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ABSTRACT: Chiral urea derivatives are shown to catalyze enantioselective tail-to-head cyclization reactions of neryl chloride 
analogues. Experimental data are consistent with a mechanism in which π-participation by the nucleophilic olefin facilitates 
chloride ionization and thereby circumvents simple elimination pathways. Kinetic and computational studies support a 
cooperative mode of catalysis wherein two molecules of the urea catalyst engage the substrate and induce enantioselectivity 
through selective transition state stabilization.

Carbocycles are ubiquitous motifs within natural and 
unnatural organic molecules, and their construction has 
been a primary research focus in synthetic organic 
chemistry since the inception of the field.1 Terpenes and 
terpenoids constitute one of the most important classes of 
carbocyclic natural products from both structural and 
functional perspectives.2 Their carbocyclic frameworks are 
constructed by terpene cyclase enzymes, which engage 
linear isoprenoid substrates of varying length.3 Cyclization 
of these polyolefins is initiated either through protonation 
of an olefin or epoxide in head-to-tail (HT) cyclizations, or 
through abstraction of an allylic pyrophosphate leaving 
group in tail-to-head (TH) cyclizations (Figure 1A).2-3 The 
reactivity of the resulting carbocationic intermediates is 
then modulated through a combination of substrate 
preorganization5 and non-covalent stabilizing 
interactions3,6 in the enzyme active site, resulting in 
selective rearrangements and carbon-carbon bond-forming 
reactions that ultimately give rise to an extraordinarily 
diverse array of natural products (Figure 1B). 

The remarkable ability of cyclase enzymes to generate 
carbocationic intermediates and channel their reactivity 
along specific pathways has long captured the imagination 
of chemists and motivated efforts to deploy analogous 
strategies in synthesis.7 However, the very features that 
make carbocations such powerful intermediates in 
biosynthesis also render their application outside of 
enzymatic chemistry quite challenging.4,8 Nonetheless, over 
the last 60 years organic chemists have made significant 
progress in mimicking the HT synthesis of steroidal ring 
systems by leveraging the propensity of these reactions to 
proceed through concerted, stereospecific mechanisms.9,10 
In contrast, efforts to reproduce TH cyclizations using non-
biological catalysts have generally resulted in unselective or 
thermodynamically controlled reactions.4,11 Pioneering 
studies from the laboratories of Shenvi4 and Tiefenbacher12 
have revealed strategies for extending carbocation lifetime, 
unlocking the potential for non-enzymatic mimics of TH 

polycyclizations, but catalyst control over 
enantioselectivity has remained elusive. To our knowledge, 
the only reported enantioselective TH cyclizations13 employ 
a binol-derived leaving group as a chiral auxiliary. 
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Figure	 1. A) Head-to-tail and tail-to-head cyclization 
reactions. B) Schematic illustrating Nature’s strategy for 
controlled ionization-dependent cyclizations. C) Proposed 
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strategy for enantioselective tail-to-head cyclizations 
catalyzed by chiral hydrogen-bond donors. 

We hypothesized that it might be possible to achieve 
enantioselectivity in TH cyclizations with a small-molecule 
catalyst by mimicking nature’s strategy of controlled 
generation and selective stabilization of key high-energy 
cationic intermediates and transition states. In particular, 
we sought to draw on advances in dual-hydrogen-bond-
donor (HBD) catalysis, which have revealed that chiral urea 
and thioureas are capable of inducing enantioselectivity in 
reactions involving cationic intermediates generated by 
anion abstraction.14 Moreover, specifically tailored HBD 
catalysts have been shown to induce enantioselectivity 
through non-covalent stabilizing interactions similar to 
those present in the active sites of cyclase enzymes.10e,15 
Herein we report the development of a urea-catalyzed 
enantioselective cyclization of neryl chloride derivatives 
(Figure 1C). Mechanistic analysis has provided key insights 
into the basis of reactivity and stereoinduction, including 
the revelation that π-participation by the nucleophilic olefin 
during ionization is critical to the success of the 
enantioselective transformation. 

 
Figure	 2. Differing reactivity observed in the urea-
catalyzed cyclization of E and Z isomers. Conversions and 
yields were assessed from crude reaction mixtures using 1H 
NMR with mesitylene as an internal quantitative standard. 

 

In preliminary studies, geranyl chloride and neryl 
chloride (1a) were found to display dramatic differences in 
reactivity in the presence of the achiral bis-aryl urea 6	and 
a stoichiometric base (Figure 2). Geranyl chloride 
underwent a very slow reaction at room temperature, with 
significant formation of uncyclized elimination products. In 
contrast, the reaction of neryl chloride (1a) proceeded to 
high conversion under the same conditions, leading 
predominantly to the formation of cyclic products 2a‐4a. 
While enantioselective variants of the cyclization of 1a	
could be promoted with chiral dual HBD catalysts, only very 
modest levels of enantioselectivity (up to 34% e.e.) were 
attained in the formation of limonene (2a) despite the 
evaluation of a wide assortment of chiral hydrogen-bond-
donor catalysts and reaction conditions (see SI for details).  

Recognizing that 1a might be a particularly challenging 
substrate for asymmetric induction due to its limited 
structural features, we explored variations to the structure 
of the reactants. Introduction of a phenyl substituent as a 
potential catalyst-recognition element in place of the C3 
methyl group (1b) led to significant improvements in 
enantioselectivity. Urea 7a was identified as the optimal 
catalyst for this substrate, promoting cyclization to 2b in 
63% NMR yield and 87% e.e. at room temperature (Figure 
3). In addition to 2b, alkyl chloride 3b was formed in 20% 

yield with similar e.e. (86%), consistent with both products 
arising from a common intermediate; 3b could be 
converted to 2b and 4b in 83% combined yield (2b:4b = 
10:1) via collidine-promoted elimination.13b The remainder 
of the mass balance consisted of two achiral cyclization 
products: 12% yield of tetrasubstituted olefin 4b and 5% 
yield of conjugated diene 5b, which we propose forms via a 
[1,2] hydride shift followed by elimination.16 Consistent 
with our prior observations using geranyl chloride, the Z 
isomer of 1b was found to undergo very slow reaction 
promoted by 7a	 (5% conversion after 24 h), with 2b 
generated in only 50% e.e. (see SI for details). 

Variation of the electronic and steric properties of the C3 
aryl substituent in 1	was explored in cyclization reactions 
catalyzed by 7a	(Figure 3). Electronic perturbation of the C3 
aryl group of 1 revealed that the highest levels of e.e. were 
attained with electron-deficient substrates. Improved 
enantioselectivity was also observed upon substitution of 
the meta position with either electron-donating or 
withdrawing groups. While urea 7a catalyzed the formation 
of limonene 2a (R = Me) with low (< 10%) 
enantioselectivity, the cyclohexyl-substituted analog 2i was 
formed in 76% e.e. It is therefore apparent both steric and 
electronic properties of the substrate play important roles 
in enantioinduction.  

 

 
Figure	3. Substrate scope. All reactions were performed on 
0.15 mmol scale and proceeded to complete conversion. E.e. 
values are for products 2a‐i. Alkyl chlorides 3b, 3h, and 3i 
were generated in 86% e.e., 91% e.e., and 70% e.e., 
respectively. Conversions and yields were assessed from 
crude reaction mixtures using 1H NMR with mesitylene as 
an internal standard. aReaction run in C6D12; b72 hr. reaction 
time; c48 hr. reaction time.  

 

The dramatic differences in reactivity and 
enantioselectivity observed in the 7a-catalyzed cyclizations 
of the E and Z isomers of 1b (vide	supra)	indicated that both 
the rate- and enantiodetermining steps differed for the two 
isomers, suggesting that they might react through 
fundamentally different mechanisms. While the Z isomer of 
1b must undergo rearrangement prior to cyclization,17 the 
nucleophilic olefin of 1b can interact with the allyl 
electrophile in a preorganized structure, potentially 
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facilitating chloride ionization through anchimeric 
assistance.18
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Figure	4.	Mechanistic studies.	A) One-pot competition secondary H/D KIE experiment. B) Hammett studies. In red: Relative 
rates of cyclization of 1b‐1f	promoted by catalyst 7b. In blue: Enantioselectivities (expressed as –G‡= RTln(enantiomer 
ratio), T = 25 °C) in the formation of 2b-2f promoted by 7a. C) Proposed catalytic cycle based on the KIE data and the 
experimentally determined rate law. D) Transition state model for the pathway leading to the major enantiomeric product in 
the cyclization of 1d. Key bond lengths are reported in Angstroms. Calculations were carried out at PCM (CyH) – B3LYP-
D3(BJ)/6-311+G(d,p) // B3LYP/6-31G(d). 

 

The role of the nucleophilic olefin in the rate-determining 
step of the cyclization of 1b	 was assessed in a kinetic 
isotope effect (KIE) experiment.19 Starting material 
recovered from one-pot competition experiments between 
1b	 and 1b-d1	 revealed enrichment in the protio 
isotopologue corresponding to kH/kD = 0.944(3) (Figure 
4A). This small, secondary inverse KIE is consistent with 
direct involvement of the distal olefin in the rate-
determining step, with partial rehybridization of the vinylic 
carbon from sp2 to sp3 and a small degree of C–C bond 
formation in the transition state.20,21  

Hammett analysis conducted using catalyst 7b 

established that reaction rate correlates linearly with σ+para 
in the reactions of 1b-1f (Figure 4B), consistent with the 
buildup of positive charge on the C3 carbon during the rate-
determining step. Enantioselectivity values for the same 
substrates also correlate directly with σ+para. The increased 
levels of asymmetric induction in electron-deficient 
substrates may be a consequence of differential extents of 
olefin participation during chloride displacement. For 
electron-deficient substrates, a higher degree of anchimeric 
assistance from the distal olefin would be expected on the 
basis of a diminished ability to support positive charge at 
C3. A greater degree of C–C bond formation would be 
expected to result in a more highly ordered 
enantiodetermining transition state.18g  

Kinetic analysis of the reaction catalyzed by urea 7b 
revealed a first-order dependence of rate on substrate 1b, 
0th order dependence on base, and a kinetic order in catalyst 

of 1.19 (see SI for details). Aryl pyrrolidine urea and 
thiourea hydrogen-bond donors such as 7	 are prone to 
dimerization both in the solid state and in nonpolar organic 
solvents,22 so a mixed resting state of monomeric and 
dimeric 7b could account for the observed non-integer 
order in catalyst. This possibility was supported through 
isothermal titration calorimetric studies, which revealed 
the presence of a roughly 70:30 equilibrium mixture of 
dimeric and monomeric 7b in cyclohexane at [7b]total = 0.01 
M (see SI for details). Thus, the observed kinetic order in 
[7b] can be ascribed to a mixed dimer-monomer resting 
state and a rate-determining transition state containing two 
molecules of catalyst. Based on the results of the kinetic 
analyses, Hammett studies, and the KIE experiment, we 
propose the catalytic cycle depicted in Figure 4C, where 
concerted rate- and enantioselectivity-determining 
chloride ionization and carbon-carbon bond formation is 
promoted through the cooperative action of two molecules 
of the urea catalyst.14d,23 

Having established the stoichiometry and general 
features of the key selectivity-determining transition state, 
we sought to explore the factors responsible for 
enantioinduction through the use of computational 
modeling (see SI for computational details). Density 
functional theory (DFT) calculations identified energy-
minimized transition state structures for the major and 
minor enantiomeric cyclization pathways of 1d promoted 
by two molecules of 7b.24 Consistent with experimental 
observations, chloride ionization was characterized by 
olefinic participation (Figure 4D, forming C–C 
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bond: 2.27 Å, breaking C–Cl bond: 3.26 Å). The lowest 
energy computed cyclization transition state is partially 
encapsulated within the dimeric catalyst assembly, with 
catalyst naphthyl groups positioned in close proximity to 
developing positive charge. The mode by which the aryl 
substituents on the catalyst influence enantioselectivity 
was assessed experimentally. Kinetic analysis conducted on 
the cyclization of 1b using catalysts 7a-7d revealed a 
positive correlation between reaction rate and 
enantioselectivity (Figure 5).25 Decomposition of the 
observed rate into contributions from the major and minor 
enantiomeric pathways15c reveals that the effect is far more 
pronounced for the major pathway; the catalyst aryl 
pyrrolidine stabilizes the transition state leading to the 
minor enantiomer to a lesser extent. Thus, it can be 
concluded that stabilizing aromatic interactions are at least 
partially responsible for enantioinduction.26 

 

 
Figure	5. Effect of catalyst aryl substituents on reaction rate 
and enantioselectivity. 

 

In summary, we have developed a highly enantioselective 
cyclization reaction of neryl chloride analogues catalyzed 
by chiral ureas. Reactions proceed through a concerted 
pathway in which π-participation by the nucleophilic olefin 
facilitates ionization of the leaving group, thereby avoiding 
direct elimination products. A network of attractive non-
covalent interactions involving two molecules of the urea 
serves to stabilize the cyclization transition state and 
induce enantiocontrol. Concerted mechanisms have been 
proposed to play key roles in enzymatic3b,27 and synthetic 
reactions9,28 involving formal cationic intermediates, and 
they likely underlie the attainment of high chemo- and 
enantioselectivity in the present system. Future studies will 
be aimed at leveraging the principles uncovered here 
toward more complex transformations such as 
polycyclization reactions.  
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