, m, Ar)); 5.4 \dots 5.75 (1H, m, CH); (6.72 \dots 7.8 (9H, m, Ar)); 5.4 \dots 5.75 (1H, m, CH); (6.72 \dots 7.8 (9H, m, Ar)); 5.4 \dots 7.8 (3H, (2H, 0)); (6.8 \dots 7.8 (9H, m, Ar)); 5.5 \dots 7.78 (9H, m, Ar)); (6.72 \dots 7.24 (9H, m, Ar)); 5.5 \dots 7.28 (1H, m, CH); (6.72 \dots 7.8 (3H, (2H_2O)); 2.5 (3H, s, CH_2ON); 4.2 (2H, d); (6.72 \dots 7.8 (2H, d)); (6.72 \dots 7.8 (9H, m, Ar)); 3.93 \dots 4.2 (3H, m), 2.03 \dots 4.2 (3H, m), 2.04 \dots 2.04 ); 2.4 (CH_3, CH_3, OH); 2.33 (CH_3, CH); 2.33 (2H, d, CH_3, OH); 2.33 (2H, d, CH_3, OH$                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,63 1630 3255                            | 1630 3255                            | 3255                            |                                          | 222                                        | 223 (4,38), 245 sh<br>268 (3,91), 278 sh<br>304 (3,61)     | (3,73),<br>(3,68),                     | <b>m</b> , 2CH <sub>2</sub> N,                                                                                                                                                                              | 24 (A)<br>13 (B)                     |
| 3.64), $[2.23, (3H, s, CH_3); 3.95, (2H, d, CH_2O); 4.24, (1H, m, CH); (3.76), [4.55, (2H, d, CH_2N); 5.68, (1H, s, OH); (5.787, 5, (9H, m, Ar)); (3.96), (2H, d, CH_2N); 3.95, (2H, m, Ar)); (3.96), (2H); (5.737, 58, (9H, m, Ar)); (3.96), (2H); (5.737, 58, (9H, m, Ar)); (3.96), (2H); (5.737, 58, (9H, m, Ar)); (4.0, CH_2N); (3.9, CH_3); 3.98, (2H, d, CH_2N); (4.0, CH_2N); (3.9, 2H, d, CH_2N); (4.0, CH_2N); (4.0, CH_2N); (4.0, CH_2N); (5.45, 7, 93, (13H, m, Ar)); (4.62), (4.1, m, CH); (5.6, 2H, d, CH_2N); (5.45, 2H, CN); (5.45, 2H, CN); (5.45, 2H, CN); (5.45, 2H, CN); (5.45, 2H, m, CH); (5.57, 6), (1H, m, Ar)); (5.67, 6), (1H, m, Ar)); (5.67, 8), (1H, m, CH); (5.96, 8), (1H, m, CH); (5.96, 8), (1H, m, CH); (5.97, 8), (1H, m, Ar)); (5.67, 8), (1H, m, CH); (5.97, 6), (1H, m, Ar)); (5.67, 6), (1H, m, Ar)); (5.67, 6), (1H, m, CH); (5.87, 8), (1H, m, Ar)); (5.67, 8), (1H, m, Ar)); (5.75, 8), (1H, m, CH); (5.87, 8), (1H, m, Ar)); (5.75, 8), (1H, m, CH); (5.87, 8), (1H, m, Ar)); (5.77, 6), (1H, m, Ar)); (5.77, 6), (1H, m, Ar)); (3.0,1); (3.0,1); (3.3, 5), (4.0,1); (3.4, CH_3, N)); (5.57, 6), (1H, m, Ar)); (3.72), (1H, m, Ar)); (3.934,2); (3H, m, Ar)); (3.72), (2H); (3H, m, Ar)); (3.934,2); (3H, m, Ar)); (3.94), (CH_3, O, CH); (3.95,7,5); (14H, m, Ar)); (3.934,2); (3H, m, Ar)); (3.94)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $IIIf C_{22}H_{26}N_2O_2S \qquad 59\dots60 \qquad 0.77 \qquad 1620 \qquad 3260 \qquad 27 \qquad 22$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,77 1620 3260                            | 1620 3260                            | 3260                            |                                          | 55                                         | 223 (4,53), 267<br>277 sh (3,84), 304                      | (3.99),<br>1 (3.71)                    | 1,21,72 (10H, m, C <sub>6</sub> 10 <sub>10</sub> ); 2,87 (1H, m, H—C <sub>6</sub> H <sub>10</sub> ); 3,95 (2H,<br>4. CH <sub>2</sub> O); 4,154,3 (3H, m, CH, CH <sub>2</sub> N); 6,87,4 (10H, m,<br>OH, Ar) | <b>4</b> 7<br>27                     |
| 3.96) $[36 (2H, d, CH_2N); 3.95 (2H, d, CH_2O); 4.2 4.4 (1H, m, (3.66) (CH); 6.73 7.58 (9H, m, Ar)**** (CH_2O); 4.2 4.4 (1H, m, (3.66) (CH); 6.73 7.58 (9H, m, Ar) **** (0H, m, OH, Ar) (0 sh 4.15 4.3 (1H, m, CH); 6.85 7.66 (10H, m, OH, Ar) (0.1, Ar) (0$                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IIIB         C <sub>16</sub> H <sub>18</sub> N <sub>2</sub> O <sub>3</sub> S         103 104         0,48         1600         3400         2           33         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34         34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,48 1600 3400 (NCO)                      | 1600 3400<br>(NCO)                   | 3400                            |                                          | 00 10 10                                   |                                                            | (3,64),<br>(3,76),                     | 2.23 (3H, s. CH <sub>3</sub> ); 3.95 (2H, d. CH <sub>2</sub> O); 4.24 (1H, m. CH);<br>4.55 (2H, d,CH <sub>2</sub> N), 5.68 (1H, s. OH); 6,787,5 (9H, m., Ar)                                                |                                      |
| 4.27), 3.12 (3H, s, CH <sub>3</sub> ); 3.88 (2H, d, CH <sub>2</sub> N); 4,0 (2H, d, CH <sub>2</sub> O);<br>4.27), 3.12 (3H, s, CH <sub>3</sub> ); 3.9,,4.35 (9H, m, 2CH <sub>2</sub> O, CH <sub>2</sub> N, OH,<br>8. sh <sub>2</sub> CH); 6,757,35 (14H, m, Ar)<br>4.25), 6.857,93 (13H, m, Ar)<br>4.26), 1.85 (3H, s, CH <sub>3</sub> OC); 2,2 (3H, s, CH <sub>3</sub> CON); 4,15 (2H, d,<br>4.26), CH <sub>2</sub> O); 4,54,75 (2H, q, CH <sub>2</sub> N); 5,45,75 (1H, s, CH);<br>(2,79), (19, 23H, s, CH <sub>3</sub> COO); 2,2 (3H, s, CH <sub>3</sub> CON); 4,2 (2H, d,<br>4.66), CH <sub>2</sub> O); 4,44,65 (2H, q, CH <sub>2</sub> N); 5,55,8 (1H, m, CH);<br>(9), (29, 283 (1H, s, OH); 3,35 (5H, d, CH <sub>3</sub> N); 5,55,8 (1H, m, CH);<br>(4,0), 2,83 (1H, s, OH); 3,35 (5H, d, CH <sub>3</sub> N); 3,934,2 (3H, m,<br>(3,04), CH <sub>2</sub> O, CH); 6,557,5 (14H, m, Ar)<br>(3,64), CH <sub>2</sub> O, CH); 6,557,5 (14H, m, Ar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $IVa C_{16}H_{16}N_2O_2S$ 142144 0,79 1560 3295 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,79 1560 3295                            | 1560 3295                            | 3295                            |                                          | <u> </u>                                   | 221 (4,52), 265<br>77 sh (3,74), 295,5                     | (3.96),<br>5 (3,66)                    | 36 (2H, d. CH <sub>2</sub> N); 3,95 (2H, d. CH <sub>2</sub> O); 4,24,4 (1H, m.<br>CH); 6,737,58 (9H, m. Ar)***                                                                                              |                                      |
| 4,06), $3,3$ (2H, d CH <sub>2</sub> N); $3,9$ 4,35 (9H, m, 2CH <sub>2</sub> O, CH <sub>2</sub> N, OH,<br>8 sh <sub>2</sub> CH); $6,75$ 7,35 (14H, m, Ar)<br>4,25), $6,75$ 7,33 (13H, m, Ar)<br>4,25), $6,85$ 7,93 (13H, m, Ar)<br>(4,62)<br>(4,62), (185 (3H, s, CH <sub>3</sub> OC); 2,2 (3H, s, CH <sub>3</sub> CON); 4,15 (2H, d<br>(4,62)), (CH <sub>2</sub> O); 4,54,75 (2H, q, CH <sub>2</sub> N); 5,45,75 (1H, s, CH);<br>(2,79), (CH <sub>2</sub> O); 4,54,75 (2H, q, CH <sub>2</sub> N); 5,45,75 (1H, s, CH);<br>(2,79), (CH <sub>2</sub> O); 4,44,65 (2H, q, CH <sub>2</sub> N); 5,55,8 (1H, m, CH);<br>(9), (CH <sub>2</sub> O); 4,44,65 (2H, q, CH <sub>2</sub> N); 5,55,8 (1H, m, CH);<br>(4,0), (CH <sub>2</sub> O); 4,44,65 (2H, q, CH <sub>2</sub> N); 5,55,8 (1H, m, CH);<br>(4,0), (CH <sub>2</sub> O); CH); 6,787,5 (14H, m, Ar)<br>(3,64), (CH <sub>2</sub> O, CH); 6,557,5 (14H, m, Ar)<br>(3,64), (CH <sub>2</sub> O, CH); 6,557,5 (14H, m, Ar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1V b C_{17} H_{18} N_2 O_2 S \qquad 134 \dots 135 \qquad 0,48 \qquad 1550 \qquad 3220 \qquad 22 \\ 27 \qquad 27 \qquad (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,48 1550 3220                            | 1550 3220                            | 50 3220                         | 3220 22<br>27<br>(3                      | $\frac{22}{(3)}$                           | 5 (4,57), 272<br>7 sh (4,21), 3<br>1,61)                   | (4.27).<br>300 sh                      | ) (2H, <sup>d</sup> ,<br>, OH, Ar)                                                                                                                                                                          |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C_{25}H_{26}N_2O_4S$ 107108 0,80 1630 3380 27 (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,80 1630 3380                            | 1630 3380                            | 3380                            |                                          | 322                                        | 3 (4,58), 266<br>1 sh (4,05), 2<br>,91), 305 (3,76)        | (4.06).                                | (9H, m, 2CH <sub>2</sub> O, CH <sub>2</sub> N,                                                                                                                                                              |                                      |
| 2 671 $[1.85 \ (3H, s. CH_{3}OCO); 2,2 \ (3H, s. CH_{3}CON); 4,15 \ (2H, d.) 5,2,75 \ (1H, s. CH); 5,75 \ (2H, d.) ; 5,75 \ (2H, d.$                                                                                                                                                                                                                                                                                                                                                                                                                                | $C_{23}H_{19}N_3O_2S_2$ 127128 0,90 1520 3420 223<br>3420 33420 33420 33420 334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,90 1520 3420                            | 1520 3420                            | 3420                            |                                          | 223<br>340                                 | 2 (4,79), 267<br>9 (4,27), 290<br>) sh (4,57), 349         | (4.27), $(4.25)$ , $(4.62)$ , $(4.62)$ | (4H, m, CH <sub>2</sub> N, CH,                                                                                                                                                                              | 14                                   |
| 2,5 (3H, s, CH <sub>3</sub> CON); 4,2 (2H, d, 3, CH <sub>3</sub> CN); 5,55,8 (1H, m, CH); (5H, d, CH <sub>3</sub> N); 5,55,8 (1H, m, CH); 27 (5H, d, CH <sub>3</sub> , CH <sub>2</sub> N); 4,04,28 (3H, 27 (3H, m, Ar)) (2H, d, CH <sub>2</sub> N); 3,934,2 (3H, m, 47 (1H, m, Ar)) (1H, m, Ar)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,82 1500 1620 (NCO) 1745 (OCO)           | 1500 1620<br>(NCO)<br>1745<br>(OCO)  | 1620<br>(NCO)<br>1745<br>(OCO)  | 1620 21<br>(NCO), 27<br>1745 31<br>(OCO) | 31                                         | 8 (3,41), 258<br>1,5 (2,77), 278<br>4,5 (3,23)             | (2,67),<br>(2,79),                     | 2,2 (3H, s, CH <sub>3</sub> CON); 4,15<br>q, CH <sub>2</sub> N); 5,45,75 (1H,                                                                                                                               |                                      |
| N); 4,04,28 (3H, 27<br>3,934,2 (3H, m <sub>2</sub> ) 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C <sub>30</sub> H <sub>20</sub> N <sub>2</sub> O <sub>4</sub> S <b>160162</b> 0,85 1504 1670 22<br>1740 27<br>1740 28<br>(OCO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,85 1504 1670<br>(NCO),<br>1740<br>(OCO) | 1504 1670<br>(NCO),<br>1740<br>(OCO) | 1670<br>(NCO),<br>1740<br>(OCO) |                                          | 22 22                                      | 0 sh (4,37), 246<br>1,5 (4,06), 277,5<br>18 (3,93), 299 (3 | (3,79),<br>(4,06),<br>(,89)            | 2,5 (3H, s, CH <sub>3</sub> CON); 4,2<br>q, CH <sub>2</sub> N); 5,55,8 (1H,                                                                                                                                 |                                      |
| 3,934,2 (3H, m, 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IX b $C_{I7}H_{I6}N_2O_2S$ 7374 0,73 1630 3340 224 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,73 1630 3340                            | 1630 3340                            | 3340                            |                                          | 224                                        | (4.60), 266 sh (3.77), 306                                 | (4,0).                                 | 4,0 4,28                                                                                                                                                                                                    | 27                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C_{22}H_{20}N_2O_2S$ 9697 0,44 1650 3590 22<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,44 1650 3590                            | 1650 3590                            | 50 3590                         |                                          | 22                                         | <b>4</b> (4,49), 267<br>8 sh (3,77), 305                   | (3,97).<br>(3,64)                      | 3,93 4,2 (3H,                                                                                                                                                                                               | 47                                   |

ņ

from ethyl acetate, IIIe from hexane—ethanol (1:1), and IVb from benzene—ethanol (1:1). \*\*In a benzene—chloroform—acetone system (1:1:2) for IIIa, IVa, and V-VIII and in an acetone—benzene system (1:5) for remaining compounds. \*\*\*The spectrum was recorded with the addition of  $CF_3COOH$ .

| TABLE 3. | Characteristic | lons in | the Mass | Spectra | of III-IX* |
|----------|----------------|---------|----------|---------|------------|
|----------|----------------|---------|----------|---------|------------|

| Com-<br>pound | m/z (I <sub>re1</sub> , %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Illa          | 300 (22), 283 (3), 207 (16), 194 (16), 193 (100), 189 (13), 164 (32),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ШÞ            | 163 (15), 150 (46), 136 (18), 133 (11)<br>314 (24), 221 (55), 207 (100), 178 (29), 164 (100), 163 (37), 149 (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (25), $126$ (24), $126$ (25), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (24), $126$ (25), $126$ (26), $126$ (26), $126$ (27), $126$ (27), $126$ (27), $126$ (27), $126$ (27), $126$ (28), $126$ (27), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $126$ (28), $1$                                                                                                                                                                                                                                                                                      |
| IIIc          | 136 (94), 135 (24), 109 (34), 77 (28)<br>328 (10), 235 (51), 221 (78), 178 (61), 177 (24), 163 (39), 150 (54),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IIId          | 149 (100), 136 (40), 133 (17), 109 (24)<br>376 (35), 284 (26), 283 (91), 269 (32), 240 (13), 239 (21), 227 (25), $262$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ]]]e          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| IIIf          | 241 (20), 240 (76), 239 (26), 91 (72)<br>382 (30), 339 (16), 290 (25), 289 (93), 276 (25), 275 (100), 232 (55),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IIIg          | $ \begin{array}{c} 189 \\ 342 \\ 41, 235 \\ (100), 193 \\ (43), 192 \\ (21), 164 \\ (19), 163 \\ (23), 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100), \\ 150 \\ (100)$ |
| IVa           | $\begin{pmatrix} 149 & (56), 136 & (20), 94 & (20), 77 & (20) \\ 300 & (17), 283 & (1), 207 & (21), 193 & (100), 189 & (44), 164 & (17), 163 & (63), 150 & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & (20) & ($                                                                                                                                                                                                                                                                          |
| IVp           | 150 (23), $136$ (39)<br>314 (100), 221 (53), 207 (29), 203 (15), 178 (15), 177 (57), 136 (24),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| v             | 97 (15), 83 (15), 71 (18), 44 (58)<br>450 (7), 358 (12), 357 (55), 344 (13), 343 (58), $314$ (22), 313 (100),<br>200 (11) $207$ (16) $202$ (12) 102 (28) 180 (20) 175 (18) 164 (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VI            | $ \begin{bmatrix} 300 & (11), 207 & (16), 203 & (13), 193 & (28), 189 & (20), 175 & (18), 164 & (20), \\ 163 & (85), 150 & (13), 149 & (13), 136 & (33), 133 & (16) \\ 433 & (70), 342 & (11), 341 & (19), 340 & (59), 326 & (41), 322 & (22), 297 & (22), \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ••            | 296 (15), 285 (30), 284 (85), 283 (100), 163 (7), 150 (7), 149 (26),<br>148 (19), 136 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| VII           | 384 (3), 291 (32), 249 (15), 205 (4), 189 (18), 163 (14), 150 (29), 149 (16),<br>133 (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| VIII          | 384 (52), 342 (53), 325 (48), 291 (65), 283 (46), 249 (34), 231 (56),<br>207 (10), 190 (17), 189 (100), 163 (68), 164 (10), 150 (9), 136 (16),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IXb           | $ \begin{array}{c} 133 (22) \\ 314 (6), 207 (22), 178 (40), 177 (100), 164 (30), 150 (22), 149 (84), \\ 126 (82) 129 (24) 111 (24) 109 (32) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| IXd           | $ \begin{array}{c} 136 \ (83), \ 129 \ (24), \ 111 \ (24), \ 109 \ (32) \\ 376 \ (9), \ 359 \ (4), \ 270 \ (3), \ 269 \ (16), \ 240 \ (19), \ 239 \ (100), \ 226 \ (6), \ 136 \ (2), \\ 133 \ (2), \ 91 \ (4), \ 77 \ (4) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

\*The M<sup>+</sup> values and the 10 most intense peaks are presented.

introduction of the samples was 100-130°C, the ionizing voltage was 50 eV, and the reference substance was perfluorinated kerosene. The determination of the compositions of the reaction mixtures by high-performance liquid chromatography (HPLC) was carried out with a Milikhrom chromatograph with a  $6.2 \times 2$  mm column; the sorbent was Silasorb 300, and the mobile phase was hexane--chloroform--isopropyl alcohol (70:20:10). The course of the reactions and the purity of the compounds were monitored on Silufol UV-254 plates. The separation and purification of the substances were carried out with columns packed with silica gel 100/160  $\mu$  with successive elution with hexane, benzene, and acetone. The yields of the compounds are presented for chromatographically pure samples. The melting points were determined with a Boetius microblock.

The results of elementary analysis for C, H, and N of all of the compounds were in agreement with the calculated values.

2-Imino-3-( $\gamma$ -phenoxy- $\beta$ -hydroxypropyl)benzothiazoline (IIIa). A solution of 1.5 g (10 mmole) of 2aminobenzothiazole and 2.3 g (15 mmole) of oxirane II in 15 ml of acetic acid was stirred for 5 h at 65-70°C, after which the acetic acid was removed by distillation in vacuo, and the residue was chromatographed with a column. The resulting acetic acid salt of IIIa was treated with NaHCO<sub>3</sub> solution, and the product was recrystallized.

2-R-Imino-3- $(\gamma$ -phenoxy- $\beta$ -hydroxypropyl)benzothiazolines IIIb-g and 2- $(\gamma$ -Phenoxy- $\beta$ -hydroxypropyl)imino-3-Rbenzothiazolines IXb, d. A. A solution of 10 mmole of the corresponding heterylamine in 20 mmole of oxirane II was stirred for 10 h at 90°C, after which the reaction mixture was chromatographed with a column. The product was recrystallized from a suitable solvent.

**B**. A 10-mmole sample of oxirane II and 0.2 ml of boron trifluoride etherate were added to a solution of 10 mmole of Ib-e in absolute benzene, and the mixture was stirred for 10 h at 60°C. It was then poured into 20 ml of water, and the benzene layer was separated and dried with  $Na_2SO_4$ . The solvent was evaporated, and the residue was chromatographed with a column.

2- $(\gamma$ -Phenoxy- $\beta$ -hydroxypropyl)aminobenzothiazole (IVa). A. A 0.6-ml sample of 50% NaOH solution was added to a solution of 1.5 g (10 mmole) of I and 1.5 g (10 mmole) of oxirane II in 25 ml of chloroform, and the mixture was stirred for 2 h at room temperature. It was then filtered, and the chloroform layer was separated, washed with water until the wash water was neutral, and dried with anhydrous  $Na_2SO_4$ . The solvent was evaporated, and the residue was recrystallized.

**B.** A mixture of 0.85 g (5 mmole) of 2-chlorobenzothiazole and 1.67 g (10 mmole) of  $\gamma$ -phenoxy- $\beta$ -hydroxypropylamine was stirred for 2.5 h on an oil bath at 120-130°C, after which it was cooled and washed with benzene and water, and the residue was recrystallized. No melting-point depression was observed for a mixture of samples obtained by the two methods.

A similar procedure was used to synthesize  $2-[N-methyl-N-(\gamma-phenoxy-\beta-hydroxypropyl)amino]benzothiazole (IVb).$ 

 $2-(\gamma-\text{Phenoxy}-\beta-\text{hydroxypropyl})\text{imino}-3-(\gamma-\text{phenoxy}-\beta-\text{hydroxypropyl})\text{benzothiazoline (V)}$ . A. A mixture of 1.5 g (10 mmole) of Ia and 4.5 g (30 mmole) of oxirane II was stirred for 10 h at 90°C, after which it was cooled, and the precipitated crystals were separated and recrystallized.

**B.** A mixture of 0.03 g (0.1 mmole) of IIIa and 0.9 g (6 mmole) of oxirane II was stirred for 10 h at 90°C, after which the excess oxirane II was removed by distillation in vacuo, and the residue was recrystallized.

**2-(2-Benzothiazolyl)imino-3-(\gamma-phenoxy-\beta-hydroxypropyl)benzothiazoline (VI).** A solution of 0.75 g (5 mmole) of amine Ia and 0.75 g (5 mmole) of oxirane II in 15 ml of m-xylene was refluxed for 36 h, after which the solvent was removed, and the residue was chromatographed with a column.

2-Acetylimino-3- $(\gamma$ -phenoxy- $\beta$ -acetoxypropyl)benzothiazoline (VII). A solution of 0.28 g (0.9 mmole) of IIIa and 0.51 g (5 mmole) of acetic anhydride in 10 ml of benzene was stirred for 20 h at 35°C, after which the benzene was removed by distillation, and the residue was washed with water and recrystallized.

2-[N-Acetyl-N-( $\gamma$ -phenoxy- $\beta$ -acetoxypropyl)]aminobenzothiazole (VIII). A solution of 0.5 g (1.7 mmole) of heterylamine IVa and 1.9 g (18 mmole) of acetic anhydride in 15 ml of benzene was refluxed for 5 h, after which it was poured into 30 ml of water. The benzene layer was separated and dried with CaCl<sub>2</sub>, and the solvent was removed by distillation. The dry residue was chromatographed with a column.

## LITERATURE CITED

- 1. K. Nagarajan and V. R. Rao, Indian J. Chem., 7, 964 (1969).
- 2. R. Hunter, E. R. Parken, and E. M. Short, J. Chem. Soc., No. 3, 784 (1959).
- 3. S. I. Shul'ga and V. A. Chuiguk, Khim. Geterotsikl. Soedin., No. 5, 632 (1972).
- 4. I. Parrick and K. Rearson, Chem. Ind., No. 39, 1261 (1970).
- 5. R. F. Hunter and J. W. T. Jones, J. Chem., No. 6, 2190 (1930).
- 6. R. F. Hunter, E. R. Parken, and E. M. Stort, J. Chem. Soc., No. 6, 1561 (1958).
- 7. S. Mikulasek, Z. Odlerova, V. Sutoris, A. Perjessy, and E. Soleaniova, Chem. Zvesti, 32, 691 (1978).
- 8. D. Z. Barezynski, M. Tedrzejkonski, and Z. Eckstein, Przem. Chem., 57, 303 (1978).
- 9. H. Reimlinger, M. A. Reiren, and R. Merenji, Chem. Ber., 108, 3894 (1975).
- 10. H. Antaki and V. Petrov, J. Chem. Soc., No. 2, 551 (1951).
- 11. V. A. Saprykina, R. F. Ambartsumova, and N. K. Rozhkova, Khim. Geterotsikl. Soedin., No. 7, 986 (1986).
- 12. P. M. Downey, US Patent No. 2642430; Chem. Abstr., 48, 4596 (1954).
- 13. Z. B. Éfendiev, Azerb. Khim. Zh., No. 1, 52 (1982).
- 14. K. A. Krasuskii, Zh. Obshch. Khim., 6, 463 (1936).