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Organohypervalent iodonium systems have been studied in far
greater detail than their chloronium and bromonium counterparts.1 An
understanding of the reactivity of these systems is fundamental to the
broader area of hypervalent organohalonium chemistry. Recently,
reaction 1 to 3 was reported with intermediate 2 proposed as a precursor
of 3 (Scheme 1).2

It was shown that the conversion of type 1 to 3 was a general
reaction for the synthesis of 2-halo-3-alkoxyenones from benzyl
chlorides and bromides and various 1,3-dicarbonyl phenyliodonium
ylides. Acyl halides yielded the 2-halo-3-acyloxyenones.2

Structure 2 (Scheme 1) is provocative because it features a frontside
intramolecular nucleophilic displacement at the benzylic carbon.
Alternatively, taking the depicted flow of the electrons literally, it
appears to be a process formally related to a 1,4 Stevens rearrange-
ment.3 Process 1 to 2 to 3 is also related to the well-known thermally
induced phenyl migration of 1,3-dicarbonylphenyliodonium ylides (1
to 4),4 with the difference that iodonium ylide 1 is a stable reactant
whereas 2 is an unstable alkylchloronium ylide intermediate. Given
the synthetic value of 2-halo-1,3-dicarbonyl systems,5 it appeared of
interest to establish the mechanism of 1 to 3 especially with respect to
stereochemical course of the reaction at the migrating group terminus,
a point which obviously could not be determined for 1 to 4.6

Examples in Table 1 confirm the benzyl migration (entries 1-6)
and extend the prototypical reaction to novel allyl group migration
(entries 7-9) as well as the novel arylation process7 (entries 10-13).

The first step in the elucidation of the mechanism of 1 to 3 was
proof of intramolecularity. This was done using a classical crossover
experiment. The reaction was intramolecular within the limits of HRMS
detection.8 Next the stereochemical course with respect to displacement
at the stereogenic benzylic center was determined using (S)-R-phenethyl
chloride (entry 6).

Under the standard reaction condition, it was found that 1 to 6
proceeded with 88.6% retention of configuration (Scheme 2).9

This result in itself does not define the mechanism, although a free
planar carbocation or carbon radical can be excluded as a predominant
intermediate in the rearrangement of 2 to 3. Theoretical calculation
provided further insight into the process on the basis of geometries
optimized by Gaussian 98 at the B3LYP/6-31G level of theory, and
we propose that the rearrangement of the benzyl chloronium ylide from
2 to 3 is a concerted process with an activation energy of 5.4 kcal/
mol.10 Stationary points for the reactant 2, the transition state, and
product 3 are shown in the potential energy diagram (a) in Scheme 3.
The process proceeds with a very low barrier and is highly exothermic,
-37.50 kcal/mol. The activation energy calculated including the solvent
benzyl chloride is 2.54 kcal/mol, indicating an essentially barrierless

pathway, a consequence of dielectric solvent stabilization of the
transition state. The two putative transition states in solvent (b) and in
vacuum (c) are shown in Scheme 3. Analytical frequencies and
structural parameters are given in the Supporting Information.

The activation energy for the concerted rearrangement of 1 to 4 is
17.711a or 22.6 kcal/mol,11b a value much higher than that calculated
for 2 to 3, which may reflect the loss of aromaticity in the transition
state separating 1 and 4 relative to the saturated alkyl group transfer 1
to 3.

The analysis of stereochemical course of the rearrangement 1 to 3
and the computational study suggest that the intermediacy of 2
proposed by Lee and Jung2 is indeed correct and, interestingly, was
made absent any relevant experimental data. Having established the
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sigmatropic nature of 1 to 3, it was anticipated that allyl halides would
behave similarly. Accordingly, we discovered the novel chloronio-
Claisen rearrangement of the chloronium ylide (entries 7-9).12

The Claisen-type process can be described as shown in Scheme 4,
which accounts for the observed regiochemistry.

Finally, we investigated the reaction of aryl halides with 1a and 1b
under standard rhodium(II) conditions with the expectation of obtaining
the corresponding aryl halonium ylides via a process analogous to 1
to 2.13a,b

In fact, only electrophilic aromatic substitution was observed,
possibly via the intermediacy of 13 formed by electrophilic addition
of the Rh(II) carbenoid to the electron-rich substituted aromatic ring
(Scheme 5).14

In summary, this work advances our understanding of the unstable
and elusive chloronium and bromonium ylides and suggests the
application of this chemistry to obtain valuable synthetic building
blocks.
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Table 1. Reactions of 1,3-Dicarbonyl Phenyl Iodonium Ylides 1a
and 1b with Benzyl, Allyl, and Aryl Halides Using Rh2(OAc)4
Catalysisa

yieldb (%)

entry ylide R3-X R4 X 3

1 1a 1b C6H5CH2Cl C6H5CH2 Cl 70(a) 73(b)
2 1a 1b 3-MeC6H4Cl 3-MeC6H4 Cl 62(c) 70(d)
3 1a 1b C6H5CH2Br C6H5CH2 Br 22(e) 35(f)
4 1a 1b 3-MeC6H4Br 3-MeC6H4 Br 30(g) 35(h)
5 1a 1b C6H5(CH3)CHCl C6H5(CH3)CH Cl 53(i) 58(j)
6 1b (S)-Ph(CH3)CHCl (S)-Ph(CH3)CH Cl 58(k)
7 1a CH3C(CH3)CHCH2Cl CH2CH(CH3)2C Cl 56(l)
8 1a CH2CHCH(Cl)CH3 CH3CHCHCH2 Cl 37(m)
9 1a 1b CH3CHCHCH2Cl CH2CH(CH3)CH Cl 60(n) 63(o)
10 1a 1b C6H5F H 4-FC6H4 22(p) 30(q)
11 1a 1b C6H5Cl H 4-ClC6H4 41(r) 38(s)
12 1a 1b C6H5Br H 4-BrC6H4 27(t) 37(u)
13 1a 1b C6H5I H 4-IC6H4 30(v) 38(w)

a Conditions: Phenyliodonium ylide 1a or 1b (1 equiv)/alkyl, allyl, or aryl
halide (10 equiv), Rh2(OAc)4 (0.01 equiv)/Ar. b Isolated yields.

Scheme 5
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