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Dylan Dagoneau,a Amandine Kolleth,a Pierre Quinodoz,a Gamze Tanriver,b Saron Catak,b Alexandre Lumbroso,a 

Sarah Sulzer-Mosséa and Alain De Mesmaeker*,a 

a Syngenta Crop Protection AG, Crop Protection Research, Research Chemistry, Schaffhauserstrasse 101, CH-4332, Switzerland, e-mail address: 

alain.de_mesmaeker@syngenta.com 

b Bogazici University, Department of Chemistry, Bebek, 34342 Istanbul, Turkey 

 

Herein, we describe a high yielding approach towards the synthesis of 3-amino-indoles and –benzofurans via 6-electrocylization. This was made possible 

by taking advantage of the high reactivity of keteniminium salts, formed in-situ by treating with triflic anhydride and 2-fluoropyridine amides bearing at 

the alpha position either an aniline or a phenoxy moiety. These mild conditions, on top of furnishing rapidly the 3-aminobenzoheteroles, allow the 

tolerance of various functional groups. Control experiments were carried out to highlight that the keteniminium is, indeed, in most cases the reactive 

intermediate and conformational preferences of such species were investigated via a DFT study. 

Keywords: Aminoindole • Aminobenzofuran • Keteniminium • Electrocyclization 

 

 

Introduction 

3-aminoindoles is a rare motif present in nature[1-4] and none of its 

benzofuran analogues were isolated to the best of our knowledge (Figure 

1). However, both scaffolds are found in synthetic compounds showing 

attractive properties in various areas. For example, 3-aminoindole is the 

core of antiviral compounds against hepatitis B virus[5] and of anti-

proliferative agents[6,7] and such anti-mitotic properties were also 

observed with 3-aminobenzofuran based molecules.[8] Those benzofurans 

are reported to be involved in potent ischemic cell death inhibitors[9] and 

anti-microbiotics[10,11] as well as in selective fluorescent chemosensors of 

Zn2+ and CN- ions.[12,13]  

 

Figure 1. Examples of natural and synthetic 3-aminobenzoheteroles 

 

In the literature, the synthesis of 3-amino-indoles and -benzofurans 

is achieved following three main strategies. The first one is the 

functionalization of the naked benzoheterole via either direct amination[14-

16] or a nitr(os)ation / reduction sequence. [5, 17] The second is the generation 

of the heterocyclic core followed by in-situ amination of the latter[18,19] and 

the third is the one-step formation of the 3-aminobenzoheterole moiety. 

In this last approach, the main reaction reported is a Thorpe-Ziegler 

cyclization[6-11, 20-23] or variants[24-28] and actually only a few other methods 

exist.[29-35]  

 

Scheme 1. General approach towards the synthesis of 3-amino(benzo)heteroles 

using the keteniminium chemistry 

 

Based on our previous work on the direct formation of 3-

amino(benzo)thiophenes C from easily accessible thioacetamides A,[41-43] 

through a 6π-electrocyclization involving a keteniminium[36-40] salt 

intermediate B, we are pleased to report herein the expansion of this 

method towards the facile synthesis of 3-aminoindoles and 3-

aminobenzofurans E (Scheme 1).[44-45] 
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Results and Discussion 

3-aminoindoles 

We started our investigation with a simple N-piperidylamide 1a 

bearing at the alpha position a N-methylaniline moiety. Using the 

optimized conditions used previously for the sulfur series (1.1 equiv. of 

triflic anhydride and 1.2 equiv. of 2-fluoropyridine at room temperature), 

the expected 3-aminoindole was formed but incomplete conversion of the 

starting materials was observed. This problem was simply overcome by 

using an excess of reagents (3.3 equiv. of Tf2O and 3.6 equiv. of 2-FPyr) 

and desired 2a was isolated in 80% yield. 

Next, the goal was to extend the scope of this reaction and it proved 

to be very general. As depicted in Scheme 2, high yields are obtained with 

alkyl, benzyl, ester or even simple hydrogen substituents at the alpha 

position of the amide, corresponding to the position 2 of the formed 

indole (2a to 2d). The ester group, which activates the keteniminium 

intermediate and stabilizes the final product by blocking the reactive 

position 2 and by decreasing the electron density on the nitrogen (position 

3), allows us to perform the reaction with electron rich or poor substituents 

on the aromatic ring of the aniline (2i and 2o). In order to really determine 

the limitation of this methodology, we decided not to carry out the 

remaining scope with the help of this ester group but actually with the less 

favorable substrates, being the unsubstituted alpha position of the amide. 

By comparing the two indoles 2a and 2c, we can see a slight decrease of 

the yield and it was previously observed that formation of 3-

aminobenzothiophene, unsubstituted at the position 2, was obtained also 

in lower yield compared to the substituted ones.[41] 

Even using the most challenging substrates, the reaction can still 

tolerate electron-donating or withdrawing groups on the aromatic ring (2p 

to 2r). Various functionalities can also be inserted in this ring in an efficient 

manner, such as halogens, ester, cyano or nitro, which would allow further 

functionalization of the 3-aminoindoles (2g to 2l). Having those 

substituents in para- or meta-positions of the aniline proved to be a non-

limiting factor and even large ortho-substituent (2f) could be inserted, 

albeit in moderate yield. 

Of course, this methodology is not limited to the use of N-

piperidylamide derivatives. Indeed, acyclic N-substituted amides can be 

used and, more importantly, mono- or di-allyl substituents on the nitrogen 

are tolerated (2m and 2n) which would allow further deprotection of this 

nitrogen.[41,46,47] 

Then, the substituent on the nitrogen of the aniline motif was 

investigated and proved to be broader than expected, as shown in 

Scheme 3. Indeed, this methodology is not limited to alkyl group such as 

methyl, allyl or benzyl. A phenyl or even strong electron-withdrawing 

groups like tosyl or nosyl could be tolerated, albeit the cyclization is 

slightly slower in the two latter cases. We were also surprised to observe 

formation, even in low yield, of the desired indole core 2w having a triflyl 

substituent, one of the strongest electron-withdrawing group which 

decreases dramatically the electron density on the nitrogen of the aniline. 

Starting with a nosylated aniline, we could insert on the aromatic ring 

strong electron-donating functionality such as methoxy (2y) that 

otherwise would not be possible. Indeed, it was observed that, starting 

from an N-methyl-paramethoxy aniline derivative, sulfonylation of the 

aromatic core with triflic anhydride occurred. The decreased 

nucleophilicity of the aniline caused by the nosyl prevents this side 

reaction and the nosyl, being a very useful protective group, could be 

replaced later with the desired substituent. Again, the N-piperidyl amide 

could be replaced by diallyl-substituents and, combined with the 

nosylated aniline, could afford the 3-aminoindole 2z bearing two nitrogens 

with orthogonal protective groups. 

 

Scheme 2. Access to 3-aminoindoles with variation of the substituents in -position to the amide and on the aromatic ring 
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Scheme 3. Access to 3-aminoindoles with variation of the substituent on the aniline nitrogen 

 

In the case of diarylamines, we wanted to study the influence of the 

substituents in order to discriminate one of the two aromatic rings in the 

cyclization reaction (Scheme 4). When the electronic effect is purely 

inductive, such as a CF3 group, the more electron-rich ring intervenes 

preferentially into the cyclization step (ratio: 1.9/1.0), as expected. 

However, when the CF3 was replaced by a nitro, which is supposedly more 

electron-withdrawing, a closer ratio of 1.3/1.0 was obtained. This could be 

explained by the ability of the nitro group to force the delocalization of the 

lone pair of the aniline nitrogen into the nitroaromatic and putting it 

preferentially in a coplanar conformation, better suited for the 

electrocylization. 

 

Scheme 4. Competition reactions involving unsymmetrical diarylamines 

 

Finally, we were interested to know if we could form polycyclic 

structures starting from an amide containing at the alpha position either a 

tetrahydroquinoline or tetrahydrobenzoazepine core and this proved to be 

the case (Scheme 5). With our methodology we could easily synthesize 

tetrahydropyrido[1,7]indole as well as tetrahydroazepino[1,7]indole in very 

good yields. It is noteworthy to mention that we could also access 

efficiently tetrahydropyrido[1,2]indole 4e starting from a N(1)-

phenylpiperidine-2-carboxamide derivative. 

 

Scheme 5. Access to polycyclic 3-aminoindoles 

 

3-aminobenzofurans 

By replacing the aniline at the alpha position of the amide by a 

phenoxy, like in substrate 5a, the expected 3-aminobenzofuran was 

formed in high yield (69%). However, contrary to the 3-aminoindoles, the 

unsubstituted (position 2) benzofuran 6e could not be formed in an 

efficient manner at room temperature. Indeed, consumption of the 

starting material 5e was very slow, even with an excess of reagents, and 

the formation of the desired heterocycle occurred with various side 

products. As depicted in Scheme 6, we assume that when R=H, the 

favored conformation is I to avoid clash between the keteniminium and 

the aromatic ring, therefore preventing the cyclization. On the contrary, 

when R=Me, the conformer II would be preferred to avoid this time 

interaction of the bulkier methyl group with the phenyl ring. In the case of 

aminoindoles, the additional substituent on the nitrogen of the aniline 
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probably disturbs the conformer I and favors II, even when R=H. In the 

computational rationalization section, we investigated the R substituent 

effect on the favored conformations of the keteniminiums in Scheme 6. 

 

 

Scheme 6. Conformational considerations for the cyclization step 

 

Despite this, the scope proved to be fairly broad and is detailed in 

Scheme 7. On the position 2 of the 3-aminobenzofuran are tolerated 

functionalizable alkyl chain, benzyl and even a phenyl group (6a to 6f), 

which gave in the case of the nitrogen series complete decomposition of 

the substrate. Heteroatoms such as alkylsulfide and sulfone can be 

inserted in moderate to good yields and this is also the case with the 

benzothiophene family (6p to 6r). The substrates bearing an ester group 

either at the alpha position of the amide or directly on the phenoxy ring 

give the corresponding 3-aminobenzofurans in excellent yields. Other 

functions on the aromatic ring, such as halogens, nitrile, methylether and 

nitro are again tolerated (6g to 6l). The latter function combined with the 

N-diallylamide afford a 3-aminobenzofuran possessing two orthogonally 

protected nitrogens. It is worth mentioning that the electronic effect of 

the substituents and their position on the aromatic ring, even in ortho, 

have hardly an influence on the isolation yields (6m to 6o). 

With substrates 5m and 5q an interesting side reaction was 

observed. Indeed, after short reaction time (2-3 hours) we could observe 

and isolate a side product 7 possessing a pyridine moiety (Scheme 8). We 

assume that the enamine intermediate ENA, which should afford 

spontaneously the keteniminium KET, is too stabilized in those cases and 

therefore favors a higher concentration of this species in the medium. The 

enamine then interacts with the 2-fluoropyridinium salt in a SNAr reaction. 

More interestingly, with longer reaction time (1-4 days), we could observe 

complete conversion of this kinetic product 7 towards the desired 

heterocycles 6 which means that the SNAr is actually reversible. This 

reversibility is reasonable considering the high electrophilicity of the bis 

positively charged intermediate INT presumably present in the reaction 

mixture. Besides, in the case of 5m, when we replaced the 2-fluoropyridine 

by the chloro analogue, we observed the same SNAr product 7m but 

further demethylation and decarboxylation of the ester moiety were also 

detected. This supports the fact that nucleophilic halides are present in the 

medium. 

 

Control Experiments 

We wanted to highlight that the cyclization step occurred indeed on 

the keteniminium salt, and not on the iminium intermediate resulting 

from the triflation of the amide. Previously, we demonstrated this by 

carrying out the reaction in the absence of base.[41,43] Activation of the 

amide by triflic anhydride would give rapidly the iminium IMI2 but without 

the 2-fluoropyridine in the medium, the formation of the keteniminium 

KET2 would occur very slowly (Table 1). By comparing the formation rates 

of the product with or without base, we could determine which 

intermediate is most likely the reactive one. 

 

Scheme 7. General access to 3-aminobenzofurans 
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Scheme 8. Proposed mechanism for the formation of side products 7 

 

Table 1. Control experiments to highlight the formation of a 

keteniminium salt intermediate 

 

Entry X[a] R1 R2 Reagent Base Time DP[b] SM[b] 

1a[c] O CO2Me H Tf2O FPyr 2.5h 93 0 

1b[c] O CO2Me H Tf2O / 15h 4 94 

2a[d] O H Me Tf2O FPyr 2h 92 0 

2b[d] O H Me Tf2O / 15h 42 54 

2c[d] O H Me Tf2O / 72h 67 31 

3a[e] NMe H CF3 Tf2O FPyr 3h 73 0 

3b[e] NMe H CF3 Tf2O / 4h 51 35 

3c[e] NMe H CF3 Tf2O / 15h 52 23 

3d[e],[f] NMe H CF3 POCl3 FPyr 20h 0 nd[g] 

3e[e],[f] NMe H CF3 POCl3 / 20h 0 nd[g] 

4a[e] NMe H Me Tf2O FPyr 2h 88 0 

4b[e] NMe H Me Tf2O / 4h 69 27 

4c[e] NMe H Me Tf2O / 15h 76 16 

4d[e],[f] NMe H Me POCl3 FPyr 15h 13 82 

4e[e],[f] NMe H Me POCl3 / 15h 14 79 

[a] When X=O, R5=Me and when X=NMe, R5=H  [e] y=3.3 equiv.; z=3.6 equiv. 
[b] Yields in %       [f] Reaction performed at 60°C 
[c] y=2.2 equiv.; z=2.4 equiv.    [g] Non-determined 
[d] y=1.6 equiv.; z=1.8 equiv. 

 

In the case of benzofuran, and by starting with an electron-deficient 

phenol (Table 1, entry 1), we could observe a dramatic decrease of the 

product yield in the absence of base, despite a much longer reaction time. 

This confirms that the keteniminium is required for the reaction to occur 

efficiently. However, when an electron-rich phenol (entry 2) was employed, 

we can see slow but decent conversion to the desired product. In this case, 

the cyclization via a 6-electrocylization with the keteniminium KET2 is 

probably the fastest pathway, but the competitive Friedel-Crafts addition 

onto the iminium intermediate IMI2 cannot be excluded. 

Unfortunately, we cannot completely use this approach for the 

indole series. Indeed, the starting materials bearing intrinsically a base, 

the aniline, can take the role of the 2-fluoropyridine and help the 

formation of the keteniminium salt. This was supported experimentally by 

treating 1r exclusively with Tf2O and which gave rapidly 50% of the 3-

aminoindole together with protonated starting aniline (entry 3). With 

longer reaction time, we only observed slow decomposition of the 

remaining starting materials. To overcome this issue, we replaced the 

triflating reagent by the well-known amide activator POCl3 which cannot 

formed efficiently a keteniminium due to the nucleophilic counter anion 

chloride.[36,39,40] As expected, no aniline cyclization onto the iminium 

intermediate was observed with or without base, even with higher 

temperature and longer reaction time. Similarly to the benzofuran, when 

electron-rich aniline was used (entry 4), partial cyclization was observed 

with POCl3, thus the Friedel-Crafts pathway involving IMI2 cannot again be 

excluded in this case.[48] This was also supported by formation over 50% of 

indole 2p by treating 1p exclusively with triflic anhydride. 

 

Competition Experiments 

Next, we designed substrates in order to compare kinetically the 

formation of the different aminobenzoheteroles, via 6-electrocyclization, 

with the formation of cyclobutanones, obtained by intramolecular [2+2] 

cycloaddition between an alkene and the keteniminium salt. Previously, in 

the case of phenylsulfide, the [2+2] cycloaddition reaction was 

predominant with short alkene chain (n=1 or 2) in order to form the 

corresponding bicyclo[3.2.0]heptane or [4.2.0]octane systems. With 

longer chain, the electrocyclization was the fastest pathway (Scheme 

9).[42] 

In the case of the phenyl ether, the [2+2] was still favored when n=1, 

giving a mixture of two regioisomers,[43,49]  but when n=2, no cycloadduct 

was observed and the 3-aminobenzofuran was the only isolable product. 

With the aniline derivative, in each case, no product arising from a [2+2] 

cycloaddition was observed and only formation of the desired indoles, 

together with an unexpected side ketoamide product, were isolated. 
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Scheme 9. Intramolecular competition reactions between formation of 3-aminobenzoheteroles and [2+2] cycloadducts 

 

Those observations are not surprising considering that the 6-

electrocyclization is dependent on the electron density of the aromatic 

ring, with the aniline being electronically the richest and the thiophenol 

the most deficient. 

With these experiments, we can already deduce that formation of 

the 3-aminoindoles are faster than the corresponding benzofurans and the 

latter are faster than the benzothiophenes. However, we were interested 

to confirm this by directly putting in competition the aniline, phenol and 

thiophenol (Scheme 10). Unfortunately, substrates bearing at the alpha 

position of the amide an aniline and either a phenol or thiophenol proved 

to be unstable and decomposed under the reaction conditions. 

Nonetheless, we were able to submit under the typical conditions the 

substrate bearing both phenol and thiophenol and, as expected, the 3-

aminobenzofuran was the only product formed. 

 

Scheme 10. Attempts to compare directly the formation rates of the different 3-

aminoheteroles 

 

Finally, we wanted to submit a substrate bearing a styrenic 

diarylamine 17 as depicted in Scheme 11. Such scaffold, upon treatment 

with triflic anhydride and 2-fluoropyridine, could produce in theory several 

products. Indeed, formation of two different 3-aminoindoles (18, 19) could 

occur, by reaction of each aromatic ring in a 6-electrocyclization, but not 

only. Formation of a cyclobutanone 21 or a 7-membered cyclic enone 20, 

arising respectively from a [2+2] cycloaddition or Friedel-Crafts reaction of 

the styrenic double bond with the keteniminium salt, has to be considered. 

It was demonstrated previously that the selectivity between these two 

latter outcomes was dependent on the electron density of the starting 

aniline.[50] In our present case, the Friedel-Crafts was the fastest pathway 

compared to the other processes, with isolation of the cyclic enone in 79% 

yield, albeit a tiny amount of cycloadduct was observed in the reaction 

mixture.[51] 

 

Scheme 11. Intramolecular competition between 6-electrocylization and Friedel-

Crafts reactions  

 

Computational Rationalization 

The conformational preferences of the R substituted keteniminium 

intermediates (R=H, CH3) depicted in Scheme 6 were computationally 

investigated in order to elucidate the R substituent’s effect on the 

electrocyclization reaction. All optimizations were performed at the M06-

2X[52-53] / 6-31+G(d,p) [41-42,46-47,54] with IEF-PCM[55-56] in dichloromethane 

(CH2Cl2) as implemented in Gaussian 16 (G16, Revision A.03)[57]. Energy 

refinements were carried out using double hybrid B2PLYP[58] functional in 

order to accurately evaluate the relative Gibbs free energies. In case of 

R=H, the computed data revealed that the relative Gibbs free energies of 

the open I and closed II conformations are isoenergetic (Figure 2). 

Structurally, C-C-O bond angle of the closed conformation II (124.8°, 

Figure 2) is larger than a regular trigonal planar bond angle and the C-H-π 

stacking distances (4.41 Å and 4.46 Å) are also quite large in the closed 

conformer II, somewhat destabilizing this conformation. Moreover, a C-H-

π interaction (CH···π distance = 3.58 Å) contributes to the stabilization of 

the open conformer I. Hence, the conformational equilibrium shifts 

slightly towards the open conformation I. Conversely, for the methyl 

substituent, the closed conformation II is energetically strongly preferred 
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over the open conformation I (ΔGrel= 3.1 kcal/mol) favoring the formation 

of the benzofuran derivative. The methyl group also sterically prevents the 

rotation of the lowest energy conformer II to the open conformer I. 

Moreover, in Figure 3 non-covalent interactions (NCI) including C-H-π and 

cation-π were also investigated using the NCIplot program.[59] Cation-π 

interaction distances of the methyl substituted closed conformer II is 

3.94Å whereas this distance for –H substituted conformer II is 4.02Å. This 

is due to the more positive cation of the methyl substituted keteniminium, 

the cation interacts with the quadrupole of phenyl more strongly and 

stabilizes the closed conformation II leading to the formation of 3-

aminobenzofuran (6a) in the methyl substituted case. A full computational 

study thoroughly investigating the factors (heteroatom, substituent effect, 

etc.) influencing keteniminium electrocyclizations is currently underway. 

 

Figure 2. Optimized structures and relative free energies of the Ket intermediates. 

B2PLYP/6-31+G(d,p)//M06-2X/6-31+G(d,p) in CH2Cl2. 

 

Figure 3. The non-covalent interaction (NCI) plots of the optimized structures. The 

NCI isosurface value= 0.5 au using SCF densities. 

 

 

Conclusions 

Herein we have reported an efficient and general route for the 

synthesis of 3-amino-indoles and -benzofurans from easily accessible 

acetamides, bearing respectively an aniline and a phenoxy group. The mild 

reaction conditions allow the tolerance of a wide range of functional 

groups and this method is not limited by the electronic or steric effect of 

the aromatic substituents. We demonstrated that the reaction requires in 

most cases a keteniminium salt intermediate to occur. However, it was 

shown that the cyclization directly onto the iminium intermediate cannot 

be neglected when electron-rich anilines or phenols were employed. 

Competition experiments were also conducted in order to confirm the 

ease of formation of the different 3-aminobenzoheteroles with indole 

being the fastest and benzothiophene the slowest, with benzofuran in 

between. Additionally, effect of R substituent on the conformational 

preference of the keteniminiums and their propensity toward 

electrocyclization were discussed via a DFT study. 

 

Experimental Section 

General Procedure for the Synthesis of 3-Aminoindoles 2 and 4 

In a dried flask under argon charged with a solution of amide 1 or 3 (0.40-

0.50 mmol, 1.0 equiv.) in CH2Cl2 (c = 0.12 M) was added dropwise at room 

temperature 2-fluoropyridine (3.6 equiv.) and then, over a period of 20-

30 min, triflic anhydride (3.3 equiv.). The resulting mixture was stirred at 

room temperature until complete consumption of the starting materials 

(from 2 h to 7 h). The reaction was then diluted with CH2Cl2, quenched 

with a saturated aqueous solution of NaHCO3 until pH 8-9 and stirred 

vigorously for 30 min at room temperature. The two layers were separated 

and the aqueous phase was extracted with CH2Cl2 (x2). The combined 

organic layers were dried over Na2SO4, filtered and concentrated under 

reduced pressure. Purification of the crude by flash column 

chromatography on silica gel (Cyclohexane/EtOAc: from 95/5 to 70/30) 

afforded desired 3-aminoindole 2 or 4. 

 

General Procedure for the Synthesis of 3-Aminobenzofurans 6 

In a dried flask under argon charged with a solution of amide 5 (0.50-

0.60 mmol, 1.0 equiv.) in CH2Cl2 (c = 0.12 M) was added dropwise at room 

temperature 2-fluoropyridine (1.2-2.4 equiv.) and then, over a period of 

15-25 min, triflic anhydride (1.1-2.2 equiv.). The resulting mixture was 

stirred at room temperature until complete consumption of the starting 

materials (from 2 h to 6 h). The reaction was then diluted with CH2Cl2, 

quenched with a saturated aqueous solution of NaHCO3 until pH 8-9 and 

stirred vigorously for 30 min at room temperature. The two layers were 

separated and the aqueous phase was extracted with CH2Cl2 (x2). The 

combined organic layers were dried over Na2SO4, filtered and 

concentrated under reduced pressure. Purification of the crude by flash 
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column chromatography on silica gel (Cyclohexane/EtOAc: from 95/5 to 

85/15) afforded the desired 3-aminobenzofuran 6. 
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