
Bioorganic & Medicinal Chemistry Letters 25 (2015) 1217–1222
Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier .com/ locate/bmcl
Discovery of 7-azaindole derivatives as potent Orai inhibitors
showing efficacy in a preclinical model of asthma
http://dx.doi.org/10.1016/j.bmcl.2015.01.063
0960-894X/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +34 93 291 3996; fax: +34 93 312 8615.
E-mail address: bernat.vidal@almirall.com (B. Vidal).
Cristina Esteve, Jacob González, Sílvia Gual, Laura Vidal, Soledad Alzina, Sonia Sentellas, Irene Jover,
Raquel Horrillo, Jorge De Alba, Montserrat Miralpeix, Gema Tarrasón, Bernat Vidal ⇑
Almirall Research Center, Almirall, Ctra. Laureà Miró 408, E-08980 St. Feliu de Llobregat, Barcelona, Spain

a r t i c l e i n f o
Article history:
Received 10 November 2014
Revised 26 January 2015
Accepted 27 January 2015
Available online 4 February 2015

Keywords:
Orai inhibitors
IL-2 inhibitors
LAD2
CRAC channel
OVA model
a b s t r a c t

Synthesis and SAR of a series of 7-azaindoles as Orai channel inhibitors showing good potency inhibiting
IL-2 production in Jurkat cells is described. Compound 14d displaying best pharmacokinetic properties
was further characterized in a model of allergen induced asthma showing inhibition in the number of
eosinophils in BALF. High lipophilicity remains as one of the main challenges for this class of compounds.
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The regulation of intracellular calcium is a key element in the
transduction of signals into and within cells. Cellular responses
to growth factors, neurotransmitters, hormones and other signal
molecules are initiated through calcium-dependent processes.
Virtually all cell types depend upon the generation of cytoplasmic
calcium signals to regulate cell function or to trigger specific
responses. Cytosolic calcium signals control a wide array of cellular
functions ranging from short-term responses such as contraction
and secretion to longer-term regulation of cell growth and prolifer-
ation. These signals involve combination of calcium release from
intracellular stores such as the endoplasmic reticulum (ER), and
influx of calcium across the plasma membrane.1

In immune cells the molecular mechanisms of calcium signaling
are especially well characterized. Cell activation through immuno-
receptor engagement induces a rise in cytosolic calcium levels
mainly through a selective channel-based process known as
Store-operated calcium entry (SOCE). Calcium release-activated
calcium (CRAC) channels are a type of SOC channels present in B
and T-lymphocytes, NK cells, macrophages, DC and mast cells
among the immune cells. CRAC channels are characterized by an
extremely high ion selectivity for Ca2+ and a low conductance,
and are activated through a Ca2+ sensor protein in the ER called
stromal interaction molecule (STIM) that bind to Orai, the pore
forming unit of the CRAC channel in the plasma membrane. Upon
antigen binding to the T-cell receptor, the activation of phospholi-
pase C (PLCc) generates the lipid metabolite InsP3, which pro-
motes the release of Ca2+ from the ER stores. STIM proteins sense
the calcium depletion in the ER, oligomerize and redistribute into
discrete puncta located in junctional ER sites in close proximity
to the plasma membrane. STIM proteins directly interact with
Orai1 in the plasma membrane opening the CRAC channel and
allowing a sustained calcium entry across the plasma mem-
brane.2–4 Such a prolonged intracellular calcium increase activates
short term processes such as degranulation, and long term pro-
cesses involving gene transcription through NFAT to produce lipid
mediators, several cytokines Th1, Th2, and Th17, matrix metallo-
proteinases, all of which participate in the pathogenesis of autoim-
mune and inflammation-based diseases.

Based on this, Orai1 inhibition is expected to exert broad anti-
inflammatory activity by suppressing T cell activation and mast
cell degranulation, and may have therapeutic potential in all dis-
ease stage of respiratory diseases such as asthma.5,6

We envisaged the exploration of 7-azaindoles as an area of fur-
ther optimization around Orai inhibitors as bicyclic isosteric
replacements of the arylcarboxamide motif. This could provide a
new entry point to explore SAR towards compounds with
increased polarity versus highly lipophilic reference compounds
1 and 2 (measured logD7.4: 4.4 and 3.5, respectively) (Fig. 1).

Our initial SAR was based on exploring substitutions in position
2 of the 7-azaindole core ring keeping the 1-methyl-3-(trifluoro-
methyl)-1H-pyrazol-5-yl group in position 5 as this is a motif
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Scheme 1. Reagents and conditions: (a) PdCl2dppf.DCM, Cs2CO3, dioxane–water, 110 �C, 35%; (b) NBS, acetonitrile, 0 �C to rt, 2 h, 30%; (c) CuI, (Ph3P)2PdCl2, Et3N, THF, 90 �C,
4 h, 68–97%; (d) for 9a–c: t-BuOK, N-methylpyrrolidinone, rt, 20–67%; for 9d–g; (i) 2,2,2-trifluoroacetic anhydride, dioxane, rt, 1 h, (ii) Et3N, DMF, 120 �C, 20 h, 25–30% (two
steps).
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Figure 1. Orai channel inhibitors.
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reported to be well tolerated in similar series of Orai inhibitors.7

Thus, a synthesis was devised in order to access molecules contain-
ing different substituents in position 2 of the 7-azaindazole core
(Scheme 1). Suzuki-type coupling reaction of commercially avail-
able boronate 3 with the triflate of 1-methyl-3-(trifluoromethyl)-
1H-pyrazole 4 provided aminopyridine 5. Bromination followed
by Sonogashira type coupling with a diverse set of alkynes 7a–g
provided key intermediates 8a–g that were converted into com-
pounds 9a–g using a base-mediated indolization reaction in
t-BuOK at room temperature or using a sequential trifluoroacetyla-
tion- cyclization sequence.8,9

The synthesis of 7-azaindole derivatives 14a–n is described in
Scheme 2. Chemoselective Sonogashira type coupling of
5-bromo-3-iodopyridin-2-amine (10) with 1-chloro-2-ethynyl-3-
fluorobenzene (11) provided compound 12. Base mediated cycliza-
tion with t-BuOK/NMP afforded intermediate 13. Suzuki type
coupling of intermediate 13 with the corresponding boronic acids
or boronates of R1 provided compounds 14a–n.
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Scheme 2. Reagents and conditions: (a) CuI, PdCl2(PPh3)2, Et3N, DMF, 110 �C, 82%; (
PdCl2dppf.DCM, Na2CO3, EtOH-toluene, 90 �C, 70–85%.
Compounds 9a–g were tested in a fluorescence-based assay of
store operated calcium entry in Jurkat cells.10 Furthermore, their
ability to inhibit NFAT induced transcription was monitored
through the evaluation of IL-2 released from Jurkat T cells.11 A first
round of optimization with a limited set of substitutions in posi-
tion 2 of the azaindole core (Table 1) led us to the 2,6-disubstituted
phenyl group as providing best potency in both assays. 2-Chloro-6-
fluorophenyl substituted compound 9b was a good starting point
with an IC50 of 66 nM in the calcium assay and an IC50 of 23 nM
in the IL-2 assay. When slightly polar groups (9f) or a benzyl group
(9g) were introduced, the activity inhibiting calcium influx and
IL-2 dropped dramatically. For compounds 9a–e we observed a good
correlation between the activity in the calcium and the IL-2 assays.

We then explored replacement of the 3-(trifluoromethyl)-1H-
pyrazol-5-yl group in position 5 with disubstituted aryl and
heteroaryl groups as well as bicyclic derivatives, maintaining the
2-chloro-6-fluorophenyl substitution in position 2 (Table 2) as is
was the best substitution providing additivity based on internal
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Table 1
Jurkat Ca2+ and IL-2 secretion inhibition of selected 7-azaindole derivativesa

N N
H

R

NNF

F
F

Compound R Jurkat calcium inhibition IC50 (nM) Jurkat IL-2 secretion inhibition IC50 (nM) cLogP LipEb

1 YM — 75 ± 40 10 ± 1 4.1 3.0
2 Synta — 82 ± 24 10 ± 2 3.3 3.8

9a

Cl

160 ± 17 260 ± 1 4.6 2.2

9b

Cl

F

66 ± 39 23 ± 3 4.8 2.4

9c

F

F

140 ± 58 73 ± 10 4.3 2.6

9d 310 ± 140 183 ± 82 4.4 2.1

9e 260 ± 44 270 ± 62 4.0 2.6

9f O >10,000 ND 2.8 <2.2

9g 1400 ± 210 3000 ± 258 4.3 1.6

a IC50 values reflect mean +/� standard deviation of two or more determinations.
b Lipophilic efficiency (pIC50—c logP).

Table 2
Jurkat Ca2+ and IL-2 secretion inhibition of selected 7-azaindole derivativesa

N N
H

R1
F

Cl

Compound R1 Jurkat calcium inhibition IC50 (nM) Jurkat IL-2 secretion inhibition IC50 (nM) cLogP LipEb

14a

N

F
F

F 129 ± 48 120 ± 23 5.7 1.2

14b
N

O
71 ± 7 40 ± 37 4.9 2.2

14c
N

OF

F
64 ± 1 150 ± 29 5.8 1.4

14d
N

OO
150 ± 22 68 ± 24 4.2 2.6

14e
N

O
>10,000 ND 3.6 <1.4

(continued on next page)
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Table 3
In vitro profile of selected derivatives

Compound I CRAC in HEK STIM1
Orai1 overexpressing cells IC50 (nM) 12

LAD2 degranulation hexosaminidase
release IC50

* (nM)14
Rat whole blood IL-2 secretion
inhibition IC50 (nM)15

Cytotoxicity CHO cells
IC50 (lM)

9b <100 372 ± 73 500 >100
14b 104 443 ± 33 1300 >100
14d 440 630 ± 34 740 >100

* IC50 values reflect mean +/� standard deviation of two or more determinations.

Table 4
In vitro ADME profile of selected derivatives

Compound Rat/human metabolism (%)a PAMPA [⁄10�6 cm/s]b

9b <5/<5 <0.05c

14b 10/15 0.1
14d 10/<5 0.66

a Percentage of metabolism in hepatic microsomes after 30 min of incubation at
37 �C in the presence of NADPH. Compound and protein concentration were set to
5 lM and 1 mg/mL, respectively.

b Passive permeability through a PAMPA membrane. Compound concentration:
20 lM.

c The compound was not detected in the acceptor chamber.

Table 2 (continued)

Compound R1 Jurkat calcium inhibition IC50 (nM) Jurkat IL-2 secretion inhibition IC50 (nM) cLogP LipEb

14f
HN

O
>10,000 ND 3.3 <1.7

14g

N

N

O
10,000 ND 3.9 1.1

14h
S

N
H

O O

155 ± 15 180 ± 76 4.5 2.3

14i
S

N

O O

550 ± 250 119 ± 2 4.7 1.6

14j
S

N

O O

O
10,000 ND 4.5 0.5

14k
S

O O

280 ± 141 290 ± 79 4.5 2.1

14l
N
H 10,000 ND 5.2 0

14m

ClO

N
88 ± 24 117 ± 5 5.3 1.8

14n

ClO

O

F

F
120 ± 82 56 ± 10 6.8 0.1

a IC50 values reflect mean +/� standard deviation of two or more determinations.
b Lipophilic efficiency (pIC50—c logP).
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findings (data not shown). As can be seen in Table 2, disubstituted
3-pyridyl groups (14a–d) provided the highest potency inhibiting
calcium in Jurkat cells with less than 2 fold drop between IL-2
and calcium inhibitory activity, except for compound 14c. Com-
pound 14b is the only example providing IC50 <100 nM in the cal-
cium and in the IL-2 assays. In an attempt to introduce more
polarity, pyridones were introduced in R1 (14e–f) resulting in a
complete loss of potency and demonstrating that N-methylpyri-
done or hydroxy pyridine groups are not tolerated in this position
of the molecule. Replacement of the pyridine ring of 14b by a
pyrimidine (14g) also resulted in a drop of potency similarly as
when basic groups were introduced (14l). These results indicate
that in this series, the room for SAR expansion to introduce polar
solubilizing groups is very limited. Similarly, N-methyl (14h) and
N,N-dimethyl (14i) 3-methylbenzenesulfonamides and sulfone
14k provided acceptable potencies whereas the sulfonylmorpho-
line derivative (14j) was inactive. Substitution with bicyclic groups
in R1 such as 6-chlorobenzoxazole and 6-chloro-2,2-difluorobenzo-
dioxolyl groups (14m–n) was also tolerated, although these mole-
cules suffered from very high lipophilicity (c logP >5) and low
solubility (<1 lg/mL).



Table 5
Wistar rat pharmacokinetic parameters of selected derivativesa,b

Compound iv (1 mg/kg) p.o (10 mg/kg)

t1/2 (h) AUC(0–24) (ng h/mL) Cl (mL/min/kg) Vss (L/kg) Cmax (ng/mL) AUC(0–24) (ng h/mL) F (%)

14b 2.1 ± 0.2 596 ± 136 24 ± 0 4.2 ± 0.4 153 ± 57 2179 ± 985 37 ± 17
14d 8.0 ± 0.7 1824 ± 279 8 ± 1 5 ± 1 807 ± 415 11219 ± 3100 62 ± 17

a Mean values ± SD (n = 2).
b Formulation: iv: 50% PEG400 + 10% ethanol (compounds 4 and 11) and 40% PEG300 + 10% ethanol (compound 9); p.o.: 0.5% methylcellulose + 0.1% Tween 80.
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Figure 2. Dose response effect on BALF eosinophil count and total plasma levels of
Compound 14d in OVA rat model. Results are expressed as the number of
eosinophils/mL in BALF (black dots), and total plasma levels (nM) (grey squares).
Median values with interquartile range of the 8 animals used for each group are
represented. Percentages reflect % inhibition of Eosinophils vs vehicle treated
animals. Statistical analysis was done with a one way ANOVA followed by a
Dunnett’s test (⁄p 6 0.05). Dotted line indicates plasma levels required to achieve
IC50 of IL-2 secretion from rat whole blood cells in vitro.
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Compounds 9b, 14b and 14d were chosen to for further profil-
ing since they exhibited the most balanced potencies in the cal-
cium flux and IL-2 cellular assays. In terms of physicochemical
properties, the lead compounds selected displayed very low solu-
bility in water (<5 lg/mL), c logP >4 and LipE in a range of 2.2–2.4.

These compounds were profiled in further in vitro cellular
assays to determine their mechanism of action through CRAC cur-
rent inhibition, using an electrophysiology assay in HEK cells over-
expressing STIM1/Orai1 proteins,12 and the inhibition of mast cell
degranulation through the inhibition of IgE-induced hexosamini-
dase release in human LAD2 cells (human mast cell line).
(Table 3)13,14 Moreover, before testing the compounds in an
in vivo rat model, the inhibitory effect of the compounds on IL-2
secretion in rat whole blood was evaluated.15 All compounds
showed decreased potency in rat cells compared to that observed
in human Jurkat cells in IL-2 secretion (Tables 2 and 3). Compounds
were not cytotoxic up to concentrations of 100 lM, indicating that
inhibitory effects observed on cellular assays are related to the
mechanism of action of the compounds.

Very low metabolism was observed in both rat and human
microsomes in the presence of NADPH (Table 4). PAMPA perme-
ability results indicated lack of passive permeability for compound
9b and limited permeability for compounds 14b and 14d (Table 4).
Taking into consideration these results, compound 9b was dis-
carded for further characterization. All three compounds showed
rat plasma protein binding >99.9%.

The pharmacokinetic profile of compounds 14b and 14d ana-
logues was determined in rat (Table 5). Moderate clearance and vol-
ume of distribution were observed for compound 14b. Compound
14d had a significantly lower clearance, similar volume of distribu-
tion and increased terminal half-life. Both compounds displayed
good oral exposure, with bioavailabilities higher than 35%.

To assess in vivo pharmacological activity, compound 14d was
evaluated in the ovalbumin (OVA) induced model of allergic inflam-
mation in Brown Norway rats (Fig. 2).16–19 Three different doses of
compound 14d (3, 10 and 30 mg/kg) were orally administered bid,
1 h before and 6.5 h after OVA challenge. Dexamethasone was
included in the experiment as positive control. The anti-inflamma-
tory potential of compound 14d was evaluated on its ability to inhi-
bit airway cell infiltration in bronchoalveolar lavage fluid (BALF) at
the end of the experiment (24 h post OVA-challenge). A dose depen-
dent inhibition of eosinophils in BALF of 9%, 68% and 75% respec-
tively versus vehicle treated animals was observed. Plasma levels
of compound 14 at the end of the experiment proportionally
increased with dose and correlated with the inhibitory effect
observed. Total plasma levels are reported since compound free lev-
els could not be calculated due to very high plasma protein binding.

Moreover, rat whole blood IL-2 inhibition was used as surrogate
pharmacodynamic marker to contextualize the efficacy observed
in the rat OVA-challenged animals. This rat assay allows us to com-
pare efficacy of the compound in target cells of the same species of
the efficacy model. Although IL-2 inhibition is not linked with
eosinophil infiltration inhibition, it has been reported as a practical
measure of efficacy for cyclosporine A that, similar to Orai inhibi-
tors, interferes with the NFAT pathway.20 At the end of the exper-
iment, plasma levels below those required for rat whole blood IL-2
IC50 were observed in animals showing no efficacy at inhibiting
eosinophil infiltration. Animals having plasma levels >3-fold above
IC50 for rat IL-2 inhibition showed almost 70% inhibition of eosin-
ophils infiltration in BALF (Fig. 2).

In summary, we have described a series of 7-azaindole based
Orai inhibitors. The initial SAR was explored, demonstrating that
the nature and substitution of groups on both 2- and 5-positions
of the 7-azaindole ring are essential to calcium and IL-2 inhibitory
activity. Best molecules tend to be highly lipophilic, with limited
room for introduction of polar groups. After further profiling of
the most potent derivatives, compound 14d was selected as a good
tool for in vivo studies, as it is potent and displays good oral expo-
sure in rat. The efficacy observed with 14d reinforces the potential
of Orai channel inhibitors for the treatment of respiratory diseases
such as asthma. Further optimization with novel core rings to
achieve both an improvement in Orai inhibitory activity and lower
lipophilicity is essential for high quality lead compounds suitable
for oral administration.
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