Ruthenium-catalysed Cyclocarbonylation of 1,1'-Bis(silylethynyl)ferrocene involving the 1,2-Migration of a Silyl Group

Kiyotaka Onitsuka,*†^a Hiroyuki Katayama,^a Kenkichi Sonogashira*^b and Fumiyuki Ozawa*^a

^a Department of Applied Chemistry, Faculty of Engineering, Osaka City University, Sumiyoshi-ku, Osaka 558, Japan ^b Department of Applied Science and Chemistry, Faculty of Engineering, Fukui University of Technology, 3-6-1 Gakuen, Fukui 910, Japan

The treatment of 1,1'-bis(trimethylsilylethynyl)ferrocene with a catalytic amount (5 mol%) of $[Ru_3(CO)_{12}]$ under 10 kg cm⁻² of CO at 150 °C causes a novel cyclocarbonylation involving 1,2-silyl migration of a silylethynyl group generating a transition-metal vinylidene intermediate, to give a cyclopent-3-en-1,2-dione derivative.

Despite the extensive studies on cyclocarbonylation of diynes using a stoichiometric amount of transition-metal complexes, their applications to catalytic reactions are still limited.¹ We report herein a new type of catalytic cyclocarbonylation of diynes, where a rare example of 1,2-silyl migration of a silylethynyl group giving a transition-metal vinylidene intermediate is operative.²

We are currently interested in the stoichiometric as well as catalytic reactions of 1,1'-dialkynylferrocene derivatives because of their unique reactivity originated from the parallel diyne structures and their potential applications in materials science.³ In a previous study, we showed the formation of diand tri-nuclear ruthenacycles including a [2]ferrocenophane skeleton, in the reaction of 1,1'-dialkynylferrocene with $[Ru_3(CO)_{12}]$.⁴ Under CO pressure this system was found to be extended to a catalytic cyclocarbonylation providing a [3]ferrocenophane bearing a cyclopent-3-ene-1,2-dione structure (Scheme 1).

Scheme 1 Reagents and conditions: $[Ru_3(CO)_{12}]$ (5 mol%), CO 10 kg cm⁻², toluene, 150 °C, 24 h

Treatment of 1,1'-bis(trimethylsilylethynyl)ferrocene 1a⁵ with a catalytic amount of $[Ru_3(CO)_{12}]$ (5 mol%) under CO pressure (10 kg cm⁻²) in toluene at 150 °C for 24 h gave the cyclocarbonylation product 2a in 36% yield together with a trace amount of a dinuclear ruthenacycle complex 3a. In this reaction 48% of 1a was recovered unreacted. The products were isolated by column chromatography (SiO₂, benzene) and characterized by elemental analysis, IR and NMR spectroscopy, and EI mass spectrometry.[‡] The mass spectrum of 2a exhibited a molecular ion peak (m/z 434) that is consistent with the

Fig. 1 Molecular structure of 2a

Fable 1 The ruthenium-catalysed	cyclocarbonylation of	$1,1'$ -bis(silylethynyl)ferrocene 1^a
--	-----------------------	--

		Ru complex (mol %)		$P_{\rm CO}^{b}/{\rm kg}~{\rm cm}^{-2}$	T/°C	<i>t/</i> h	Yield ^c (%)		D 44
Run	SiR ₃		Solvent				2	3	Recov. of Γ^c (%)
 1	SiMe ₃	$[Ru_3(CO)_{12}]$ (5)	toluene	10	150	24	36	trace	48
2	-	$[Ru_3(CO)_{12}]$ (10)		10	150	24	38	15	43
3		$[Ru_3(CO)_{12}]$ (30)		10	150	24	43	16	16
4		$[Ru_3(CO)_{12}]$ (5)		5	150	12	17	0	79
5			THF	5	150	24	18	0	65
6			MeCN	5	170	24	0	0	96
7		$RuCl_3 \cdot nH_2O$ (30)	toluene	10	150	24	0	0	77
8		$[RuCl_2(PPh_3)_3]$ (5)		10	150	12	0	0	0
9		[Ru(cod)(cot)] (5)		10	150	12	12	0	83
10	SiMe ₂ Ph	$[Ru_3(CO)_{12}]$ (5)		5	160	12	16	0	69
11	SiMePh ₂			5	160	12	0	0	100

^a Reaction conditions: [runs 1–9] **1a** (200 mg, 0.528 mmol), solvent (30 ml); [run 10] **1b** (137 mg, 0.273 mmol), toluene (15 ml); [run 11] **1c** (140 mg, 0.223 mmol), toluene (15 ml). ^b Initial pressure at room temperature. ^c Isolated by column chromatography on silica gel.

structure derived from **1a** and two molecules of carbon monoxide. In the IR spectrum, two v_{CO} absorptions were observed at 1730 and 1690 cm⁻¹, showing the presence of two carbonyl groups in **2a**. The presence of two carbonyl groups were also supported by the appearance of two singlets at δ 193.0 and 191.9 in the ¹³C NMR spectrum.

As seen from the X-ray crystal structure of 2a (Fig. 1),§ the compound has a bicyclic structure comprised of [3]ferrocenophane and cyclopent-3-ene-1,2-dione rings.⁶ The most striking feature of the reaction suggested by the structure is the involvement of 1,2-migration of one of the two trimethylsilyl groups originally bonded to the β -acetylenic carbons of **1a**.

Table 1 lists the results obtained under various reaction conditions. Increasing the amount of catalyst gave rise to improvement in the conversion of **1a** and the yield of **2a**, though the amount of **3a** also increased (runs 1–3). Toluene was among the most suitable solvents examined; the reaction proceeded more slowly in THF (run 5) than toluene (run 4), and did not proceed in MeCN (run 6). The complex [Ru(cod)(cot)] (cod = cycloocta-1,5-diene, cot = cyclooctatriene) also showed catalytic activity (run 9), whereas RuCl₃·*n*H₂O and [RuCl₂(PPh₃)₃] are inactive (runs 7 and 8).

The catalytic formation of **2** was significantly affected by the nature of the silyl group bound to the β -acetylenic carbons of **1**. Thus, compound **1b** bearing SiMe₂Ph groups also gave the cyclocarbonylation product **2b** (run 10), while **1c** having SiMePh₂ groups did not react under similar reaction conditions (run 11). It was further noted that the presence of silyl

Scheme 2 Reagents and conditions: $[Ru_3(CO)_{12}]$ (10 mol%), CO 30 kg cm⁻², benzene, 100 °C, 24 h

J. CHEM. SOC., CHEM. COMMUN., 1995

substituents is of particular importance to obtain the cyclocarbonylation products **2** and 1,1'-diethynylferrocene was too unstable to be handled. Treatment of 1,1'-bis(phenylethynyl)ferrocene **4** with 30 mol% of $[Ru_3(CO)_{12}]$ under CO pressure did not provide any product corresponding to **2** even though small amounts of lactone **5** (4%) and cyclohexenedione **6** (3%) were formed (Scheme 2).

Scheme 3 illustrates the most probable catalytic cycle responsible for the formation of **2**. In the first stage, interaction of **1** with a ruthenium species causes the 1,2-migration of a silyl group to produce the vinylidene intermediate **7**. Such a process has recently been documented in stoichiometric systems by Sakurai and Werner and their coworkers.² Subsequently, [2 + 2] cycloaddition between the Ru=C bond of the vinylidene moiety and the remaining C=C bond leads to the formation of ruthenacyclobutene **8**. Successive insertion of two CO molecules into each of the Ru–C bonds in **8** followed by reductive elimination provides the cyclocarbonylation product **2** with concomitant formation of the catalytically active ruthenium(0) species.

The present study exhibits the first catalytic cycle involving a 1,2-silyl migration of silylacetylenes. Further studies focusing on the extention of the scope of present reaction are underway.

This work was supported by Grant-in-Aid for Scientific Research on Priority Area of Reactive Organometallics No. 05236106 from the Ministry of Education, Science and Culture, Japan.

Received, 2nd August 1995; Com. 5/05140A

Footnotes

† Present address: The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567, Japan.

 \ddagger Spectroscopic data for **2a**: ¹H NMR (CDCl₃): δ 4.31–4.30 (m, 2 H, C₅H₄), 4.26–4.25 (m, 2 H, C₅H₄), 4.19–4.18 (m, 2 H, C₅H₄), 3.98–3.97 (m, 2 H, C₅H₄), 0.15 (s, 9 H, CH₃), 0.10 (s, 9 H, CH₃); ¹³C{¹H} MMR (CDCl₃): δ 193.0, 191.9 (s, CO), 172.0, 154.6, 146.9, 146.6 (s, C=), 94.3, 79.8, 70.7, 70.1, 69.5 (s, C₅H₄), -0.5, -0.7 (s, CH₃). Satisfactory elemental analysis was obtained.

§ *Crystal data* for **2a**: C₂₂H₂₆FeO₂Si₂, orthorhombic, space group *Pna2*₁, *a* = 11.980(3), *b* = 9.935(2), *c* = 18.826(3) Å, *U* = 2218(1) Å³, *Z* = 4, *D_c* = 1.301 g cm⁻³, μ (Mo-K α) = 7.97 cm⁻¹. Data were measured on a Rigaku AFC5R diffractometer in the range of 6 < 2 θ < 55.1° with ω -2 θ scan technique. The structure was solved by Patterson method and refined by full-matrix least-squares method to *R*(*R_w*) = 0.054 (0.032) for 243 parameters against 1537 reflections with *I* > 1.5 σ (*I*) out of 2927 unique reflections corrected for absorption using Ψ-scan technique. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No.1.

References

- I. Ojima, R. J. Donovan and W. R. Shay, J. Am. Chem. Soc., 1992, 114, 6580; M. Chatani, Y. Fukumoto, T. Ida and S. Murai, J. Am. Chem. Soc., 1993, 115, 11614; I. Ojima, D. A. Fracchiolla, R. J. Donovan and P. Banerji, J. Org. Chem., 1994, 59, 7594; I. Matsuda, H. Ishibashi and N. Ii, Tetrahedron Lett., 1995, 36, 241.
- 2 H. Sakurai, T. Fujii and K. Sakamoto, *Chem. Lett.*, 1992, 339; H. Werner, M. Baum, D. Schneider and B. Windmüller, *Organometallics*, 1994, 13, 1089.
- 3 Ferrocene, ed. A. Togni and T, Hayashi, VCH, Weinheim, 1995.
- 4 K. Onitsuka, K. Miyaji, T. Adachi, T. Yoshida and K. Sonogashira,
- Chem. Lett., 1994, 2279.
 5 G. Doisneau, G. Balavoine and T. Fillebeen-Khan, J. Organomet. Chem., 1992, 425, 113
- 6 K. Kinugasa and T. Agawa, Organomet. Chem. Synth., 1972, 1, 427.