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Highly Enantioselective Synthesis of Trifluoromethyl 

Cyclopropanes by Using Ru(II)–Pheox Catalyst 

Manato Kotozaki, Soda Chanthamath,* Takuji Fujii, Kazutaka Shibatomi and Seiji Iwasa* 

An asymmetric synthesis of various trifluoromethyl cyclopropanes 

from olefins such as vinyl ferrocene, vinyl ethers, vinyl amines, 

vinyl carbamates and dienes was achieved by using Ru(II)–Pheox 

catalyst. This catalytic system can perform under low catalyst 

loading (3 mol%) compared with previous reports, and the desired 

cyclopropane products are obtained in high yields with excellent 

diastereoselectivity (up to >99:1) and enantioselectivity (up to 

97% ee). 

The derivatization of organic compounds with fluorinated units 

often affects their physicochemical and biological properties.
1,2

 

Consequently, approximately 20% of all pharmaceuticals and 

agrochemicals contain at least one fluorine atom.
3
 In particular, 

trifluoromethyl cyclopropanes constitute attractive synthons 

in medicinal chemistry as they combine the conformational 

rigidity of three-membered rings with the unique and often 

highly beneficial feature of fluorinated substituent.
4
 Indeed, 

several biological active compound substances with  

 

trifluoromethyl cyclopropane structure have been found such 

as analgesic 1, Insecticide 2 and antibiotic 3 (Figure 1).
5
 

Among various methods to access cyclopropane-ring 

substructure, the efficient way is transition-metal catalyzed 

cyclopropanation of olefins with diazo compounds.
6
 Recently, 

trifluorodiazoethane (CF3CHN2) is attracting attention as an 

carbene precursor for the construction of trifluoromethyl-

containing chiral cyclopropanes. In 1943, CF3CHN2 was first 

synthesized from trifluoroethylamine and sodium nitrite.
7
 

However, CF3CHN2 did not find wide application in synthesis 

because of the potentially toxic and explosive gaseous 

compound for a long time. In 2010, The Carreira group 

developed convenient conditions to generate CF3CHN2 in situ 

in a solution.
8a

 Since then, trifluoromethylcarbene has proven 

to be a versatile intermediate for the synthesis of 

trifluoromethyl-containg compounds,
8,9

 which have found 

widespread application in medical and agricultural chemistry 

due to the unique properties of CF3-functionality. To date, 

however, only a few studies have addressed the problem of 

developing highly enantioselective cyclopropanation reaction 

(Scheme 1). In 2011, the Carreira groups described the highly 

enantioselective Co(III)–salen-catalyzed synthesis of 

trifluoromethylated cyclopropanes under high catalyst loading 

(10 mol%).
8c

 In 2017, the Fasan groups also developed a 

biocatalytic strategy for the asymmetric synthesis of  

 

Scheme 1 Highly enantioselective synthesis of trifluoromethyl

cyclopropanes.
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Figure 1 Examples of biologically relevant trifluoromethyl cyclopropane
derivatives.
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trifluoromethyl cyclopropanes via myoglobin catalyzed 

addition of trifluoromethylcarbene to olefins.
10

 However, the 

bulkiness of the CF3CHN2 moiety was found to be an important 

factor in providing high enantiocontrol, and the 

cyclopropanation of CF3CHN2 with olefins such as vinyl 

ferrocene, vinyl ethers, vinyl amines, vinyl carbamates and 

dienes has not been reported yet. Herein, we report a highly 

stereoselective asymmetric cyclopropanation of various olefins 

with CF3CHN2 catalyzed by Ru(II)–Pheox complexes.
11

 

To implement approach, we initially tested the possibly to 

carry out the Ru(II)–Pheox catalyzed cyclopropanation of p-

MeO-styrene. We first examined the reaction of CF3CHN2 with 

MeO-styrene 4a in the presence of 3 mol% of Ru(II)–Pheox 7a 

at room temperature (Table 1, entry 1). To our delight, the 

desired trifluoromethyl cyclopropane product 6a was obtained 

in 94% yield with high trans-selectivity (95:5 dr) and high 

enantioselectivity (96% trans ee). Chiral Ru(II)–Pheox catalysts 

bearing electron-donating or electron-withdrawing 

substituents (R = OMe, NO2, CF3) provided no improvement in 

yield or enantioselectivity (Table 1, entries 4-6). Moreover, 

performing the reaction at lower temperatures afforded 

higher enantioselectivities (Table 1, entry 3). Next, we tested 

the reaction with chiral Cu(I)–Box 8 and Pybox 9
12

 complexes, 

which have been reported to be efficient catalysts for 

asymmetric cyclopropanation reactions; however, under these 

conditions, the desired product was obtained in low yield with 

moderate enantioselectivity (Table 1, entries 8-9). 

With the optimized conditions in hand, we next explored 

the scope and generality of the catalytic system (Table 2). First, 

a variety of vinyl arenes were reacted with CF3CHN2. Styrene 

derivatives bearing electron-donating groups, such as 4-MeO, 

and 2-MeO groups, were transformed into the corresponding 

trifluoromethyl cyclopropanes in high yields with excellent 

diastereo- and enantioselectivities (Table 2, entries 1-2). 

However, 4-Me2N-styrene showed reduced yield because of 

side reactions. The reaction of styrene derivatives bearing 

electron-withdrawing groups at the 4-position also proceeded 

with high stereoselectivity and moderate yields (Table 2, 

entries 5-6). Moreover, vinyl ferrocene could also be 

cyclopropanated to afford the corresponding product 6g in 

high yield and with high diastereo- and enantioselectivity 

(Table 2, entries 7). Since ferrocene derivatives have found 

widespread applications in catalytic and pharmaceutical 

chemistry, and the incorporation of CF3-cyclopropyl motif into 

this scaffold may find new applications
13

. 

Encouraged by these results, we turned our attention to 

the cyclopropanation of electron-rich olefins such as vinyl  
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ethers, vinyl amines, and vinyl carbamates (Table 3). Under the 

optimized conditions, all reactions was proceeded in high yield 

with high enantioselectivity. However, 4-Br phenyl vinyl ether 

6j showed reduced reactivity because of the electron 

w i t h d r a w i n g  p r o p e r t i e s .  U n f o r t u n a t e l y ,  t h e  

 

diastereoselectivity slightly decreased in the cyclopropanation 

of vinyl carbamate (Table 3, entry 5). This is probably due to 

hydrogen bonding between the N-hydrogen of the vinyl 

carbamate and the fluorine of the carbenoid intermediate, 

which leads to a cis-selective approach of the reactants as 

described in our previous report.
11d

 Benzyl 

benzyl(vinyl)carbamate 6n also decreased diastereoselectivity 

because of steric hindrance. Moreover, the cyclopropanation 

of benzyl benzoyl(vinyl)carbamate 6o was also investigated 

(Table 3, entry 8). Interestingly, the diastereoselectivity could 

be increased to 92:8 dr, while the reactivity decreased. 

Finally, to demonstrate the utility of our direct 

enantioselective cyclopropanation, we prepared vinyl 

cyclopropane 6p with high enantiopurity. This compound can 

easily transform to trifluoromethylcyclopropane carboxylic 

acid 10 by oxidative cleavage which was known to be a key 

intermediate in the formation of insecticide 2
5a

 and antibiotic 

3
5c

.  

In summary, we have developed a highly stereoselective 

Ru(II)–Pheox-catalyzed asymmetric cyclopropanation of 

various olefins with CF3CHN2. Variously functionalized 

trifluoromethyl cyclopropanes were synthesized in high yields 

(up to 99%) with excellent enantioselectivity (up to 97% ee). 

CF3CHN2 proved to be efficient carbene precursors for 

asymmetric olefin cyclopropanation reactions catalyzed by 

Ru(II)–Pheox complexes. Further investigations on the 

application of functionalized chiral trifluoromethyl 

cyclopropanes in organic synthesis are currently underway in 

our laboratory. 

This work was supported by a Grant-in-Aid for Scientific 

Research (B) (No. 26288087) from the Japan Society for the 

Promotion of Science. 
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