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In the context of the problem of hydrogen-based
energetics, which is currently gaining in importance,
metal–hydrogen systems, specifically 

 

Fe–ç

 

2

 

 systems,
came to the attention of researchers. It is known [1] that
bulk metallic iron absorbs molecular 

 

ç

 

2

 

 to yield inter-
stitial solid solutions with a hydrogen content no higher
than 0.1 wt %. On the other hand, bulk hydrides 

 

Feç

 

ı

 

(

 

ı

 

 

 

≤

 

 

 

1

 

) arise in iron–hydrogen systems only at suffi-
ciently high pressures [2–4], at which they are thermo-
dynamically instable. Meanwhile, using the molecular
beam technique [5, 6], it was shown that, at 110 K in a
deep vacuum, small clusters of metallic iron (to several
tens of Fe atoms) retain ~2 H atoms per Fe atom in the
cluster. We have found an analogous effect in the reduc-
tion of iron oxide nanostructures: the absorption of
hydrogen in excess of the stoichiometric amount.

Iron oxide nanostructures were obtained by the
method of isolation in a matrix: in-situ thermal oxida-
tive decomposition of a Fe-containing precursor
adsorbed in a porous inorganic matrix. For the precur-
sor, trinuclear iron dodecacarbonyl 

 

Fe

 

3

 

(CO)

 

12

 

 was
used. Porous crystalline materials (molecular sieves
with spatially ordered systems of channels and cavi-
ties)—microporous NaY zeolite (pore size 0.8 nm) and
mesoporous MCM-41 silicate (3.0 nm)—and amor-
phous Silochrom S-120 silica gel (30 nm) were used as
matrices.

Iron carbonyl 

 

Fe

 

3

 

(CO)

 

12

 

 used as the precursor was
dissolved in toluene and introduced into the matrices so
that the total Fe content of samples was no higher than
1 wt %. After the removal of the solvent, the samples
were oxidized at 

 

550°ë

 

 in a flow of air for 6 h. Iron
oxide formed in pores of the support was reduced in a
flow of Ar containing 3.5 vol % 

 

H

 

2

 

. A bulk 

 

Fe

 

2

 

O

 

3

 

 sam-
ple was investigated for reference. The reduction was
carried out in the regime of linear rise of temperature
(8 K/min) to 

 

1000°C

 

 with the measurement of the rate
of absorption of hydrogen. The total absorbed amount
of hydrogen was determined by the area under the
obtained temperature-programmed reduction (TPR)
curve.

TPR curves of the investigated samples have two
temperature regions of reduction of iron oxide with
maximums at 480 and 

 

800°ë

 

. In the bulk sample,

 

Fe

 

2

 

O

 

3

 

 is reduced to 

 

Fe

 

3

 

O

 

4

 

 at 

 

380–397°

 

C, and 

 

Fe

 

3

 

O

 

4

 

, to

metallic Fe at 

 

465–597°ë

 

 [7]. According to the data [8–
10], such a significant temperature shift in the reduction
of iron oxides points to the formation of oxide nano-
structures, which are located in pores of the matrix and
not on its outer surface.

Total absorbed amounts of 

 

ç

 

2

 

 for the reduction of
iron oxide in the investigated samples and bulk 

 

Fe

 

2

 

O

 

3

 

are listed below:

 

 

 

From the data obtained, it follows that the total
absorbed amount of 

 

ç

 

2

 

 in the TPR of bulk 

 

Fe

 

2

 

O

 

3

 

 corre-
sponds to the stoichiometric ratio (1.50) for the com-
plete reduction of the sample to metallic iron. In check
experiments on TPR with initial matrices, 

 

ç

 

2

 

 was not
absorbed over the entire investigated temperature range
(

 

20–1000°ë

 

); therefore, the difference between the
total absorbed amount of 

 

ç

 

2

 

 measured for an Fe-con-
taining sample and the amount required for its complete
reduction corresponds to the amount of hydrogen held
in metallic iron nanoclusters. Quantitative estimates of
this amount are listed above as H/Fe atomic ratios.

For 

 

Fe

 

10

 

 metallic iron clusters in conditions of high
vacuum, H/Fe = 1.8 [6], which is in sufficiently close
agreement with our data obtained in the regime of tem-
perature-programmed reduction of iron oxide at a par-
tial 

 

ç

 

2

 

 pressure of ~3.5 kPa. From the obtained data, it
follows that, at the lowest metallic iron concentration in
the zeolite matrix, the nanophase holds to 6–8 wt % of
hydrogen.

Thus, metallic iron nanoclusters absorb molecular
hydrogen not only in a vacuum but also in ordinary con-
ditions; in this case, hydride-like compounds formed
are significantly enriched in hydrogen as compared to
the bulk phase.

 

Matrix

 

 NaY MCM-41 SiO

 

2

 

 Fe

 

2

 

Fe, 

 

wt 

 

% 0.12 0.41 0.69 0.15 0.13 0.31 70

H

 

2

 

/Fe 3.5 2.5 1.7 4.3 3.6 2.8 1.5

H/Fe** 4 2 0.5 5 4 2  –

 

 

 

*Bulk oxide.
**Less the amount consumed for the reduction.
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