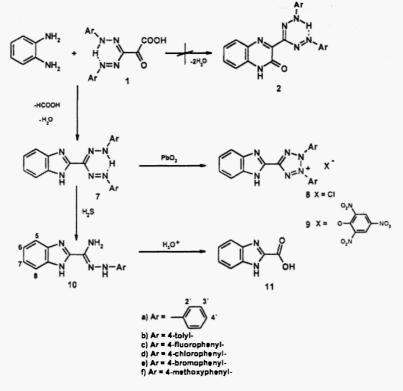
An anomalous course of the condensation of 1,5-diaryl-3-formazyl glyoxylic acids with o-phenylenediamine. A simple synthesis of some benzimidazole-2-carboxamidarylhydrazones.

Iveta Wiedermannová^a, Jan Slouka^a, Karel Lemr^b

^aDepartment of Organic Chemistry, Palacky University, Tř. Svobody 8, 771 46 Olomouc, Czech Republic, Email: wiedermannova@prfnw.upol.cz


^bDepartment of Analytical Chemistry, Palacky University, Tr. Svobody 8, 771 46 Olomouc, Czech Republic

Abstract

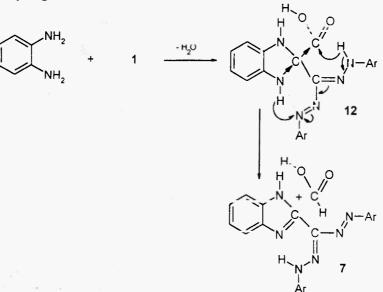
The condensation of 1,5-diaryl-3-formazylglyoxylic acids 1 with o-phenylenediamine did not afford 1,2-dihydro-3-(1,5-diaryl-3-formazyl)-chinoxalin-2-ones 2 as it had been described in a previous communication¹, but actually 1,5-diaryl-3-(2-benzimidazol-2-yl)-formazanes 7 with simultaneous elimination of formic acid. Also tetrazolium chlorides 3 and analogous picrates 4 described in the same communication¹ were not derivatives of 1,2-dihydro-quinoxaline-2-one, but in fact they were 2,3-diaryl-5-(benzimidazol-2-yl)-tetrazolium chlorides 8 and analogous picrates 9.

Formazans 7 were transformed by reductive splitting into benzimidazol-2-carboxamid arylhydrazones 10.

Introduction and Results

The subject of our the previous communication¹ was the synthesis of 1.5-diaryl-3-formazylglyoxylic acids **1a-f** and their condensation with o-phenylenediamine.

The reaction of α -ketocarboxylic acids with o-phenylenediamine leading to 1.2dihydro-quinoxaline-2-ones has already been known for a long time². It is a quite general method running with high yields and it has been used for the preparation of a great number of substituted quinoxaline derivatives³⁻⁵.


We did not suppose that the reaction of o-phenylenediamine with α -ketocarboxylic acids 1 could proceed in another way and for this reason the new compounds were formulated as 1,2-dihydro-3-(1,5-diaryl-3-formazyl)-quinoxaline-2-ones **2a-f** without more detailed confirmation of their structure¹.

The subject of this communication is a revision of the mentioned structures. We found that in the mentioned reaction of o-phenylenediamine with 1,5-diaryl-3- formazylglyoxylic acids **1a-f** did not arise stated derivatives of chinoxaline **2a-f** but in fact the 1,5-diaryl-3- (benzimidazol-2-yl)-formazans **7a-f**.

This surprising finding came out from the results of ¹³C NMR and mass spectroscopies. While results of ¹H NMR and IR spectroscopies were not in inconsistency with the mentioned structure 2^1 , the results of ¹³C NMR spectroscopy excluded this structure (the signal C=O group at 160-180 ppm was missing). The results of mass spectroscopy also confirmed the structure 7 with respect to the fact that the molecular ion corresponds exactly to the molecular mass of compounds 7. Also the course of the reductive splitting of these compounds with H₂S is in agreement with the structure 7 since benzimidazole-2-carboxamid arylhydrazones 10a-f are formed in good yield. It is interesting, that in this case reaction differs from analogous reaction proceeding at formazans of sacharide family, the result of which are appropriate thiohydrazides⁶.

The structure of amidrazones 10 was confirmed both by IR and NMR spectra and by their acid hydrolysis to benzimidazol-2-carboxylic acid 11.

The mentioned unexpected course of the reaction of o-phenylenediamine with acids 1 can proceed not only under conditions given in our previous work¹ (by boiling in ethanol) but as it was found later the reaction proceeds also at room temperature and even at 0°C. This reaction does not proceed then as with all other α -ketocarboxylic acids e.g. by elimination of 2 mol of water and by formation of 1,2-dihydro-quinoxaline-2-ones, but with elimination of 1 mol of water and 1 mol of formic acid. The eliminated formic acid was identified in the mother liquor after the isolation of formazans 7 by neutralization as HCOONa. It can be supposed that the key intermediates in this anomalous reaction are benzimidazoline derivatives 12 where the easy elimination of formic acid is caused by a cyclic mechanism in cooperation with hydrogen bonds.

It favour of the formation of the intermediate 12 speaks the creation of the similar benzimidazoline derivative by reaction of o-phenylenediamine with sodium mesoxalate⁷.

With respect to the fact that formazans described in our previous work¹ have the structure 7 and not the structure 2 it is necessary to revise also the structure of their oxidation products, that are not tetrazolium salts with quinoxaline substituent (presented in ref.¹ as compounds 3 resp. 4) but are in fact 2,3-diaryl-5-(benzimidazol-2-yl)-tetrazolium chlorides 8 and resp. picrates 9.

Apparatus and methods

MS spectra were measured on ZAB-EQ (VG Analytical Ltd., England). ¹⁵C NMR spectra were measured on AMX-360 BRUKER (360 MHz) spectrometer in DMSO- δ_6 solutions, chemical shifts δ are in ppm. IR spectra were measured using KBr disc technique and scanned on an ATI Unicam Genesis FTIR instrument.

Experimental

1,5-Diary1-3-(benzimidazol-2-yl)-formazans (7a-f)

1,5-Diaryl-3-(benzimidazol-2-yl)-formazans (7a-f) were prepared by the method mentioned in our previous communication¹ for the compounds 2. New data these compounds are outlined in tables 1-5.

The condensation of 1,5-diphenyl-3-formazylglyoxalic acid (1a) with o-phenylenediamine at low temperature and a following proof of formation formic acid.

Diphenylformazylglyoxylic acid 1a (2.00 g, 6.75 mmol) was dissolved in ethanol (70 ml) at room temperature and mixed with a solution of o-phenylenediamine (0.729 g, 6.75 mmol) in ethanol (50 ml). Result solution was left to stand until next day. The precipitated solid was collected with suction [yield: 2.136g (93%)]. The filtrate was mixed with a solution of Na₂CO₃ (0,337 mmol) in water (5 ml). The mixture was then evaporated *in vacuo* and the residue was identified as sodium formate using IR spectroscopy where three characteristic absorption bands 1604, 1358, 774 cm⁻¹ were found.

Benzimidazole-2-carboxamidarylhydrazones (10a-f)

A solution of corresponding 1,5-diaryl-3-(benzimidazol-2-yl)-formazan (7) (1 mmol) in ethanol (50-150 ml) was saturated with H_2S . The solution was allowed to stand in the closed flask with intermittent stirring for 7 days. Then the reaction mixture was filtered and the filtrate was taken down in vacuo. The solid was mixed with 5 ml water and 3 ml ethanol and after two hours was heated for 10 minutes. The hot reaction mixture was filtered. The filtrate was taken down in vacuo. The product was purified by recrystallisation from ethanol-wather (1:1). Data of compounds (10) are outlined in the tables 1-5.

1H-Benzimidazole-2-carboxylic acid (11)

A solution of benzimidazole-2-carboxamidarylhydrazones (10a) (1 mmol) in hydrochloric acid (10 %, 3 ml) was stirred for two days. Then the reaction mixture was taken down. The solution was mixed with little water and the precipitated solid was collected with suction, washed with water and dried in air. M.p. = 170-173 °C (ref.⁸: 169-171 °C). m/s (m/z): 162.1.

Characterist Compound	M.p. (°C)	Elemental Analysis m/s (m/z)			λ (max)	(loge)		
	Yield (%)	M.w.	(Calcul./Found)		(rel. int.)			
			%С	<u>%H</u>	%N			
7a	218-219	C ₂₀ H ₁₆ N ₆	70.57	4.74	24.69	341.3(100)	322 nm	5.10
	93.0	340.39	70.49	4.68	24.83		438 nm	5.04
7b	222-224	C ₂₂ H ₂₀ N ₆	71.72	5.47	22.81	369.3(80),	327 nm	4.41
	88.66	368.44	71.80	5.49	22.71	391.3(40).	459 nm	4.32
						759.1(100)		
7c	221-222	$C_{20}H_{14}N_6F_2$	63.83	3.75	22.33	377 (100),	325 nm	4.40
	87.03	376.37	63.80	3.60	22.35	399.5(70),	435 nm	4.31
						775.3(85)		
7d	223-225	C ₂₀ H ₁₄ N ₆ Cl ₂	58.68	3.45	20.53	409(100)	324 nm	4.42
	90.8	409.37	58.45	3.43	20.50		441 nm	4.36
7e	243-244	$C_{20}H_{14}N_6Br_2$	48.22	2.83	16.87	497.3(100)	330 nm	4.11
	86.06	498.17	48.35	2.75	16.95		450 nm	4.24
7f	218-219	$C_{22}H_{20}N_6O_7$	65.99	5.03	20.99	401.5(55),	335 nm	4.43
	88.04	400.44	65.80	4.99	20.79	423.5(70),	465 nm	4.23
						823.3(100)		
8a	245-255	C ₂₀ H ₁₅ N ₆ Cl.2,5H ₂ O	57.20	4.80	20.01	339.2(100),	306 nm	4.64
	65.1	428.94	57.30	4.64	20.14	677.1 (40)		
8b	210-212	C22H19N6CI.2,5H2O	58.98	5.40	18.76	367.2(100).	305 nm	4.54
	53.9	456.99	58.88	5.49	18.33	733.1 (50)		
8d	230-235	C ₂₀ H ₁₃ N ₆ Cl ₃ .2,5H ₂ O	49.13	3.71	17.19	407.1(100)	308 nm	4.52
	66.9	497.92	49.29	3.79	17.38			
9a	127-128	C ₂₆ H ₁₇ N ₉ O ₇ .H ₂ O	53.34	3.27	21.53	339.2(100)	307 nm	4.62
	93.4	585.50	53.68	3.01	21.02			
9b	129-131	C ₂₈ H ₂₁ N ₉ O ₇	56.47	3.55	21.17	367.2 (100)	313 nm	4.70
	88.9	595.53	56.69	3.47	21.11			
9c	119-121	C ₂₆ H ₁₅ N ₉ O ₇ F ₂	51.75	2.51	20.89	375.1 (100)	309 nm	4.70
	91.7	603.46	51.65	2.42	20.82			
9d	134-135	C ₂₆ H ₁₅ N ₉ O ₇ Cl ₂	49.07	2.38	19.81	407.1 (100)	311 nm	4.64
	86.5	636.46	49.29	2.27	19.51			
9e	136-138	C26H15N9O7Br2	43.05	2.08	17.38	495.3(100)	309 nm	4.65
	92.4	725.26	41.00	2.00	16.66			
9f	139-140	C ₂₈ H ₂₁ N ₉ O ₉	53.59	3.37	20.09	399.2(100)	307 nm	4.49
	93.8	627.53	53.69	3.21	19.53			
10a	203-205	C ₁₄ H ₁₃ N ₅	66.92	5.21	27.87	252.2(100)	216 nm	3.34
	84.7	251.29	66.85	5.50	27.65		280 nm	3.02
							348 nm	3.36
10b	200-201	C ₁₅ H ₁₅ N ₅	67.91	5.70	26.40	266.3(100)	208 nm	3.47
	82.6	265.32	67.80	5.75	26.45		296 nm	3.17
							352 nm	3.21
10c	205-207	$C_{14}H_{12}N_5F$	62.45	4.49	26.01	270.2(100)	208 nm	3.31
	87.9	269.28	62.40	4.45	26.15		280 nm	2.96
							348 nm	3.24
10d	202-204	C ₁₄ H ₁₂ N ₅ Cl	58.84	4.23	24.51	286.1(100)	204 nm	3.39
	85.0	285.78	58.50	4.25	24.40		276 nm	3.05
							352 nm	3.32
10e	220-222	$C_{14}H_{12}N_5Br$	50.92	3.66	21.21	330.2(100)	210 nm	3.33
	79.9	330.18	50.90	3.60	21.45		282 nm	3.00
							346 nm	3.20
10f	199-201	C ₁₅ H ₁₅ N ₅ O	64.04	5.37	24.89	282.3(100)	207 nm	3.50
	89.9	281.32	63.95	5.20	25.00		300 nm	3.15
							366 nm	3.20

• •	a of compounds 7 and 10
Compound	'H-NMR spectrum
7a	7.40(t, 4H, J=7.3, ArH); 7.61(t, 4H, J=7.3, ArH); 7.92(d, 6H, J=6.7, ArH), 13.97(s, 2H, NH)
7b	2:43(s, 6H, CH ₃); 7.40(m, 6H, ArH); 7.87(m, 6H, ArH); 13.92(br.s, 2H, NH)
7c	7.43(m, 6H, ArH); 7.96(m, 6H, ArH); 13.96(br.s, 2H, NH)
7d	7.60(m, 6H, ArH); 7.88(m, 6H, ArH); 14.06(br.s, 2H, NH)
7e	7.65(m, 6H, ArH); 7.993(m, 6H, ArH); 13.94(s, 2H, NH)
7f	3.93(s, 6H, CH ₃); 7.41(m, 6H, ArH); 7.90(m, 6H, ArH); 13.87(br.s, 2H, NH)
8a	$7.48(m, 2H, H_4)$; 7.78(t, 4H, J=7.7, H ₃); 7.86(m, 4H, H ₅₋₈), 8.05(d, 4H, J=7.7, H ₂)
10a	6.21 (b, 2H, NH ₂), 6.75 (m, 1H, H ₄), 7.27 (m, 6H, H _{2', 3, 5, 8}), 7.64 (m, 2H, H _{6, 7}), 8.77 (b, 1H, N ₈ H), 12.50 (b, 1H, N ₉ H)
10b	2.45(s, 3H, CH ₃); 6.15(s, 2H, NH ₂); 7.10(m, 4H, ArH); 7.57(m, 4H, ArH): 8.62(s, 1H, NH); 12.87(s, 1H, NH)
10c	6.15(s, 2H, NH ₂); 7.09(m, 2H, ArH); 7.23(m, 4H, ArH); 7.56(d, 1H, J=5.61, ArH); 7.67(d, 1H, J=5.69, ArH), 8.72(s, 1H, NH); 12.50(s, 1H, NH)
10d	6.22(s, 2H, NH ₂); 7.26(m, 5H, ArH); 7.48(m, 3H, ArH); 8.91(s, 1H, NH); 12.53(s, 1H, NH)
10e	6.27(s, 2H, NH ₂); 7.30(m, 5H, ArH); 7.55(m, 3H, ArH); 8.80(s, 1H, NH); 12.43(s, 1H, NH)
10f	3.90(s, 3H, CH ₃); 6.25(s, 2H, NH ₂); 7.50(m, 4H, ArH); 7.85(m, 4H, ArH); 9.22(s, 1H, NH); 12.67(s, 1H, NH)

Tab	1e 2	
1		

- 02.

Table 3¹³C-NMR spectra of compounds 7

Compound	¹³ C-NMR spectrum
7a	147.39, 142.92, 138.58, 136.16, 129.49, 127.15, 123.52, 118.88, 115.91
7b	145.411, 143.186, 138.141, 136.891, 136.224, 130.05, 123.621, 118.953, 116.047, 20.86
7c	162.554, 159.852, 144.184, 142.961, 138.519, 136.252, 123.754, 121.002, 120.909, 116.571, 116.316, 116.096
7d	146.216, 142.744, 138.959, 136.229, 131.515, 129.573, 123.813, 120.730, 116.122
7e	146.585, 142.795, 139.54, 136.244, 132.503, 123.847, 121.071, 119.991, 116.139
7f	158.707, 141.512, 136.226, 123.545, 120.452, 116.006, 114.841, 55.605

 Table 4

 ¹³C-NMR and ¹⁵N-NMR spectra of compound 10a

Compound	¹³ C-NMR spectrum and ¹² N-NMR spectrum
10a	111.57 (C-11), 112.29 (C-2), 117.95 (C-4), 118.77
Н	(C-8), 121.48 (C-9), 122.91 (C-10), 128.90 (C-3),
8 7 N_{8} $N_{r}H_{2}$	134.69 (C-6), 134.98 (C-7), 143.04 (C-12), 146.53
9 1 1 6 / 1 1 II	(C-1), 147.81 (C-5).
10 5 1	
$10 \sim 12 N_{\varepsilon} N_{\beta} - N_{\alpha}$	$^{-253.64}$ (N _{δ}), $^{-136.50}$ (N _{ϵ}), $^{-317.12}$ (N _{γ}). $^{\prime}J(^{15}N_{\gamma},$ $^{1}H) = 86.6$ Hz, $^{\prime}J(^{15}N_{\delta}, ^{1}H) = 91.2$ Hz.
11 11 11 12 11 12	1 H) = 86.6 Hz, $^{I}J(^{15}N_{\delta}, ^{1}$ H) = 91.2 Hz.
ê	

Figure 1 ¹H-¹⁵N HMBC spectrum of compound 10a

Table 5

IR spectra of compounds 7 and 10

IR spectrum
3289, 1600, 1553, 1486, 1414, 1284, 1224, 748, 689, 548
3355, 1615, 1581, 1581, 1458, 1342, 1215, 1163, 1100, 1079, 920, 832, 724, 515, 423
3332, 1631, 1560, 1496, 1434, 1359, 1286, 1286, 1222, 1172, 1143, 1095, 923, 833, 753, 516, 430
3339, 3063, 1593, 1553, 1481, 1428, 1288, 1226, 1090, 826, 723, 506
3330, 1621, 1584, 1491, 1422, 1350, 1235, 1202, 1172, 1105, 1096, 986, 838, 739, 552, 434
3339, 1618, 1532, 1495, 1343,1230, 1170, 1148, 1025, 906, 853, 428
3278, 1626, 1599, 1509, 1496, 1429, 1394, 1335, 1308, 1253, 1143, 1067, 884, 747, 695
3154, 3037, 1638, 1612, 1512, 1437, 1333, 1249, 1172, 812, 715, 631
3432, 1651, 1610, 1503, 1439, 1337, 1252, 1204, 1156, 822, 748, 583
3258, 1658, 1597, 1526, 1493, 1485, 1450, 1392, 1305, 1251, 1157, 1087, 822, 749, 588
3279, 1600, 1590, 1546, 1485, 1432, 1387, 1300, 1157, 1028, 890, 799, 478
3434, 3069, 3000, 1629, 1607, 1579, 1430, 1349, 1272, 1100, 715, 599

Acknowledgment

This research was supported by grant No. CEZ: J 14/98: N7 000 000 8 of Grant agency of the Czech Republic and by grant No. MSM 15 31 000 13 of MSMT CR.

References:

- (1) I. Wiedermannová, J. Slouka: Heterocyclic Commun. 7, 55 (2001)
- (2) O. Hinsberg: Liebigs Ann. Chem. 292, 245 (1896)
- (3) J. C. E. Simpson: "Condensed pyridazine and pyrazine rings", A. E. Weissberger, ed. Interscience New York (1953)
- (4) Y. T. Pratt: The Quinoxaline In Heterocyclic Compounds, Vol. 6, Chapter 10, (R.C. Elderfield, ed), Wiley New York (1956)
- (5) D. C. Morrison: J. Am. Chem. Soc. 76, 4483 (1954)
- (6) G. Zemplen, L. Mester, A. A. Messmer: Chem. Ber. 86, 697 (1953)
- (7) E. C. Taylor, M. J. Thompson: J. Org. Chem. 26, 3511 (1961)
- (8) R. A. B. Copeland, A. R. Day: J. Am. Chem. Soc. 65, 1072 (1943)

Received on February 8, 2002