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Abstract 

In this context, a series of platinum complexes containing a triphenylene unit, namely 

Pt5-Pt8, was prepared and characterized. Platinum complex Pt6 shows a clearly 

column liquid crystalline property, confirmed by differential scanning calorimetry, 

polarized optical microscopy and X-ray diffraction. These platinum complexes only 

display monomolecular emission both in solution and in neat film, an effect attributed 

to the presence of carbazole as a bulky group disfavoring aggregation of the 

complexes. Hole mobilities in the range of 10–5–10–6 cm2 V–1 s–1 were obtained for the 

annealed platinum complexes films. It was found that the method to align the 

emissive layer has a crucial role on the performance of the devices. The first example 

of polarized phosphorescent white OLED with polarized ratio of 1.4 was achieved in 

Pt6-based device. This research opens up a new aspect of phosphorescent 

metallomesogens application for polarized white light emission. 

 

 

Keywords: Platinum metallomesogens; Liquid crystalline; Luminescence; Polarized 

OLEDs 
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1. Introduction  

Over the last two decades, square planar d8 platinum complexes have attracted 

intensive attention as phosphors in organic light-emitting diodes (OLEDs) due to their 

high spin-orbit coupling constants and diverse excited states, such as metal-to-ligand 

charge transfer (MLCT), metal-metal-to-ligand charge transfer (MMLCT), ligand 

center charge transfer (LC), interligand charge transfer (ILCT) [1-4]. To date, OLEDs 

using platinum complexes with high efficiency across the whole visible and 

near-infrared region have been realized [5-8]. Yet, these devices generally emit light 

without polarization, which makes them unsuitable for applications such as the 

backlight of liquid crystal displays (LCDs) and three-dimension (3D) imaging 

systems [9-12]. 

Polarized emission is usually obtained with a polarizer and a non-polarized light 

source. Consequently, more than 50% of the produced light is wasted due to 

absorption by the polarizer. To solve this issue and improve the energy efficiency of 

polarized light sources, imparting liquid crystalline properties to luminescent 

materials has been intensively studied as a strategy to directly obtain polarized 

emission [13]. Since the first example of linearly polarized electroluminescence (EL) 

was reported by Dyreklev et al. using an aligned polymer film [14], the research 

focusing on polarized emission from fluorescent liquid crystal molecules and 

polymers has flourished [15-22]. However, fluorescent materials can harvest only 

singlet excitons, which further limits the efficiency of electroluminescent devices.  

Phosphorescent square planar platinum complexes appear very promising in view 
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of achieving efficient polarized electroluminescence: by harvesting both singlet and 

triplet excitons they could lead to 100% internal quantum efficiency and their planar 

structure favor the formation of liquid crystalline phases and promotes charge 

mobility in OLEDs. Efforts have been particularly devoted to developing arylpyridine 

derivative based platinum metallomesogens [23-36]. Although these platinum 

metallomesogens showed intense emission both in solution and in solid state [37-41], 

the investigation of the polarized emission is still limited, with only few reported 

examples. The first study of the polarized EL emission using mesogenic platinum 

complex was reported by Liu et al., in which a R (polarized ratio) of 2, maximum 

luminance of 2000 cd/m2 and current efficiency of 2.4 cd/A were observed [38].  

In our previous work, mononuclear and dinuclear platinum-based metallomesogens 

bearing 2-phenylpyridine ligand showed a polarized ratio up to 10.7 in PL emission 

after annealing the complexes on a pre-aligned polyimide film [40,41]. Considering 

the stacking of discotic mesogens into extended one-dimensional column liquid 

crystals [42], most recently, we successfully combined discotic mesogens such as 

triphenylenes with platinum complex and thus obtained new metallomesogens with 

columnar phases [43,44]. Encouraged by these results, a new series of platinum 

bearing triphenylene and carbazole units, namely Pt5-Pt8, were designed and 

prepared (Chart 1). In order to explore the structure-property relationship, the 

alkyl-chains between triphenylene moiety and platinum skeleton varied from 

conjugation to non-conjugation. To enhance the emission efficiency and the thermal 

stability, carbazole unit was grafted onto the cyclometalated ligand. All these platinum 
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complexes were characterized by 1H NMR, 13C NMR, MALDI TOF-MS and 

elemental analysis. The mesomorphic behavior was studied by differential scanning 

calorimetry (DSC), polarized optical microscopy (POM) and X-ray diffraction (XRD), 

while the optophysical properties were investigated with UV-visible absorption, PL 

emission, cyclic voltammetry (CV) and hole mobility measurements. Polarized 

OLEDs were fabricated using Pt5 and Pt6 as the dopants, respectively, and the first 

example of polarized white emission using platinum complex was obtained for Pt6 

doped device. 

 

2. Experimental section 

2.1. Materials and measurement  

All reagents were purchased from J&K Chemical and Aladdin companies. All 

reactions were carried out under N2 atmosphere. Compounds 6 and 

monohydroxypentaalkoxytriphenylene (10) were reported in previous literatures 

[42,45]. 1H NMR and 13C NMR spectra were acquired using a Bruker Dex-400 NMR 

instrument using CDCl3 as a solvent. Mass spectra (MS) were recorded on a Bruker 

Autoflex MALDI-TOF instrument using dithranol as a matrix. Elemental analysis was 

determined by Vario EL III. The UV-vis absorption and PL spectra were measured 

with a Varian Cray 50 and Perkin-Elmer LS50B luminescence spectrometer, 

respectively. Solutions of ppyPtacac (ФPL = 0.15) in 2-methyltetrahydrofuran were 

used as a reference [4]. The equation Фs = Фr(ƞs
2ArIs/ ƞr

2AsIr) was used to calculate the 

quantum yields. Thermogravimetric analysis (TGA) was carried out with a 
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NETZSCH STA449 from 25 to 600 °C at a 20 °C/min heating rate under N2 

atmosphere. Differential scanning calorimerty (DSC) was measured at the phase 

transition temperature with a rate of 10 °C/min on the first cooling and second heating 

process. Polarized optical microscopy (POM) was recorded the birefringent 

phenomenon with a rate of 1 oC/min on cooling process. X-ray diffraction was 

measured by Bruker D8 Discover diffractometer with a 2D Vantec detector. The 

sample was mounted in a capillary in a bespoke heating environment-a hollow 

graphite furnace-with temperature control via an Eurotherm controller. 

2.2. Devices fabrication and characterization 

A layer of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) 

was spin-coated on the ITO glass substrate after UV-ozone treatment. After baking of 

PEDOT:PSS at 120 °C for 10 mins, another layer of poly(N-vinylcarbazole) (PVK) 

was spin-coated directly and then baked at 120 °C for another 10 mins. In order to 

obtain polarized emission, we managed to pattern the emitting layer via different 

methods (annealing or rubbing, see below) after spin-coating of the platinum complex 

doped poly(9,9-dioctylfluorene) (PFO) onto the hole transporting layer PVK. An 

electron transporting layer of bis-4,6-(3,5-di-3-pyridylphenyl)-2-methylpyrimidine 

(B3PYMPM) was thermally evaporated on the emitting layer after deliberate 

treatments. To compare the influence of the treatment of the emitting layer on the 

polarized emission, we constructed several devices with different treatments of the 

emitting layer. The device configurations are listed as below: 

Devices I: ITO/PEDOT:PSS (30 nm)/PVK (30 nm)/PFO:Pt6 (80:20, 70 nm, no 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 
 

baking)/B3PYMPM(50 nm)/Ca (100 nm)/Al (100 nm). 

Devices II: ITO/PEDOT:PSS (30 nm)/PVK (30 nm)/PFO:Pt6 (80:20, 70 nm, baked at 

120°C for 10 min)/B3PYMPM (50 nm)/Ca (100 nm)/Al (100 nm). 

Devices III: ITO/PEDOT:PSS (30 nm)/PVK (30 nm)/PFO:Pt6 (80:20, 70 nm, rubbed 

and then baked at 120°C for 10 min)/B3YMPM (50 nm)/Ca (100 nm)/Al (100 nm). 

Devices IV: ITO/PEDOT:PSS (30 nm)/PVK (30 nm)/PFO:Pt6 (80:20, 70 nm, pressed 

and then baked at 120°C for 10 min)/B3YMPM (50 nm)/Ca (100 nm)/Al (100 nm). 

All the devices were encapsulated under a nitrogen atmosphere using UV curable 

epoxy. The current-voltage-luminance characteristics were collected with a PR735 

spectrascan spectrometer and a Keithley 2400 programmable source meter. The 

(polarized) EL spectra were recorded by an Ocean Optics USB2000 spectrometer. The 

EL intensities parallel and perpendicular to the rubbing direction (along the ITO stripe) 

could be distinguished by aligning a linear polarizer inserted between the OLEDs and 

the spectrometer at two mutually perpendicular directions which were denoted as H 

(horizon) and V (vertical). 

2.3. Hole mobilities 

The hole mobility was measured using the space charge limited current (SCLC) 

model with a devices configuration of ITO/PEDOT:PSS (40 nm)/Active Layer (100 

nm)/MoO3 (10 nm)/Ag (100 nm). The active layer is annealed for 30 mins. The 

PEDOT:PSS was spin-coated onto the ITO glass at 4000 rpm and then baked at 160 

oC for 15 mins in air. The active layer was spin-cast from chloroform (20 mg/mL) at 

1000 rpm. A MoO3 and Ag cathode was then thermally evaporated under vacuum (∼
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10–7 torr) through a shadow mask defining an active device area of ∼0.03 cm2. The 

SCLC is described by: J = (9/8)ε0εrµ(V
2/d3), where J is the current density, d is the 

film thickness of the active layer, µ0 is the hole mobility, εr is the relative dielectric 

constant of the transport medium, ε0 is the permittivity of free space (8.85 × 10–12 F 

m–1), V is the internal voltage in the device. 

2.4. Synthesis 

3,6-diacetyl-9H-carbazole (1) 

9H-carbazole (3.0 g, 17.96 mmol) was added to the solution of aluminum chloride 

(6.8 g, 51.1 mmol) in CH2Cl2 (100 mL) and the mixture was cooled to 0 oC. Acetyl 

chloride (3.8 g, 48.7 mmol) was then added dropwise into the mixture at 0 oC. After 

12 h, the solvent was removed by rotary evaporation. The residue was purified by 

recrystallization with ethanol to obtain gray solid 1 (2.24 g, 50%). 1H NMR (CDCl3, 

400 MHz, TMS), δ (ppm): 8.78 (s, 2H), 8.68 (s, 1H), 8.15 (d, J = 8.2 Hz, 2H), 7.50 (d, 

J = 8.48 Hz, 2H), 2.7 (s, 6H). 

3,6-diethyl-9H-carbazole (2) 

A mixture of compound 1 (2.8 g, 11.1 mmol), aluminum chloride (5.93 g, 44.4 mmol) 

and tetrahydrofuran (THF) (40 mL) was cooled to 0 oC. LiAlH4 (1.0 g, 33.3 mmol) 

was added in small batches. The reaction mixture was stirred for 4 h at room 

temperature (RT). The solvent was removed by rotary evaporation, and the residue 

was purified by silica gel column chromatography using petroleum ether (PE)/CH2Cl2 

(V:V, 8/1) as eluent to give 2 as a yellow solid (1.0 g, 40%). 1H NMR (CDCl3, 400 

MHz, TMS), δ (ppm): 7.88 (s, 2H), 7.32 (d, J = 8.21 Hz, 2H), 7.24 (d, J = 8.77 Hz, 
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2H), 2.85-2.79 (t, J = 7.52 Hz, 4H), 1.36-1.11 (m, 6H). 

9-(4-bromophenyl)-3,6-diethyl-9H-carbazole (3) 

A mixture of compound 2 (1.4 g, 6.27 mmol), 1-bromo-4-iodobenzene (2.6 g, 9.4 

mmol), potassium carbonate (2.5 g, 18.81 mmol), 1,10-phenanthroline monohydrate 

(372 mg, 1.88 mmol) in o-xylene (100 mL) was refluxed for 24 h under nitrogen 

atmosphere. After cooling to RT, the reaction mixture was poured into water and 

extracted with CH2Cl2. The organic layer was collected and dried with MgSO4. The 

solvent was removed by rotary evaporation, and the residue was purified by silica gel 

column chromatography using PE as eluent to give as faint yellow solid 3 (1.68 g, 

71%). 1H NMR (d-DMSO, 400 MHz, TMS), δ (ppm): 8.04 (s, 2H), 7.99 (d, J = 8.2 

Hz, 2H), 7.84 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.2 Hz, 2H), 

2.78 (d, J = 7.4 Hz, 4H), 1.30-1.26 (m, 6H). 

3,6-diethyl-9-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan)phenyl)-9H-carbazole 

(4) 

n-BuLi (1.6 M in hexane, 5.4 mL, 8.64 mmol) was added dropwise into a solution of 

3 (1.09 g, 2.88 mmol) in THF (30 mL) at –78 oC under nitrogen atmosphere. The 

mixture was stirred at –78 oC for 2 h, then the solution was stirred for 30 mins at RT. 

2-Isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.07 g, 5.76 mmol) was added 

at –78 oC. The mixture was then allowed to room temperature and stirred overnight. 

The reaction was quenched by water and the mixture was extracted with CH2Cl2. The 

organic layer was collected and washed with water. After removing the solvent, the 

residue was purified by silica gel column chromatography using PE as eluent to give 
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as brown solid 4 (480 mg, 38%). 1H NMR (CDCl3, 400 MHz, TMS), δ (ppm): 8.06 (d, 

J = 7.9 Hz, 2H), 7.96 (s, 2H), 7.61 (d, J = 7.9 Hz, 2H), 7.40 (d, J = 8.3 Hz, 2H), 7.26 

(d, J = 8.4 Hz, 2H), 2.87 (d, J = 7.5 Hz, 4H), 1.53-1.20 (m, 18H). 

9-(4-(5-bromopyridin)phenyl)-3,6-diethyl-9H-carbazole (5) 

A mixture of compound 4 (480 mg, 1.1 mmol), 2,5-dibromopyridine (260 mg, 1.65 

mmol), cesium carbonate (1.0 g, 3.3 mmol), tetrakis(triphenylphosphine)palladiun(0) 

(38 mg, 0.032 mmol) and THF (40 mL) was refluxed for 24 h in nitrogen atmosphere. 

After cooling to RT, the mixture was extracted with CH2Cl2 and washed with water. 

The solvent was removed by rotary evaporation. The residue was purified by silica gel 

column chromatography using CH2Cl2/PE (V:V, 8/1) as eluent to give as faint yellow 

solid 5 (160 mg, 32%). 1H NMR (CDCl3, 400 MHz, TMS), δ (ppm): 8.82 (s, 1H), 

8.21 (d, J = 8.68 Hz, 2H), 7.96 (d, J = 8.78 Hz, 2H), 7.76-7.70 (m, 4H), 7.42 (d, J = 

8.2 Hz, 2H), 7.08 (d, J = 7.48 Hz, 1H), 6.94 (d, J = 8.4 Hz, 1H), 2.90-2.85 (m, 4H), 

0.90 (m, 6H). 

6-(4-(3,6-diethyl-9H-carbazol-9-yl)phenyl)nicotinaldehyde (7) 

A mixture of compound 4 (500 mg, 1.2 mmol), 2-bromine-5-pyridinecarboxaldehyde 

(271 mg, 1.46 mmol), tetrakis(triphenylphosphine)palladium(0) (42 mg, 0.036 mmol), 

cesium carbonate (4.14 g, 3.63 mmol) and toluene/ethanol (15 mL/15 mL) was heated 

to 80 oC for 24 h in nitrogen atmosphere. After cooling to RT, the mixture was 

extracted with CH2Cl2 (3 × 20 mL). The organic layer was collected and washed with 

water. The solvent was removed by rotary evaporator, and the residue was purified by 

silica gel column chromatography using PE/ethyl acetate (EA) (V:V, 10/1) as eluent to 
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give as a faint yellow solid 7 (270 mg, 55%). 1H NMR (CDCl3, 400 MHz, TMS), δ 

(ppm): 8.72 (s, 1H), 8.20 (d, J = 8.63 Hz, 2H), 7.92 (d, J = 8.76 Hz, 2H), 7.72-7.69 (m, 

4H), 7.40 (d, J = 8.21 Hz, 2H), 7.06 (d, J = 7.42 Hz, 1H), 6.92 (d, J = 8.30 Hz, 1H), 

2.88-2.83 (m, 4H), 1.30 (m, 6H). 

(6-(4-(3,6-diethyl-9H-carbazol-9-yl)phenyl)pyridin-3-yl)methanol (8) 

Compound 7 (270 mg, 0.66 mmol) and NaBH4 (112 mg, 1.66 mmol) in 

toluene/ethanol (15 mL/15 mL) was stirred for 6 h at RT. Water was added to quench 

the reaction, and the mixture was extracted with ethyl acetate (3 × 20 mL). The 

organic layer was collected, washed with water and then dried with anhydrous MgSO4. 

After removed the solvent, the residue was purified by silica gel column 

chromatography using EA as eluent to give as yellow solid 8 (210 mg, 78%). 1H 

NMR (CDCl3, 400 MHz, TMS), δ (ppm): 8.72 (s, 1H), 8.20 (d, J = 8.28 Hz, 2H), 7.94 

(s, 2H), 7.85 (d, J = 8.04 Hz, 1H), 7.82 (d, J = 8.08 Hz, 1H), 7.67 (d, J = 8.28 Hz, 2H), 

7.40 (d, J = 8.32 Hz, 2H), 7.24 (d, J = 8.04 Hz, 2H), 4.84 (s, 2H), 2.87-2.81 (m, 4H), 

1.35 (t, J = 7.52 Hz, 6H). 

9-(4-(5-((6-bromohexyloxy)methyl)pyridin-2-yl)phenyl)-3,6-diethyl-9H-carbazole 

(9) 

A mixture of compound 8 (250 mg, 0.61 mmol ), 1,6-dibromohexane (179 mg, 0.74 

mmol), potassium iodide (3.05 mg, 0.018 mmol), saturated sodium hydroxide (73 mg) 

and actone (20 mL) was refluxed 24 h in nitrogen atmosphere. After cooling to RT, 

the mixture was extracted with CH2Cl2 (3 × 20 mL). The organic layer was collected, 

washed with water and dried with anhydrous MgSO4. The solvent was removed by 
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rotary evaporation, and then the residue was purified by silica gel column 

chromatography using PE/EA (V:V, 10/1) as eluent to give as yellow solid 9 (70 mg, 

20%). 1H NMR (CDCl3, 400 MHz, TMS), δ (ppm): 8.68 (s, 1H), 8.19 (d, J = 7.16 Hz, 

2H), 7.94 (s, 2H), 7.81 (s, 2H), 7.67 (d, J = 7.08 Hz, 2H), 7.40 (d, J = 7.72 Hz, 2H), 

7.25 (s, 2H), 4.58 (s, 2H), 3.54 (s, 2H), 3.42 (s, 2H), 3.19 (s, 2H), 2.84 (t, J = 6.88 Hz, 

4H ), 1.89-1.43 (m, 6H), 1.34 (t, J = 6.4 Hz, 6H). 

Compound LG-1 

A mixture of compound 5 (220 mg, 0.48 mmol), compound 6 (220 mg, 0.48 mmol), 

tetrakis (triphenylphosphine)palladiun(0) (17 mg, 0.014 mmol), cesium carbonate (2 

mol/L, 6 mL) and toluene 20 mL was heated to 80 oC for 24 h in nitrogen atmosphere. 

After cooling to RT, the reaction was quenched by water and the mixture was 

extracted with CH2Cl2. The organic layer was collected, washed with water and dried 

with anhydrous MgSO4. The solvent was removed by rotary evaporation and the 

residue was purified by silica gel column chromatography using PE/CH2Cl2 (V:V, 

10/8) as the eluent to give as yellow solid LG-1 (290 mg, yield 54%). 1H NMR 

(CDCl3, 400 MHz, TMS), δ (ppm): 9.20 (s, 1H), 8.72 (s, 1H), 8.61 (d, J = 8.6 Hz, 1H), 

8.31 (d, J = 8.34 Hz, 2H), 8.21 (d, J = 6.18 Hz, 3H), 7.98 (t, J = 7.9 Hz, 3H), 7.87 (d, 

J = 5.44 Hz, 3H), 7.72 (d, J = 8.34 Hz, 2H), 7.44 (d, J = 8.32 Hz, 2H), 7.28 (m, 2H), 

4.28 (t, J = 7.48 Hz, 8H), 2.88-2.83 (m, 4H), 1.96 (t, J = 7.16 Hz, 8H), 1.61-1.25 (m, 

40H), 0.92 (m, 18H). 13C NMR (100 MHz, CDCl3), δ (ppm): 14.05, 15.51, 16.41, 

22.67, 25.98, 26.22, 28.95, 29.13, 29.33, 31.90, 63.92, 66.64, 68.26, 68.55, 69.58, 

69.70, 69.84, 107.41, 109.65, 114.09, 118.98, 120.26, 121.28, 123.40, 123.91, 124.72, 
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126,95, 128.19, 128.80, 129.47, 131.69, 134.85, 135.32, 136.07, 137.56, 139.06, 

139.47, 148.47, 149.39, 150.03, 155.25. MALDI-MS (m/z): calcd. for C77H98N2O4 

[M +] 1114.75, found 1114.87. 

Compound LG-2 

A mixture of compound 10 (822 mg, 0.93 mmol), compound 9 (353 mg, 0.62 mmol), 

potassium carbonate (855 mg, 6.2 mmol) and potassium iodide (51 mg, 0.31 mmol) in 

acetone (20 mL) was refluxed for 24 h in nitrogen atmosphere. After cooled to RT, the 

mixture was extracted with CH2Cl2 (3 × 30 mL). The organic layer was collected, 

washed with water and dried with anhydrous MgSO4. The solvent was removed by 

rotary evaporation and was purified by silica gel column chromatography using 

PE/EA (V:V, 10/1) as eluent to give as yellow solid LG-2 (574 mg, 54%). 1H NMR 

(CDCl3, 400 MHz, TMS), δ (ppm): 8.67 (s, 1H), 8.14 (d, J = 7.8 Hz, 2H), 7.94 (s, 2H), 

7.83-7.77 (m, 6H), 7.71 (d, J = 7.76 Hz, 2H), 7.62 (d, J = 7.76 Hz, 2H), 7.38 (d, J = 

8.16 Hz, 2H), 7.25 (s, 2H), 4.58 (s, 2H), 4.22-4.21 (m, 12H), 3.5 (s, 2H), 2.85 (s, 4H), 

1.92 (m, 12H), 1.36-1.15 (m, 60H), 0.80( m, 15H). 13C NMR (100 MHz, CDCl3), δ 

(ppm): 14.15, 14.60, 16.42, 22.81, 26.0, 26.31, 29.41, 29.73, 29.82, 31.90, 32.71, 

60.25, 69.38, 69.56, 72.18, 76.20, 106.23, 107.38, 109.52, 111.12, 117.23, 118.90, 

121.24, 122.11, 123.70, 126.21, 133.12, 136.47, 138.36, 139.70, 146.52, 147.87, 

148.26, 149.90. MALDI-MS (m/z): calcd. for C92H128N2O7 [M+] 1374.01, found 

1374.34. 

Generation procedures for synthesis platinum complexes 

Cyclometalated ligand (LG-1/LG-2) (2.2 eq) and K2PtCl4 (1.0 eq) in a mixture of 
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chloroform (4 mL), distilled water (2 mL) and 2-ethoxyethanol (6 mL) was heated to 

80 oC for 24 h in nitrogen atmosphere. After cooling to RT, the reaction mixture was 

extracted with CH2Cl2, and the organic layer was collected and dried with Na2SO4. 

After removed the solvent, the dimer was obtained and used to the next step without 

any further purification. 

A mixture of dimer (1.0 eq), ancillary ligand (3.0 eq), sodium carbonate (10.0 eq) and 

2-ethoxyethanol was heated to 100 oC for 24 h in nitrogen atmosphere. After cooling 

to RT, the reaction mixture was poured into water and extracted with CH2Cl2. The 

organic layer was collected and dried with anhydrous Na2SO4. The organic solvent 

was removed by rotary evaporation and the residue was passed through a flash silica 

gel column to give the platinum complexes. 

Pt5: PE/CH2Cl2 (V:V, 2/1), yellow solid, (40 mg, yield 12.5%). 1H NMR (CDCl3, 400 

MHz, TMS), δ (ppm): 9.49 (s, 1H), 8.69 (s, 1H), 8.65 (d, J = 8.4 Hz, 1H), 8.26 (d, J = 

8.1 Hz, 1H), 8.25 (s, 1H), 8.11 (s, 1H), 7.97 (s, 1H), 7.87 (t, J = 8.0 Hz, 4H), 7.80 (d, 

J = 8.2 Hz, 3H), 7.70 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 7.8 Hz, 

2H), 5.5 (s, 1H). 4.28 (t, J = 7.48 Hz, 8H), 2.88-2.84 (m, 4H), 1.96 (t, J = 7.16 Hz, 

8H), 1.61-1.12 (m, 44H), 0.92 (m, 18H). 13C NMR (100 MHz, CDCl3), δ (ppm): 

14.14, 16.50, 22.73, 26.25, 26.28, 26.29, 27.13, 28.46, 28.99, 29.38, 29.40, 29.49, 

29.54, 29.62, 31.90, 69.40, 69.53, 69.65, 70.00, 102.53, 107.00, 110.31, 118.74, 

120.81, 121.68, 123.15, 123.29, 123.58, 123.96, 124.06, 124.50, 124.87, 125.96, 

128.88, 129.35, 133.17, 135.59, 136.27, 138.16, 139.56, 143.12, 145.46, 149.19, 

149.29, 149.97, 150.15, 165.16, 184.41, 185.56. MALDI-MS (m/z): calcd. for 
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C82H104N2O6Pt [M+] 1407.75, found 1407.84. Anal. Calcd for C82H104N2O6Pt: C, 

69.91; H, 7.44; N, 1.99. Found: C, 70.07; H, 7.41; N, 1.90. 

Pt6: PE/CH2Cl2 (V:V, 10/7), yellow solid (90 mg, yield 37.6%). 1H NMR (CDCl3, 

400 MHz, TMS), δ (ppm): 9.72 (s, 1H), 8.74 (s, 1H), 8.57 (d, J = 8.3 Hz, 1H), 8.06 (d, 

J = 8.3 Hz, 1H), 8.05 (s, 1H), 7.88 (s, 1H), 7.78-7.76 (m, J = 8.3 Hz, 8H), 7.73-7.72 

(d, J = 6.4 Hz, 6H), 7.45 (d, J = 7.52 Hz, 1H), 7.31 (m, 2H), 6.67 (d, J = 8.4 Hz, 2H), 

6.2 (d, J = 8.2 Hz, 2H), 6.5 (s, 1H), 4.30-4.24 (t, J = 6.3 Hz, 8H), 4.30-4.24 (t, J = 6.3 

Hz, 8H), 3.79 (t, J = 6.3 Hz, 4H) 2.91-2.90 (m, 4H), 1.98 (t, J = 6.6 Hz, 8H), 

1.68-1.27 (m, 78H), 0.93-0.85 (m, 18H). 13C NMR(100 MHz, CDCl3), δ (ppm): 14.05, 

14.06, 16.52, 22.66, 22.69, 26.28, 29.29, 29.36, 29.38, 29.43, 29.52, 29.56, 29.60, 

29.63, 29.70, 29.75, 31.90, 31.94, 67.84, 69.04, 69.63, 69.80, 69.90, 107.49, 110.80, 

113.92, 114.31, 118.71, 123.32, 123.84, 124.01, 124.34, 124.39, 124.66, 126.02, 

128.54, 128.66, 128.82, 129.51, 131.81, 133.89, 134.46, 135.75, 139.06, 145.54, 

149.37, 149.49, 149.86, 150.12, 161.10, 161.41, 177.11, 177.60. MALDI-MS (m/z): 

calcd. for C116H156N2O8Pt [M+] 1900.15, found 1900.20. Anal. Calcd for 

C116H156N2O8Pt: C, 73.27; H, 8.27; N, 1.47. Found: C, 72.23; H, 8.09; N, 1.48. 

Pt7: PE/CH2Cl2 (V:V, 1/1), yellow solid (300 mg, 57%). 1H NMR (CDCl3, 400 MHz, 

TMS), δ (ppm):8.67 (s, 1H), 8.14 (d, J = 7.8 Hz, 2H), 7.94 (s, 2H), 7.83-7.77 (m, 6H), 

7.71 (d, J = 7.76 Hz, 2H), 7.62 (d, J = 7.76 Hz, 2H), 7.38 (d, J = 8.16 Hz, 2H), 7.25 (s, 

1H), 5.42 (s, 1H), 4.58 (s, 2H), 4.22-4.21 (m, 12H), 3.5 (s, 2H), 2.85 (s, 4H), 1.92 (m, 

12H), 1.36-1.15 (m, 66H), 0.80 (m, 18H). 13C NMR (100 MHz, CDCl3), δ (ppm): 

14.15, 16.65, 22.73, 25.89, 25.99, 26.26, 26.39, 29.43, 29.56, 29.62, 29.68, 29.73, 
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31.90, 31.97, 67.79, 69.25, 69.85, 69.91, 70.67, 107.47, 110.51, 114.14, 118.77, 

123.38, 123.84, 124.19, 125.99, 128.76, 128.85, 135.71, 137.42, 139.57, 148.92, 

149.03, 149.11, 184.39, 185.74. MALDI-MS (m/z): calcd. for C97H134N2O9Pt [M+] 

1665.97, found 1666.3, 1567.22. Anal. Calcd for C97H134N2O9Pt: C, 69.88; H, 8.10; N, 

1.68 Found: C, 67.94; H, 7.94; N, 1.72. 

Pt8: PE/CH2Cl2 (V:V, 1/1), yellow solid, (70 mg, 30.7%). 1H NMR (CDCl3, 400 MHz, 

TMS), δ (ppm): 9.13 (s, 1H), 8.06 (d, J = 7.9 Hz, 2H), 7.94 (s, 2H), 7.83-7.77 (m, 8H), 

7.71 (d, J = 7.76 Hz, 2H), 7.62 (d, J = 7.76 Hz, 2H), 7.38 (d, J = 8.16 Hz, 2H), 7.25 (s, 

2H), 6.95 (d, J = 8.15 Hz, 2H), 6.68-6.66 (m, 3H), 4.6 (s, 2H), 4.20 (m, 14H), 3.99 (t, 

J = 5.8 Hz, 2H), 3.89 (t, J = 7.75 Hz, 2H), 3.63 (s, 2H), 2.90-2.85 (m, 4H), 1.92 (m, 

12H), 1.40-1.24 (m, 99H), 0.88 (m, 27H). 13C NMR (100 MHz, CDCl3), δ (ppm): 

14.12, 16.50, 22.71, 25.97, 26.33, 27.07, 28.24, 28.98, 29.36, 29.42, 29.71,31.88, 

53.45, 69.59, 69.73, 69.86, 70.92, 106.74, 107.44, 110.24, 118.74, 121.78, 123.23, 

123.43, 123.47, 123.51, 124.05, 124.98, 125.95, 128.29, 131.34, 135.58, 138.01, 

138.39, 139.53, 140.95, 142.98, 147.60, 148.95, 149.04, 149.24, 149.30, 149.36, 

167.15. MALDI-MS (m/z): calcd. for C131H186N2O11Pt [M+] 2159.96, found 2159.65, 

1568.14. Anal. Calcd for C131H186N2O11Pt: C, 72.84; H, 8.68; N, 1.30. Found: C, 

72.20; H, 8.69; N, 1.36. 

 

3. Results and discussion 

3.1. Synthesis and characterized 

The synthetic route of platinum complexes is depicted in Scheme 1. Starting from 
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the commercially available carbazole, intermediate 3 was obtained by Friedel-Crafts 

acylation and subsequent reduction reaction in 28% yield in two steps [46]. The 

following borylation of compound 3 with 2-isopropoxy-4,4,5,5-tetramethyl- 

1,3,2-dioxaborolane in the presence of n-BuLi gave intermediate 4 in 38% yield. Then, 

Suzuki coupling reaction between compound 4 and 2,5-dibromopyridine or 

6-bromonicotinaldehyde yielded precursors 5 and 7, respectively. Intermediate 5 

reacted with compound 6 to afford cyclometalating ligand LG-1 by Suzuki coupling 

reaction in the presence of Pd(PPh3)4. Compound 7 was reduced with NaBH4 in 

toluene/ethanol solution at room temperature and then converted to intermediates 9 

using 1,6-dibromohexane as the reactant. Cyclometalating ligand LG-2 was obtained 

by etherification reaction between monohydroxypentaalkoxytriphenylene (10) and 

intermediate 9 using potassium carbonate in acetone solution. Target platinum 

complexes were finally synthesized according to the conditions reported by our group 

[40,41]. All the platinum complexes were confirmed by 1H NMR, 13C NMR, MALDI 

TOF-MS and elemental analysis (ESI†). 

3.2. Thermal properties  

The thermal stability of all platinum complexes was evaluated by TGA under a 

nitrogen atmosphere. All platinum complexes possess good thermal stability, with the 

decomposition temperature (Td, 5% weight loss) above 270 oC, which is much better 

than the analogous platinum complexes TppyPtacac (162 oC) and TppyPtPhacac (191 

oC) [43]. As seen from Table 1, the platinum complexes with dibenzoylmethane 

(DBM) moiety (Pt6 and Pt8) are much more stable than the platinum complexes with 
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acetylacetone (acac) ligand (Pt5 and Pt7). Additionally, the trend in thermal stability 

(Pt5<Pt7) clearly illustrates that the alkyl-chains length between triphenylene and 

platinum core has a positive impact on the thermal stability. 

The mesomorphic behavior of these platinum complexes was investigated by DSC, 

POM and XRD. DSC scan was initially carried out to study the thermotropic property 

under nitrogen atmosphere. The DSC curves exhibit distinct patterns as a function of 

the molecular structure (ESI†). As for the platinum complexes with acac ligand (Pt5 

and Pt7), no clear endothermic peak and exothermic peak are found upon heating and 

cooling curves (Table 1 and ESI†), which is similar to the previously reported 

triphenylene-based compounds [47-50]. In contrast, the platinum complexes with 

DBM ligand possess obviously phase transition peak owing to the more periphery 

alkyl chains. Pt6 shows two endothermic peaks indicating multiple phase transitions 

upon heating process. However, the phase transition is not observed on cooling from 

DSC [45,49,51]. Pt8 shows two endothermic peaks and one exothermic peak on 

cooling, respectively. Notably, the clearing point decreases with the increased length 

of the alkyl-chain between the triphenylene and the platinum core complex. 

Based on the DSC results, POM results demonstrated that only Pt6 showed fluidity 

and liquid crystal characters, with birefringence upon cooling. As shown in Figure 1, 

complex Pt6 exhibits a branched leaf-like texture when cooling from the isotropic 

liquid, indicating a typical columnar phase [45,52]. Although Pt5 presents an 

obviously birefringence phenomenon, it also seems to be some small crystals (Figure 

1). In contrast, for complexes Pt7 and Pt8, we did not detect any fluidity and 
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birefringence during heating and cooling (ESI†), in which both complexes possess 

crystalline state. Clearly, the length of alkyl chain between platinum complex skeleton 

and triphenylene unit has a crucial role on the mesomorphic behavior.  

In order to further confirm the columnar phase of the platinum complexes, Pt5 and 

Pt6 were selected as representative examples to measure temperature-dependent 

X-ray diffraction (Figure 2). At 54 oC, as shown in Figure 2, the XRD pattern of Pt6 

shows one strong reflection at small angle range together with several small scatter 

peaks at low angle and high angle ranges, a feature of glassy (or partially crystalline) 

structure. When Pt6 was heated to 185 oC, all the peaks disappear because of the 

formation of the isotropic phase. When the temperature is decreased to 116 oC from 

isotropic liquid, only a sharp reflection at 2θ of 3.2o (27.6 Å) appears with a diffuse 

reflection at around 2θ of 18.4o (4.8 Å), typical of the liquid crystalline state and 

assigned to the liquid-like order of the peripheral alkoxy chains [53,54]. Combined 

with DSC and POM observations, and compared to the XRD pattern at 54 oC, the 

disappearing of the diffraction peaks in the range of 5-15o (2θ) and clearly changed 

XRD pattern at 116 oC indicates the formation of a mesophase. Due to the absence of 

more diffraction peaks in the high angle range, the exact mesophase structure could 

not be calculated. Nevertheless, according to literature reports about 

triphenylene-based compounds we assign the structure to a columnar phase [55-57]. 

However, for complex Pt5, the temperature-dependent XRD could not offer more 

evidences for the liquid crystalline state. Therefore, Pt5 was mainly tentative assigned 

to crystal structure.  
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3.3. Optical Properties  

The absorption spectra of the complexes were measured in dichloromethane 

(CH2Cl2, 10–5 M) at room temperature (Figure 3), and the data are listed in Table 2. 

Each platinum complex shows three well-resolved absorption bands in the range of 

250-500 nm. The intense absorption band from 250 to 310 nm with high molar 

absorptivities (ε) on the order of 105 M−1 cm−1 is assigned to the spin-allowed π-π* 

electron transitions of the cyclometalating ligand. Compared to Pt5 and Pt6, the other 

platinum complexes show additional triphenylene absorption bands at about 280 nm, 

demonstrating the weak ground-state coupling between the platinum core and 

triphenylene unit due to the aliphatic spacer unit [58]. The moderately intense 

absorption band ranging from 310 to 370 nm (ε = 104 M−1 cm−1) is attributed to 

intramolecular charge-transfer (ICT) and metal-to-ligand charge-transfer transitions 

(1MLCT). The low-energy absorption band (˚370 nm, 103-104 M−1 cm−1) is ascribed 

to 3MLCT transition according to previous report [58]. It is noted that the platinum 

complexes with DBM ligand (Pt6 and Pt8) exhibit a stronger absorption in the range 

of 300-370 nm than the platinum with acac moiety (Pt5 and Pt7). This result could be 

referred to electronic transitions involving the DBM moiety. Due to the expanded 

π-conjugation, Pt5 and Pt6 display a red-shifted absorption in low-energy region 

compared to other platinum complexes. Therefore the grafted aliphatic chain in 

cyclometalating ligand has a significant influence on their absorption property.  

As shown in Figure 4, all platinum complexes display resolved vibrational 

emission spectra, generated from π-π* electron transitions. Pt7 and Pt8 show similar 
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emission spectra centered at 512 nm with a shoulder at about 547 nm. On the other 

hand, the PL spectra of Pt5 and Pt6 are red-shifted to 558 nm with respect to that of 

Pt7 and Pt8 caused by the expended π-conjugation. Compared to the analogous 

platinum complex TppyPtPhacac and TppyPtacac [43], Pt5 and Pt6 exhibit 8 nm red 

shift spectra due to the additional carbazole unit results in more effective 

intramolecular charge transfer transition, whereas Pt7 and Pt8 show hypochromatic 

shift spectra owing to the low conjugation caused by alkyl chains. The 

photoluminescence quantum yields (Φ) of these platinum complexes are in the range 

of 0.2-0.4 in degassed CH2Cl2. Interestingly, the emission peaks show little red shift 

in neat films relative to those in solution (ESI†). It is quite different from generally 

square planar platinum complex that Pt5-Pt8 did not show distinct excimer emission 

in neat film, indicating the periphery alkyl and additional carbazole unit have an 

impact on suppressing the intermolecular aggregation. 

3.4. Electrochemical Properties  

The electrochemical properties of platinum complexes were evaluated by cyclic 

voltammetry in CH2Cl2 solution using ferrocene/ferrocenium (Fc/Fc+) as an internal 

standard. All platinum complexes show the irreversible oxidation potentials between 

0.39 V and 0.6 V (vs Fc/Fc+, ESI†). Based on the oxidation potentials and optical 

band gap (optEg), correspondingly, their highest occupied molecular orbital (HOMO) 

and lowest unoccupied molecular orbital (LUMO) levels are estimated via the 

formula of EHOMO = –(4.8 + Eox) eV  and ELUMO = –(EHOMO – optEg) eV [59], 

respectively. As seen from Table S1, the ancillary ligand with DBM unit has a 
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stabilizing effect on HOMO and LUMO of the platinum complexes. All platinum 

complexes possess the energy band gaps from 2.63 to 2.82 eV (Table S1). Pt5 and 

Pt6 display relatively narrow energy band gaps compared to other platinum 

complexes, owing to the extended π-conjugation, which is also supported by 

absorption and emission properties. 

3.5. Hole Mobilities  

The hole mobilities of platinum complexes were also measured by the space charge 

limited current (SCLC) method with a device configuration of ITO/PEDOT:PSS (40 

nm)/platinum complex (100 nm)/MoO3 (10 nm)/Ag (100 nm). For the devices treated 

with thermal annealing (120oC for 30 mins), these platinum complexes exhibit 

moderate hole mobilities in the range of 10–5–10–6 cm2 V–1 s–1 (Table S2, ESI†). 

Complex Pt5 shows the best hole mobility up to 2.1 × 10–5 cm2 V–1 s–1. The results 

imply that the hole mobilities decreases with the increased aliphatic chains between 

the platinum core and triphenylene.  

3.6. Polarized Devices  

In order to systematically investigate the polarized EL of the platinum complexes, 

Pt5 and Pt6 were selected as the emitter. Poly(9,9'-dioctylfluorene) (PFO) was chosen 

as the host matrix because of its outstanding liquid crystalline and polarized emission 

[20,21]. Initially, the polarized OLEDs were fabricated with the configuration of 

ITO/PEDOT:PSS (30 nm)/PVK (30 nm)/PFO:platinum complex (94:6, 70 nm, 

rubbed)/B3YMPM (50 nm)/Ca (100 nm)/Al (100 nm). The polarized EL spectra 

recorded at 10 mA/cm2 are depicted in Figure 5 in terms of the emission intensity 
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parallel (H) and perpendicular to (V) the rubbing direction. In the case of Pt5-doped 

device, the polarized emission, with a dichroic ratio (R = ELH/ELV) of about 5, is only 

observed from blue emission of PFO (Figure 5a). For the Pt6-doped device, both 

blue emission from PFO and orange emission from platinum complex show polarized 

emission (Figure 5b). The R was evaluated to be 17.5 at 430 nm and 1.4 at 569 nm, 

respectively. This result indicates that complex Pt5 has an inferior self-assemble 

property than Pt6 in PFO film, which is also confirmed that Pt5 could be crystal. 

Notably, the emission parallel to the rubbing direction is stronger than that 

perpendicular to the rubbing direction, implying the PFO and platinum complexes 

could be aligned with the rubbing [38]. 

To elucidate the effect of molecular order on polarized emission, a series of devices 

based on Pt6 were fabricated with different procedures to prepare the aligned 

emissive layer (Experimental Section). The EL data of these devices are listed in 

Table S3. The aligned emissive layer in device I  was processed without any special 

procedures. The emissive layer was annealed at 120 oC in device II . The emissive 

layer of device III  was uniaxial rubbed for surface alignment, and then annealed at 

120 oC, while the emissive layer in device IV  was prepared via pressing on the 

surface, followed by annealing at 120 oC. Furthermore, to improve the quality of 

white light compared to the previous devices having a large blue component from 

PFO, the amount of Pt complex was increased to 20% in these devices in order to 

increase the red component. 

Apparently, the EL emission varied with aligned emissive layer in different 
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polarized devices (Figure 6 and ESI†). As depicted in Figure 6, Device I  shows a 

broad EL emission from 400 nm to 750 nm. The blue emission in the range of 

400-480 nm is attributed to host matrix PFO, while the low-energy emission (635 nm) 

are assigned to emission from electrically excited bimolecular species (electromers 

and electroplexes) as they are not observed in the PL emission in neat film [60]. The 

whole EL spectrum exhibits polarization dependence with R of 1.75 at 439 nm and 

1.34 at 635 nm, respectively. This broad emission from device I  has Commission 

Internationale de L’Eclairage (CIE) coordinates (0.43, 0.35), implying a nearly white 

emission. To the best of our knowledge, this is the first example of polarized white 

emission based on platinum complex.  

When the emissive layer in devices II-IV  was processed with thermal annealing, 

the deep red component of the emission spectra attributed to electromers/electroplexes 

significantly increases in intensity compared to device I (ESI†). Obviously, the 

annealed emitting layer has a significant effect on the EL emission, attributed to more 

ordered molecules and effective energy transfer between host matrix and guest. 

Device II  shows the polarized EL with R of about 1 only at 670 nm, while device III  

displays the polarized emission at both blue emission (R = 5.5, 432 nm) and red 

emission (R = 1.1, 655 nm). However, the polarization dependence was not detected 

in device IV , which infers that it is difficult to align the emission film by pressing 

method. Compared to device I , devices II -IV  show inferior polarized emissions, 

likely due to the poor alignment of the emissive layer. The CIE coordinates of devices 

II-IV  have minor change from (0.51, 0.37) to (0.59, 0.35) in the reddish orange range.  
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Although these platinum metallomesogens show the charming polarized emission, 

the devices performances are still very low. Device I  exhibits the best performance 

with a turn-on voltage of 6 V, a maximum luminance of 100 cd/m2 and a current 

efficiency of 0.46 cd/A. Even though the efficiency achieved in these polarized 

devices is not fascinating compared to that of state-of-the-art phosphorescent OLEDs, 

it provides the strategy to achieve polarized white emission, which is necessary for the 

application of backlight in liquid crystal displays.  

4. Conclusions 

In summary, a series of novel platinum complexes were synthesized and 

characterized. Complex Pt6 rather than Pt5, Pt7 and Pt8 can effectively form liquid 

crystalline, confirmed by DSC, POM and XRD. Compared to the reported 

TppyPtacac and TppyPtPhacac, this novel platinum complex showed better thermal 

stability and liquid crystal property. Additionally, the mesophase disappeared as the 

length of the alkyl-chain between platinum skeleton and triphenylene unit increased. 

The excimer emission can be effectively suppressed by periphery chains and 

additional carbazole units under opto-excitation. However, emission from electrically 

excited bimolecular species is observed in devices as a deep red, broad band. The 

exact nature of these species is not clear at this stage. As a result, the first example of 

polarized white electroluminescence rom a phosphorescent dopant was achieved with 

R of 1.4 in Pt6-based OLEDs. Importantly, the polarized EL was sharply dependent 

on the aligned emissive layer. Even though the performance of the polarized OLEDs 

is still frustrated, it is significant that current studies open up a new aspect of 
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phosphorescent metallomesogens application for the backlight of liquid crystal 

displays.  
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Tables Captions 

 

Table 1. Thermal properties of platinum complexes 

Table 2. Photophysical parameter of platinum complexes  
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Table 1. Thermal properties of platinum complexes a, b 

Complex cTg/
oC 

Phase  Phase 

Pt5 275 Cr (1.2) Iso 

Pt6 354 Cr 66 (10.3) Col 143 (3.6) Iso 

Pt7 306 – 

Pt8 364 Cr 88 (24.6) Cŕ 103 (22.3) Iso  
aScan rate for all runs was 10 °C/min. bThe phase transitions temperature was recorded at Tonset (the 

onset of second heating or first cooling). Phase nomenclature: Cr, Crʹ = crystal, Col = column 

mesophase, Iso = isotropic liquid. cThe data were collected by TGA. 

  

 

 

 

Table 2. Photophysical parameter of platinum complexes  

Compounds aUV-vis/nm 

(104 M−1 cm−1) 

PL/nm c
ΦPL

 

bSolution    Film  

Pt5 267 (10.4), 294 (7.0), 341 (3.4), 410 (2.3), 433 (2.1) 561, 603 571, 618 0.35 

Pt6 268 (8.4), 297 (11.0), 338 (8.1), 409 (4.0), 434 (2.8) 557, 598 577, 622 0.31 

Tonset(
oC)(̲̲̲̲H(KJ/mol)) 
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Pt7 270 (16.8), 280 (20.5), 297 (7.8), 348 (2.8), 391 (1.7) 511, 545 513, 551 0.19 

Pt8 270 (14.8), 280 (18.0), 299 (7.6), 325 (6.0), 387 (3.6) 512, 547 508, 545 0.22 
a the data were collected in CH2Cl2 solution; b the data were collected in degassed CH2Cl2 solution; c solutions of 

ppyPtacac (ФPL = 0.15) in 2-methyltetrahydrofuran were used as a reference. 

 

 

 

 

 

 

 

 

 

Figures Captions 

 

Chart 1 Molecular structures of Pt5-Pt8 

Scheme 1 Synthetic route of platinum complexes 

Figure 1 POM textures of Pt5 (225 oC) and Pt6 (111oC) recorded on cooling. 

Figure 2 XRD patterns of Pt6 recorded at different temperatures. 

Figure 3 UV-vis spectra of platinum complexes in CH2Cl2 solution at room 

temperature 

Figure 4 PL spectra (excitation at 420 nm) of platinum complexes in CH2Cl2 at room 

temperature. 

Figure 5 Polarized EL spectra measured at 10 mA/cm2. (a: devices based on Pt5; b: 

devices based on Pt6. H: parallel, V: perpendicular) 

Figure 6 Polarized EL spectra of devices I measured at 10 mA/cm2. (H: parallel, V: 
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perpendicular) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chart 1 Molecular structures of Pt5-Pt8 
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Reagents and conditions: (a) AlCl3, CH2Cl2/0

oC, CH3COCl, overnight; (b) AlCl3, THF, LiAlH4, RT, 4 h; (c) 

1-bromo-4-iodobenzene, K2CO3, phenanthroline, CuI, o-dimethylbenzene, reflux, 24 h; (d) 2-isopropoxy- 

4,4,5,5-tetramethyl-1,3,2-dioxaborolane, n-BuLi, THF, -78oC, overnight; (e) 2,5-dibromopyridine, Cs2CO3, 

Pd(PPh3)4, THF, reflux, 24 h; (f) Pd(PPh3)4, 2M Cs2CO3, toluene, 85oC, 24 h; (g) i: K2PtCl4, THF, H2O, 80oC, 24 h; 

ii: Na2CO3, acac or DBM, 2-ethoxyethanol, 100oC, 24 h; (h) 2-Bromopyridine-5-carbaldehyde, Pd(PPh3)4, 

Cs2CO3(saturation), THF, reflux, 24 h; (i) NaBH4, toluene/ethanol, RT, 6 h; (j) 1,6-dibromohexane, KI, NaOH (aq), 

acetone, reflux, 24 h; (k) 9, K2CO3, KI, acetone, reflux, 24 h. 

Scheme 1 Synthetic route of platinum complexes 
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Figure 1 POM textures of Pt5 (225 oC) and Pt6 (111oC) recorded on cooling. 

 

 

 

Figure 2 XRD patterns of Pt6 recorded at different temperatures. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

41 
 

 

Figure 3 UV-vis spectra of platinum complexes in CH2Cl2 solution at room temperature 

 

Figure 4 PL spectra (excitation at 420 nm) of platinum complexes in CH2Cl2 at room temperature. 
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Figure 5 Polarized EL spectra measured at 10 mA/cm2. (a: devices based on Pt5; b: devices based 

on Pt6. H: parallel, V: perpendicular) 

 

 

Figure 6 Polarized EL spectra of devices I measured at 10 mA/cm2. (H: parallel, V: perpendicular) 
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Research Highlights 

 

� A series of platinum complexes, Pt5-P8, containing triphenylene unit were 

prepared and characterized. 

� Complex Pt6 exhibits a column phase evidenced by DSC, POM and XRD. 

� All of platinum complexes show intense emission both in solution and solid state. 

� Polarized white OLED with polarized ratio of 1.4 was achieved in Pt6-based 

device. 


