

Carbohydrate Research 272 (1995) 9-16

CARBOHYDRATE RESEARCH

Synthesis of the saccharide moiety of galactosylgloboside (SSEA-3) and its conjugation to bovine serum albumin and Sepharose

Ulf Nilsson, Göran Magnusson *

Organic Chemistry 2, Chemical Center, The Lund Institute of Technology, University of Lund, P. O. Box 124, S-221 00 Lund, Sweden

Received 20 September 1994; accepted 2 December 1994

Abstract

The pentasaccharide glycoside corresponding to galactosylgloboside (SSEA-3), β -D-Gal p-(1 \rightarrow 3)- β -D-Gal pNAc-(1 \rightarrow 3)- α -D-Gal p-(1 \rightarrow 4)- β -D-Gal p-D-Glc p-1-OCH₂CH₂Si-(CH₃)₃ (4), was synthesized via glycosylation (87%) of 2-(trimethylsilyl)ethyl 2,3,6-tri-O-benzyl-4-O-(2,3,6-tri-O-benzyl- α -D-galactopyranosyl)- β -D-galactopyranosyl]- β -D-galactopyranosyl (2) with the glycosyl donor methyl 4,6-di-O-acetyl-2-deoxy-2-phthalimido-3-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)-1-thio- β -D-galactopyranoside (1), followed by removal of protecting groups. Compound 4 was transformed into the spacer glycoside β -D-Gal p-(1 \rightarrow 3)- β -D-Gal pNAc-(1 \rightarrow 3)- α -D-Gal p-(1 \rightarrow 4)- β -D-Gal p-(1 \rightarrow 4)- β -D-Glc p-1-SCH₂CH₂COOH (10), which was coupled to bovine serum albumin (BSA), and Sepharose beads, to give the corresponding neoglycoprotein (11, 6 mol of saccharide/mol of BSA) and glycosylated Sepharose (12, 2.7 μ mol of saccharide/mL of sedimented beads), respectively. An improved synthesis of a protected globotetraoside β -D-Gal pNAc-(1 \rightarrow 3)- α -D-Gal p-(1 \rightarrow 4)- β -D-Gal p-

Keywords: Galactosylgloboside; Thioglycoside donor; 2-(Trimethylsilyl)ethyl glycoside; BSA-conjugate; Sepharose-conjugate

1. Introduction

Galactosylgloboside [also called stage-specific embryonic antigen-3 (SSEA-3), globopentaosyl ceramide, and IV^3GalGb_4Cer] is present in human [1] and green monkey [2] kidney tissue as well as in human teratocarcinoma cells [3]. The amount of

^{*} Corresponding author.

galactosylgloboside on cell surfaces varies during embryogenesis [4], hence the acronym SSEA-3. Monoclonal antibodies raised against murine morula stage embryos [3] or an octasaccharidic glycosyl ceramide containing the galactosylgloboside structure [5] recognized galactosylgloboside. The heavy- and light-chain sequences of the latter antibodies have been determined [6].

A synthesis of galactosylgloboside has been reported [7], as well as the corresponding sialylated and sulfated galactosylglobosides [8]. We now report an improved synthetic route to the galactosylglobotetraose saccharide (GalGb₄), as well as the preparation of the corresponding neoglycoprotein (GalGb₄–BSA) and Sepharose conjugate (GalGb₄–Sepharose).

The glycosyl donor 1 (obtained in > 60% yield from the monosaccharide building blocks [9]) was used in the glycosylation of the known [10] acceptor 2. Thus, a mixture of 1 and 2 was treated in acetonitrile with N-iodosuccinimide and trifluoromethanesulfonic acid (NIS/TfOH) [11], which gave the desired pentasaccharide 3 in 87% yield after chromatographic purification. When triethylsilyl trifluoromethanesulfonate (TESOTf) was used instead of TfOH, the reaction was rather unpredictable and the yield varied. Thus, in a typical experiment, compound 3 was obtained in 49% yield together with 50% of silvlated 2. Similar problems were encountered by Ogawa et al. [7], who used the trichloroacetimidate corresponding to 1 and obtained the desired pentasaccharide in only 22% yield, together with 44% of a trichloroacetamide (rearranged trichloroacetimidate). Another example of a less satisfactory glycosylation of 2 is found in our preparation [10] of the globotetraoside 14, using the β -glycosyl chloride corresponding to 13 in dichloromethane, which gave only a 35% yield (α/β 15:85) and a substantial amount of the phthalimidogalactal. In contrast, treatment of 2 and 13 [12] with NIS/TfOH in acetonitrile, as above, gave 14 in 90% yield as described in the Experimental section. The improved yield of the glycosylation may be due to the use of acetonitrile as solvent (nitrile effect) [13] (Scheme 1).

The pentasaccharide 3 was transformed into the glycoside 4 in one pot by sequential treatment with hydrogen/Pd-on-carbon, hydrazine hydrate, acetic anhydride/pyridine, and O-deacetylation in methanolic sodium methoxide. Compound 4 was obtained in 71% overall yield after chromatography. Treatment of 4 with trifluoroacetic acid/dichloromethane [14] gave the reducing pentasaccharide 5 in 97% yield after purification by gel filtration. Acetylation of 4 with acetic anhydride/pyridine gave the fully acetylated glycoside 6 in 92% yield after chromatography. Treatment of 6 with boron trifluoride etherate/acetic anhydride [14] gave a quantitative yield of the anomeric acetate 7 (β/α 96:4), which was used without further purification in the following reactions.

The choice of mercaptopropionic acid as spacer aglycon deserves some comment. A chemically pure oligosaccharide obtained by organic synthesis represents a substantial investment. Therefore, it is important that ensuing chemical reactions, leading to functional derivatives (such as various neoglycoconjugates [15]), proceed in high yield and stereoselectivity. Glycosides carrying a mercaptopropionic acid aglycon [16] (or other mercaptoalkanoic acids) are easily prepared and thioglycosides are normally more stable in the aqueous environment employed with most applications of glycoconjugates.

The crude acetate 7 (containing 4% of the corresponding α -acetate) was treated with

Scheme 1. (a) NIS, TfOH, MeCN, CH_2Cl_2 , $-50^{\circ}C$. (b) H_2 , Pd/C, AcOH, then $H_2NNH_2 \cdot H_2O$, EtOH, then Ac_2O , pyridine, then MeONa, MeOH. (c) CF₃COOH, CH_2Cl_2 . (d) Ac_2O , pyridine. (e) $BF_3 \cdot Et_2O$, Ac_2O , CH_2Cl_2 . (f) $HSCH_2CH_2COOMe$, $BF_3 \cdot Et_2O$, CH_2Cl_2 . (g) MeONa, MeOH. (h) NaOH, H_2O . (i) BSA, TSTU, Et_3N . (j) EAH-Sepharose, *N*-hydroxysuccinimide, $EtN=C=N(CH_2)_3NMe_2$.

methyl mercaptopropionate and boron trifluoride etherate to give 8 (88%, contaminated by 3% of the unreactive 7α). Compound 8 was deacetylated to give 9 (73% overall yield from 6) after removal of 5 by chromatography on silica gel. Hydrolysis of the methyl ester group in 9 gave the spacer glycoside 10 in quantitative yield. Attempted glycosylation of mercaptopropionic acid itself gave the acetylated derivative of 10 in only ~ 15% yield, in contrast to successful glycosylations with lower saccharides [16,17].

Coupling of compound 10 to bovine serum albumin (BSA) was performed using N, N, N', N'-tetramethyl(succinimido)uronium tetrafluoroborate [18] as the promoter, to give the corresponding conjugate 11. Gel electrophoresis of 11 showed a major band corresponding to a molecular mass of 73–75 kDa, as compared to the band for unconjugated BSA (67 kDa). In a similar coupling reaction, aminohexyl-Sepharose was conjugated with 10, using N-hydroxysuccinimide/1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide as promoter, to give the Sepharose conjugate 12. Sulfur combustion analysis of 11 and 12 showed the saccharide contents to be 6 mol/mol of BSA and 2.7 μ mol/mL of sedimented Sepharose beads, respectively. The calculated molecular mass of a BSA conjugate carrying six saccharide residues is ~ 73 kDa, which is in good agreement with the gel electrophoresis data.

2. Experimental

General methods.—Melting points are uncorrected. Optical rotations were measured with a Perkin–Elmer 141 polarimeter. The ¹H- and ¹³C-NMR spectra were recorded with a Varian XL-300 or a Bruker ARX 500 spectrometer. 1,4-Dioxane was used as internal reference (67.4 ppm) in ¹³C-NMR experiments in D₂O. Concentrations were made using rotary evaporation with bath temperature at or below 40°C. Anhydrous Na₂SO₄ was used as drying agent for the organic extracts in the work-up procedures. TLC was performed on Kieselgel 60 F₂₅₄ plates (Merck). Column chromatography was performed using SiO₂ (Matrex LC-gel; 60 A, 35-70 MY, Grace). BSA and EAH-Sepharose were obtained from Sigma and Pharmacia, respectively.

2-(Trimethylsilyl)ethyl 2,3,6-tri-O-benzyl-4-O-(2,3,6-tri-O-benzyl-4-O-{2,4,6-tri-Obenzyl-3-O-[4,6-di-O-acetyl-2-deoxy-2-phthalimido-3-O-(2,3,4,6-tetra-O-acetyl-B-D-galactopyranosyl)- β -D-galactopyranosyl]- α -D-galactopyranosyl}- β -D-galactopyranosyl)- β -D-glucopyranoside (3).—Methyl 4,6-di-O-acetyl-2-deoxy-2-phthalimido-3-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-1-thio-β-D-galactopyranoside [9] (1; 210.3 mg, 0.28 mmol), 2-(trimethylsilyl)ethyl 2,3,6-tri-O-benzyl-4-O-[2,3,6-tri-O-benzyl-4-O-(2,4,6-tri-*O*-benzyl- α -D-galactopyranosyl)- β -D-galactopyranosyl]- β -D-glucopyranoside [10] (2; 282.1 mg, 0.20 mmol), and acid-washed molecular sieves AW-300 (0.2 g) were stirred in dry CH₂Cl₂ (1.4 mL) and dry MeCN (4.1 mL) under Ar for 75 min. The solution was cooled to -50° C and a solution of N-iodosuccinimide (90 mg, 0.40 mmol) and trifluoromethanesulfonic acid (13.6 µL, 0.06 mmol) in dry MeCN (0.6 mL) was added. After 1 h, N,N-diisopropylethylamine (1 mL) was added and the mixture was filtered and concentrated. Flash chromatography of the residue (2:1 heptane-EtOAc) gave 3 (367.7 mg, 87%); $[\alpha]_{D}^{25}$ +10.3° (c 1, CHCl₃). ¹H-NMR data (500 MHz, CDCl₃): δ 5.31 (br d, 1 H, J 2.9 Hz, H-4""), 5.27 (dd, 1 H, J 1.1, 3.4 Hz, H-4""), 5.23 (d, 1 H, J 8.2 Hz, H-1"'), 5.03 (d, 1 H, J 10.9 Hz, PhC H_2), 4.98 (d, 1 H, J 11.4 Hz, PhC H_2),

4.98 (dd, 1 H, J 7.8, 10.3 Hz, H-2""), 4.91 (d, 1 H, J 11.1 Hz, PhC H_2), 4.80 (d, 1 H, J 3.6 Hz, H-1"), 4.79 (dd, 1 H, J 3.5, 10.3 Hz, H-3""), 4.69 (d, 1 H, J 11.1 Hz, PhC H_2), 4.67 (dd, 1 H, J 3.2, 11.2 Hz, H-3""), 4.59 (dd, 1 H, J 8.2, 11.2 Hz, H-2""), 4.46 (d, 1 H, J 7.6 Hz, H-1'), 4.42 (d, 1 H, J 7.8 Hz, H-1""), 4.37 (d, 1 H, J 7.7 Hz, H-1), 4.16 (dd, 1 H, J 2.9, 10.3 Hz, H-3"), 3.88 (t, 1 H, J 9.2 Hz, H-3), 3.78 (dd, 1 H, J 3.6, 10.3 Hz, H-2"), 2.12, 2.08, 2.06, 1.93, 1.88, 1.47 (6 s, 3 H each, Ac), 1.03 (m, 2 H, CH₂Si), 0.03 (s, 9 H, SiMe₃). Anal. Calcd for C₁₁₈H₁₃₃NO₃₃Si: C, 66.8; H, 6.3; N, 0.7. Found: C, 66.6; H, 6.5; N, 0.6.

2-(Trimethylsilyl)ethyl 4-O-{4-O-{3-O-(2-acetamido-2-deoxy-3-O-B-D-galactopyranosyl- β -D-galactopyranosyl)- α -D-galactopyranosyl]- β -D-galactopyranosyl}- β -Dglucopyranoside (4).—Compound 3 (500.4 mg, 0.235 mmol) was hydrogenated over Pd/C (10%, 375 mg) in AcOH (25 mL) for 7 h, then filtered through Celite and concentrated. The residue was treated with $H_2NNH_2 \cdot H_2O$ (150 µL) in EtOH (11 mL) at 80°C for 2.5 h, concentrated and co-concentrated with three portions of EtOH and one portion of toluene to remove excess of $H_2NNH_2 \cdot H_2O$. Acetylation with Ac₂O (7.5 mL) and pyridine (7.5 mL) overnight followed by O-deacetylation (0.08 M MeONa in MeOH, 20 mL) for 2 h gave crude 4. Flash chromatography (65:35:5 CH₂Cl₂-MeOH-H₂O) furnished pure **4** (162.2 mg, 71%), according to TLC analysis and ¹H- and ¹³C-NMR; $[\alpha]_D^{25}$ + 52° (c 1, H₂O). ¹H-NMR data (500 MHz, D₂O): δ 4.85 (d, 1 H, J 3.9 Hz, H-1"), 4.62 (d, 1 H, J 8.5 Hz, H-1"), 4.45 (d, 1 H, J 7.8 Hz, H-1'), 4.43 (d, 1 H, J 8.1 Hz, H-1), 4.38 (d, 1 H, J 7.7 Hz, H-1""), 4.31 (br t, 1 H, J 6.5 Hz, H-5"), 4.19 (br d, 1 H, J 2.9 Hz, H-4"), 4.11 (d, 1 H, J 3.1 Hz, H-4"), 3.51 (dd, 1 H, J 7.8, 10.2 Hz, H-2'), 3.46 (dd, 1 H, J 7.7, 9.9 Hz, H-2""), 3.22 (br t, 1 H, J 8.4 Hz, H-2), 1.96 (s, 3 H, Ac), 1.01 (dt, 1 H, J 5.5, 12.9 Hz, CH₂Si), 0.91 (dt, 1 H, J 5.3, 12.9 Hz, CH₂Si), -0.04 (s, 9 H, SiMe₃). ¹³C-NMR data (500 MHz, D₂O): δ 176.2, 105.9, 104.4, 104.1, 102.5, 101.6, 80.7, 79.9, 79.8, 78.4, 76.6, 76.1, 75.9, 75.8, 75.7, 74.1, 73.6, 73.3, 72.1, 71.8, 71.4, 70.1, 69.7, 69.5, 69.1, 68.8, 62.14, 62.09, 61.5, 61.4, 61.2, 52.6, 23.4, 18.7, -1.4. Mass spectrum: Calcd for $C_{37}H_{68}NO_{26}Si (M + 1)$: m/z 970.3799. Found: m/z970.3785.

4-O-{4-O-[3-O-(2-acetamido-2-deoxy-3-O-β-D-galactopyranosyl-β-D-galactopyranosyl)-α-D-galactopyranosyl]-β-D-galactopyranosyl]-β-D-galactopyranose (5). Compound 4 (10.2 mg, 10.5 mmol) was dissolved in CH₂Cl₂ (70 µL) and CF₃COOH (70 µL) under N₂. After 22 min, *n*-propyl acetate (0.95 mL) and toluene (2 mL) were added and the mixture was concentrated. Gel filtration (Sephadex G25) gave pure 5 (8.9 mg, 97%), according to TLC analysis and ¹H- and ¹³C-NMR; $[\alpha]_D^{25} + 67^\circ$ (*c* 0.3, H₂O). ¹H-NMR data (300 MHz, D₂O): δ 5.20 (d, 1 H, J 3.7 Hz, H-1α), 4.89 (d, 1 H, J 3.9 Hz, H-1″), 4.66 (d, 1 H, J 8.1 Hz, H-1‴), 4.63 (d, 1 H, J 7.8 Hz, H-1β), 4.49 (d, 1 H, J 7.7 Hz, H-1′), 4.42 (d, 1 H, J 7.6 Hz, H-1″″), 4.36 (br t, 1 H, J 6.4 Hz, H-5″), 2.00 (s, 3 H, Ac). ¹³C-NMR data (300 MHz, D₂O): δ 177.9, 107.5, 106.0, 105.7, 103.1, 98.5, 94.6, 82.3, 81.6, 81.5, 79.99, 79.95, 78.2, 77.7, 77.6, 77.4, 77.3, 77.2, 76.7, 75.3, 75.2, 7.9, 74.2, 74.0, 73.6, 73.3, 73.0, 72.9, 71.7, 71.3, 70.7, 70.4, 68.8, 68.3, 65.2, 63.7, 63.3, 63.13, 63.05, 62.8, 62.7, 54.2, 25.0. Mass spectrum: Calcd for C₃₂H₅₅NNaO₂₆Si (M + Na): *m/z* 892.2910. Found: *m/z* 892.2885.

2-(Trimethylsilyl)ethyl 4-O-(4-O-{3-O-[2-acetamido-4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)- β -D-galactopyranosyl]-2,4,6-tri-O-acetyl-

α-D-galactopyranosyl³-2,3,6-tri-O-acetyl-β-D-galactopyranosyl)-2,3,6-tri-O-acetyl-β-D-glucopyranoside (**6**).—Compound **4** (40.8 mg, 0.0434 mmol) was stirred in Ac₂O (1.5 mL) and pyridine (1.5 mL) for 23 h, then concentrated. Flash chromatography (10:1 toluene–EtOH) of the residue gave **6** (61.5 mg, 92%), $[\alpha]_D^{25}$ +48° (*c* 1, CHCl₃). ¹H-NMR data (500 MHz, CDCl₃): δ 5.65 (d, 1 H, J 7.1 Hz, NH), 5.59 (dd, 1 H, J 0.8, 3.3 Hz, H-4″), 5.42 (br d, 1 H, J 3.3 Hz, H-4″'), 5.34 (dd, 1 H, J 0.9, 3.4 Hz, H-4″''), 5.19 (dd, 1 H, J 3.6, 10.5 Hz, H-2″), 5.18 (d, 1 H, J 8.0 Hz, H-1″'), 5.18 (t, 1 H, J 9.4 Hz, H-3), 5.13 (dd, 1 H, J 7.8, 10.4 Hz, H-2″″), 5.10 (dd, 1 H, J 7.7, 10.9 Hz, H-2′), 4.96 (dd, 1 H, J 3.4, 10.4 Hz, H-3″''), 4.92 (d, 1 H, J 3.6 Hz, H-1″), 4.87 (dd, 1 H, J 8.0, 9.4 Hz, H-2), 4.75 (dd, 1 H, J 2.6, 10.9 Hz, H-3′), 4.68 (dd, 1 H, J 3.3, 10.8 Hz, H-3″''), 4.61 (d, 1 H, J 7.8 Hz, H-1″''), 3.78 (t, 1 H, J 9.3 Hz, H-4), 3.22 (dt, 1 H, J 7.9 Hz, H-1), 4.00 (br d, 1 H, J 2.6 Hz, H-4′), 3.78 (t, 1 H, J 9.3 Hz, H-4), 3.22 (dt, 1 H, J 8.0, 10.8 Hz, H-2″''), 2.13, 2.11, 2.10, 2.09, 2.08, 2.07, 2.062, 2.056, 2.05, 2.04, 2.03, 1.96, 1.93 (13 s, 48 H, Ac), 0.89 (m, 2 H, CH₂Si), 0.00 (s, 9 H, SiMe₃). Anal. Calcd for C₆₇H₉₇NO₄₁Si: C, 50.3; H, 6.1; N, 0.9. Found: C, 50.6; H, 6.1; N, 0.7.

2-(Methoxycarbonyl)ethyl 4-O-(4-O-{3-O-[2-acetamido-4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-B-D-galactopyranosyl)-B-D-galactopyranosyl]-2,4,6-tri-O-acetyl- α -D-galactopyranosyl 1 -2,3,6-tri-O-acetyl- β -D-galactopyranosyl 1 -2,3,6-tri-O-acetyl-1thio- β -D-glucopyranoside (8).—Compound 6 (58.4 mg, 0.0365 mmol) was treated with $BF_3 \cdot Et_2O$ (47 µL, 0.37 mmol) and Ac₂O (152 µL, 1.66 mmol) in dry CH₂Cl₂ (1.9 mL) for 45 min under Ar, then diluted with CH₂Cl₂, washed with saturated aqueous NaHCO₃, dried (Na_2SO_4) , and concentrated to give a quantitative yield of crude 7 $(\alpha/\beta$ 4:96), which was used without further purification in the synthesis of 8. ¹H-NMR data (300 MHz, CDCl₃): δ 6.22 (d, 1 H, J 3.6 Hz, H-1 α), 5.67 (d, 1 H, J 7.8 Hz, H-1 β). Crude 7 was treated with methyl 3-mercaptopropionate (15.8 μ L, 0.0146 mmol) and BF₃ · Et₂O [19] (17.5 µL, 0.22 mmol) in dry CH₂Cl₂ (0.3 mL) for 90 min, diluted with CH₂Cl₂, washed with saturated aqueous NaHCO₃, dried (Na₂SO₄), and concentrated. Flash chromatography (9:1 toluene–EtOH) gave a mixture of 8 and unreacted α anomer of the acetate 7 (52.3 mg; 8/7 97:3). ¹H-NMR data (300 MHz, CDCl₃): δ 5.64 (d, 1 H, J 7.1 Hz, NH), 5.59 (dd, 1 H, J 0.6, 3.4 Hz, H-4"), 5.42 (d, 1 H, J 3.4 Hz, H-4""), 5.34 (dd, 1 H, J 3.4 Hz, H-4""), 4.75 (dd, 1 H, J 2.4, 10.9 Hz, H-3'), 4.67 (dd, 1 H, J 3.4, 11.1 Hz, H-3"), 4.61 (d, 1 H, J 7.8 Hz, H-1""), 4.52 (d, 1 H, J 10.3 Hz, H-1), 4.51 (d, 1 H, J 7.4 Hz, H-1'), 3.69 (s, 3 H, OMe), 3.22 (dt, 1 H, J 7.6, 10.9 Hz, H-2"), 2.89 (m, 2 H, SCH₂), 2.67 (br t, 2 H, J 7.9 Hz, CH₂CO), 2.14 2.11, 2.10, 2.08, 2.07, 2.063, 2.056, 2.05, 2.04, 1.96, 1.93 (11 s, 48 H, Ac).

2-(Methoxycarbonyl)ethyl 4-O-{4-O-[3-O-(2-acetamido-2-deoxy-3-O- β -D-galactopyranosyl- β -D-galactopyranosyl)- α -D-galactopyranosyl]- β -D-galactopyranosyl]-1-thio- β -D-glucopyranoside (9).—Compound 8, containing ca. 3% of 7 α (52.3 mg) was treated with methanolic NaOMe (1.2 mL, 13 mM) for 85 min, and the mixture was neutralized with Duolite C26 (H⁺) resin, filtered, and concentrated. Flash chromatography (5:5:1 CH₂Cl₂-MeOH-H₂O) of the residue gave 9 (25.9 mg, 73% overall yield from 6), $[\alpha]_D^{25}$ +72° (c 1.1, H₂O). ¹H-NMR data (300 MHz, D₂O): δ 4.88 (d, 1 H, J 3.7 Hz, H-1"), 4.66 (d, 1 H, J 8.3 Hz, H-1""), 4.55 (d, 1 H, J 10.0 Hz, H-1), 4.48 (d, 1 H, J 7.6 Hz, H-1'), 4.42 (d, 1 H, J 7.6 Hz, H-1""), 3.69 (s, 3 H, OMe), 3.32 (br t, 1 H, J 9.0 Hz, H-2), 2.96 (m, 2 H, SCH₂), 2.76 (t, 2 H, J 6.9 Hz, CH₂CO), 2.00 (s, 3 H, Ac).

2-Carboxyethyl 4-O-{4-O-[3-O-(2-acetamido-2-deoxy-3-O- β -D-galactopyranosyl- β -D-galactopyranosyl)- α -D-galactopyranosyl]- β -D-galactopyranosyl]-1-thio- β -D-glucopyranoside (10).—Compound 9 (16.7 mg, 0.0172 mmol) was treated with aqueous NaOH (1 mL, 20 mM) for 5 h 40 min and the mixture was neutralized with Duolite C26 (H⁺) resin, filtered, and concentrated to give 10 (13.9 mg, 84%), [α]_D²⁵ + 50° (c 0.7, H₂O). ¹H-NMR data (300 MHz, D₂O): δ 4.89 (d, 1 H, J 3.6 Hz, H-1"), 4.66 (d, 1 H, J 8.1 Hz, H-1"), 4.56 (d, 1 H, J 9.9 Hz, H-1), 4.49 (d, 1 H, J 7.7 Hz, H-1'), 4.44 (d, 1 H, J 7.5 Hz, H-1"), 4.37 (br t, 1 H, J 6.4 Hz, H-5"), 4.23 (br d, 1 H, J 2.2 Hz, H-4"), 4.16 (br d, 1 H, J 2.5 Hz, H-4""), 2.93 (m, 2 H, SCH₂), 2.58 (t, 2 H, J 6.9 Hz, CH₂CO), 2.01 (s, 3 H, Ac).

Galactosylgloboside-BSA conjugate (11).—Compound 10 (7.7 mg, 0.008 mmol) and N, N, N', N'-tetramethyl(succinimido)uronium tetrafluoroborate [18] (TSTU; 3.76 mg, 0.0126 mmol) were dissolved in 1,4-dioxane/water (0.22 mL, 4:1) and triethylamine (1.1 μ L, 0.008 mmol) was added. After 1 h the solution was added to BSA (14.9 mg, 0.23 μ mol) in sodium borate buffer (6 mL, 0.1 M, pH 8.5) and the mixture was left for 2.5 h at room temperature and then dialysed for 72 h against distilled water (4 × 1 L). Freeze-drying gave 11 (15.4 mg). Differential combustion analysis of BSA and 11 showed the sulfur content due to the saccharide unit to be 0.1%. This amount corresponds to a degree of binding (number of pentasaccharide molecules per BSA) of 6. SDS-PAGE showed a major band with a molecular mass of 73-75 kDa (BSA showed a different mobility and had a molecular mass of ~ 67 kDa).

Galactosylgloboside–Sepharose affinity beads (12).—To a solution of compound 10 (13.9 mg, 14.4 μ mol), N-hydroxysuccinimide (12 mg, 0.1 mmol), and EAH-Sepharose (15 mL sedimented volume; washed with 0.3 L distilled water on a glass filter funnel) in distilled water (10 mL) was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (20 mg, 0.1 mmol). After 17.5 h the Sepharose beads were washed on a glass filter funnel with distilled water (0.3 L divided in small portions) to give 12. Combustion analysis of EAH-Sepharose and 12 showed the sulfur content to be 0.067 and 0.093%, respectively. The difference corresponds to 2.7 μ mol of pentasaccharide molecules per mL of sedimented beads.

2-(Trimethylsilyl)ethyl 2,3,6-tri-O-benzyl-4-O-{2,3,6-tri-O-benzyl-4-O-{2,4,6-tri-O-benzyl-3-O-(4,6-di-O-acetyl-2-deoxy-2-phthalimido- β -D-galactopyranosyl) α -D-galactopyranosyl]- β -D-galactopyranoside [12] (13; 53.3 mg, 0.11mmol), 2-(trimethylsilyl)ethyl 2,3,6-tri-O-benzyl-4-O-{2,3,6-tri-O-benzyl-4-O-(2,4,6-tri-O-benzyl- α -D-galactopyranosyl]- β -D-galactopy

Acknowledgements

This work was supported by The Swedish Natural Science Research Council. We thank Mrs. Viveka Nilsson for running the SDS-PAGE gels.

References

- M.E. Breimer and K.-A. Karlsson, Biochim. Biophys. Acta, 755 (1983) 170-177; M.E. Breimer and P.-Å. Jovall, FEBS Lett., 179 (1985) 165-172.
- [2] J. Blomberg, M.E. Breimer, and K.-A. Karlsson, Biochim. Biophys. Acta, 711 (1982) 466-477.
- [3] R. Kannagi, S.B. Levery, F. Ishigami, S. Hakomori, L.H. Shevinsky, B.B. Knowles, and D. Solter, J. Biol. Chem., 258 (1983) 8934-8942.
- [4] D. Solter and B.B. Knowles, Proc. Natl. Acad. Sci. U.S.A., 75 (1978) 5565-5569; L.H. Shevinsky, B.B. Knowles, I. Damjanov, and D. Solter, Cell, 30 (1982) 697-705; S. Hakomori, E. Nudelman, S.B. Levery, and R. Kannagi, J. Biol. Chem., 259 (1984) 4681-4685.
- [5] D.M. Marcus, S. Gilbert, M. Sekine, and A. Suzuki, Arch. Biochem. Biophys., 262 (1988) 620-625.
- [6] J.G. Snyder, N. Weng, L. Yu-Lee, and D. M. Marcus, Eur. J. Immunol., 20 (1990) 2673-2677.
- [7] S. Nunomura and T. Ogawa, Tetrahedron Lett., 29 (1988) 5681-5684.
- [8] R. Miyawaki, H. Ishida, M. Kiso, and A. Hasegawa, Abstracts of Papers, XVII Int. Carbohydr. Symp., Ottawa, 1994, Abstract B1.36.
- [9] M. Wilstermann and G. Magnusson, Carbohydr. Res., 272 (1995) 1-7.
- [10] U. Nilsson, A.K. Ray, and G. Magnusson, Carbohydr. Res., 252 (1994) 117-136.
- [11] G.H. Veeneman, S.H. van Leeuwen, and J.H. van Boom, Tetrahedron Lett., 31 (1990) 1331–1334; P. Konradsson, D.R. Mootoo, R.E. McDevitt, and B. Fraser-Reid, J. Chem. Soc., Chem. Commun., (1990) 270–272; P. Konradsson, U.S. Udodong, and B. Fraser-Reid, Tetrahedron Lett., 31 (1990) 4313–4316.
- [12] A. Hasegawa, T. Nagahama, H. Ohki, and M. Kiso, J. Carbohydr. Chem., 11 (1992) 699-714.
- [13] R. R. Schmidt, M. Behrendt, and A. Toepfer, Synlett, (1990) 694-696.
- [14] K. Jansson, S. Ahlfors, T. Frejd, J. Kihlberg, G. Magnusson, J. Dahmén, G. Noori, and K. Stenvall, J. Org. Chem., 53 (1988) 5629-5647.
- [15] G. Magnusson, A.Y. Chernyak, J. Kihlberg, and L.O. Kononov, in Y.C. Lee and R.T. Lee (Eds.), Neoglycoconjugates: Preparation and Applications, Academic Press, San Diego, 1994, pp 53–143.
- [16] M. Elofsson, B. Walse, and J. Kihlberg, Tetrahedron Lett., 32 (1991) 7613-7616.
- [17] U. Nilsson, R.T. Striker, S.J. Hultgren, and G. Magnusson, submitted for publication.
- [18] M. Andersson, S. Oscarsson, and L. Öberg, Glycoconjugate. J., 10 (1993) 197-201.
- [19] J. Dahmén, T. Frejd, G. Magnusson, and G. Noori, Carbohydr. Res., 114 (1983) 328-330.