ORGANOMETALLICS

Transmetalation Reactions Yield New Tetra- and Pentairidium Carbonyl Complexes Containing σ -Bonded Phenyl Rings

Richard D. Adams* and Mingwei Chen

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States

Supporting Information

ABSTRACT: The new air-stable σ -phenyl tetrairidium carbonyl salt $[Et_4N][Ir_4(CO)_{11}Ph]$, **1**, has been obtained by transmetalation reactions between $[Et_4N][Ir_4(CO)_{11}Br]$ and SnPh₃OH in 45% yield or SnPh₄ in 36% yield. Compound **1** reacts with PPh₃ to yield the complex $[Et_4N][Ir_4(CO)_{11}(PPh_2C_6H_4)]$, **2**, which contains an ortho-metalated bridging PPh₂C₆H₄ ligand across an edge of a tetrahedral cluster of four iridium atoms. Compound **2** reacts with Ir(CO)(PPh₃)₂Cl by halide displacement to yield the two new uncharged pentairidium complexes Ir₅(CO)₁₂(Ph)(PPh₃), **3**, and Ir₅(CO)₁₁(PPh₃)(PPh₂C₆H₄), **4**. Compounds **3** and **4** both contain trigonal-bipyramidal clusters of iridium atoms. Compound **3** contains a σ -phenyl ligand coordinated to one of the apical iridium atoms. Compound **4** contains an ortho-metalated PPh₂C₆H₄ ligand that bridges an apical-equatorial edge of the trigonal-pyramidal cluster of metal atoms. Compound **4** was also obtained from **3** by reaction with PPh₃.

INTRODUCTION

Applications of iridium in catalysis have developed slowly compared to those of other metals from the precious metals group.¹ Most catalytic applications are of a homogeneous type.² Today iridium is the catalyst of choice for the synthesis of acetic acid by the carbonylation of methanol.³ Sinfelt showed that the addition of iridium greatly improved the activity of platinum for the catalytic reforming of petroleum.⁴ Gates has shown that iridium carbonyl cluster complexes are precursors to catalysts that exhibit good activity for hydrogenation of aromatics.⁵ Tin has been shown to be a valuable modifier of homogeneous transition metal catalysts.⁶ We have recently been investigating the synthesis and reactivity of polynuclear transition metal carbonyl complexes containing organotin ligands.^{7,8} To date, there have been very few examples of iridium carbonyl cluster complexes that contain tin ligands. Garlaschelli et al. have obtained a number of tetra- and hexairidium carbonyl complexes containing bridging SnX_3 ligands, X = Cl and Br, from reaction of the complex anion $[Ir_4(CO)_{11}Br]^-$ and $Ir_6(CO)_{16}$ with $SnCl_{24}$ SnBr₂, and the anion $[SnCl_3]^{-9}$ The triiridium complex Ir₃- $(CO)_6(SnPh_3)_3(\mu$ -SnPh₂)₃ was obtained from the reaction of $Ir_4(CO)_{12}$ with an excess of HSnPh₃ at 125 °C, eq 1.¹⁰

We have recently obtained some new tetrairidium carbonyl complexes containing SnPh₃ ligands from the reactions of

 $Ir_4(CO)_{12}$ and $Ir_4(CO)_{11}(PPh_3)$ with $SnPh_3OH$ in the presence of $[OH]^-$, eq 2. 11

We have now investigated the reaction of the anion $[Ir_4(CO)_{11}Br]^-$ with SnPh₃OH and SnPh₄. Interestingly, the iridium-containing product from these reactions, $[Et_4N]$ - $[Ir_4(CO)_{11}Ph]$, **1**, does not contain a tin ligand, but instead contains a terminally coordinated σ -phenyl ligand. SnPh₄ has been shown to be useful as a source of phenyl for palladium-catalyzed Stille coupling reactions.¹² Tilley has reported that hafnium complexes containing the SnPh₃ ligand can eliminate a SnPh₂ group to form complexes containing a σ -phenyl group, e.g., eq 3.¹³

Received: August 2, 2011 Published: October 11, 2011

Table 1. Crystallographic Data for Compounds 1-4

	1	2	3	4
empirical formula	Ir ₄ NC ₂₅ H ₂₅ O ₁₁	Ir ₄ PNC ₃₆ H ₃₄ O ₁₀	Ir ₅ PC ₃₆ H ₂₀ O ₁₂	Ir ₅ P ₂ C ₄₇ H ₂₉ O ₁₁
fw	1284.33	1440.49	1636.59	1792.75
cryst syst	monoclinic	monoclinic	monoclinic	monoclinic
lattice params				
a (Å)	15.6537(8)	33.565(4)	18.5348(4)	16.2096(8)
b (Å)	13.4349(7)	13.5442(18)	13.0734(3)	19.9166(10)
c (Å)	16.4958(9)	19.622(3)	15.9317(4)	16.9894(8)
α (deg)	90	90	90	90
β (deg)	113.836(1)	103.262(3)	103.922(1)	108.529(1)
γ (deg)	90	90	90	90
$V(Å^3)$	3173.3(3)	8683(2)	3747.05(15)	5200.5(4)
space group, No.	<i>P</i> 2 ₁ / <i>n</i> , 14	C2/c, 15	<i>P</i> 2 ₁ / <i>c</i> , 14	<i>P</i> 2 ₁ / <i>n</i> , 14
Z value	4	8	4	4
$ ho_{ m calc} \left({ m g/cm}^3 ight)$	2.688	2.270	2.901	2.448
μ (Mo K $lpha$) (mm ⁻¹)	16.775	12.312	17.798	12.971
temperature (K)	294(2)	294(2)	294(2)	294(2)
$2\Theta_{\max}$ (deg)	48.88	56.68	56.58	56.78
no. obsd $(I > 2\sigma(I))$	6457	7679	6609	7459
no. params	332	474	487	529
goodness of fit (GOF)	1.085	1.059	0.999	1.097
max. shift in cycle	0.001	0.001	0.001	0.001
residuals: ^a R1; wR2	0.0477; 0.1266	0.0432; 0.1261	0.0453; 0.1339	0.0622; 0.2054
absorp corr, max./min.	multiscan 1.000/0.417	multiscan 1.000/0.531	multiscan 1.000/0.540	multiscan 1.000/0.426
largest peak in final diff map $(e^-/\text{\AA}^3)$	2.70	2.08	1.15	2.38
$^{a}R = \sum_{kkl} (F_{obs} - F_{colo}) / \sum_{kkl} F_{obs} ; I$	$R_{\rm tr} = \left[\sum_{h \in I} w (F_{\rm obs} - F_{\rm calc})^2 \right]$	$[\Sigma_{\mu\nu} w F^2_{obs}]^{1/2}; w = 1/\sigma^2 (F_{e})$	(F_{obs}) : GOF = $\sum_{k \neq l} W(F_{obs} - $	F_{colc}] ² /($n_{dota} - n_{vari}$)] ^{1/2}

The use of aryl tin reagents may serve a convenient and effective method for preparing polynuclear metal carbonyl complexes containing σ -phenyl ligands from metal carbonyl complexes containing halide ligands.

EXPERIMENTAL SECTION

General Data. Reagent grade solvents were dried by the standard procedures and were freshly distilled under nitrogen prior to use. Infrared spectra were recorded on a Thermo Nicolet Avatar 360 FT-IR spectrophotometer. ¹H NMR spectra were recorded on a Varian Mercury 300 spectrometer operating at 300.1 MHz. Mass spectrometric (MS) measurements performed by a direct-exposure probe using electron impact ionization (EI) and electrospray ionization (ESI) were made on a VG 70S instrument. SnPh₃OH and Ir(CO)(PPh₃)₂Cl were obtained from Strem and were used without further purification. SnPh₄ was purchased from Gelest. [Et₄N][Ir₄(CO)₁₁Br] was prepared according to the published procedure.¹⁴ Product separations were performed by TLC in air on Analtech 0.25 and 0.5 mm silica gel 60 Å *F*₂₅₄ glass plates.

Synthesis of [Et₄N][Ir₄(CO)₁₁Ph], 1

(a) A 25.0 mg (0.068 mmol) amount of SnPh₃OH was added to 30.0 mg (0.023 mmol) of [Et₄N][Ir₄(CO)₁₁Br] in 25 mL of methanol. The reaction was stirred at room temperature for 12 h. The

solvent was then removed *in vacuo*, and the product was isolated by TLC by eluting with methylene chloride solvent to yield light yellow [Et₄N][Ir₄(CO)₁₁Ph], **1**, 13.5 mg (45% yield). Spectral data for 1: IR ν_{CO} (cm⁻¹ in CH₂Cl₂): 2067(m), 2028(vs), 1991(s), 1821(m), 1801(m). ¹H NMR (CDCl₃, in ppm): δ 6.65–6.69 (m, 5H, σ -Ph), 0.95–0.98 (t, 12H, CH₃), 1.182–1.452 (m, 8H, CH₂). MS ES (negative ion) for 1: m/z = 1155 (MH). The isotope distribution pattern was consistent with the presence of four iridium atoms.

(b) A 30.0 mg (0.076 mmol) amount of SnPh₄ was added to 25.0 mg (0.019 mmol) of $[Et_4N][Ir_4(CO)_{11}Br]$ in 25 mL of methanol. The reaction mixture was stirred at room temperature for 16 h. The solvent was then removed *in vacuo*. A¹¹⁹Sn NMR spectrum of the entire reaction mixture in CD₂Cl₂ solvent showed only two resonances, $\delta = -60.48$ (SnPh₃Br)¹⁵ and -129.79 (unreacted SnPh₄, confirmed by recording a spectrum of a sample of the SnPh₄ from the reagent bottle). The product **1** was isolated by TLC by eluting with a 6:1 methylene chloride/hexane solvent mixture to yield 10.9 mg (yield 36.4%).

Reaction of 1 with PPh₃ at 80 °C. A 2.0 mg (0.0076 mmol) amount of PPh₃ was added to 7.5 mg (0.0058 mmol) of 1 dissolved in 20 mL of benzene. The reaction solution was then heated to reflux for 1 h. After cooling, the solvent was removed *in vacuo*, and the product was isolated by TLC by eluting with a 3:1 hexane/methylene chloride solvent mixture to yield 5.0 mg of $[Et_4N][Ir_4(CO)_{10}(PPh_2C_6H_4)]$, 2 (60% yield). Spectral data for 2: IR ν_{CO} (cm⁻¹ in CH₂Cl₂): 2044(s), 2012(vs), 1978(vs), 1800(m), 1761(m). ¹H NMR (CDCl₃ in ppm): δ 7.19–7.32 (m, 14H, Ph), 0.91–0.97 (t, 12H, CH₃), 1.15–1.48 (m, 8H, CH₂). MS ES (negative ion) for 2: m/z = 1311 (MH). The isotope distribution pattern was consistent with the presence of four iridium atoms.

Reaction of 2 with HBF₄ under CO. A 0.06 mL amount of HBF₄ (51% in diethyl ether) was added to 14.0 mg (0.0097 mmol) of $[Et_4N][Ir_4(CO)_{11}(PPh_2C_6H_4)]$ dissolved in 20 mL of methanol. The reaction was stirred under an atmosphere of CO for 1 h. The solvent was removed *in vacuo*, and the product was then isolated by TLC by eluting with a 3:1 hexane/methylene chloride solvent mixture to yield 11.4 mg of the known compound $Ir_4(CO)_{11}(PPh_3)^{16}$ (81%) and 1.0 mg of $Ir_4(CO)_{12}$.

Reaction of [Et₄N][Ir₄(CO)₁₁Ph], 1, with Ir(CO)(PPh₃)₂Cl. A 9.20 mg (0.0118 mmol) amount of Ir(CO)(PPh₃)₂Cl was added to 14.4 mg (0.0112 mmol) of $[Et_4N][Ir_4(CO)_{11}Ph]$ that was dissolved in 25 mL of benzene. The reaction solution was heated to reflux for 2 h. The solvent was then removed in vacuo, and the product was isolated by TLC by eluting with a 3:1 hexane/methylene chloride solvent mixture. This yielded in order of elution 1.56 mg of brown $Ir_5(CO)_{12}Ph(PPh_3)$, 3 (11% yield), 3.50 mg of brown Ir₅(CO)₁₁(PPh₃)(PPh₂C₆H₄), 4 (22% yield), 6.02 mg of yellow 2 (37% yield), and 1.21 mg of $Ir_4(CO)_{11}$ - $(PPh_3)^{16}$ (8% yield). The yield of 4 was increased to 40% at the expense of 3 (only a trace) and 2 (17%) when the reflux period was increased to 5 h. Spectral data for 3: IR ν_{CO} (cm⁻¹ in CH₂Cl₂): 2080(w), 2053(vs), 2045(vs), 2018(s), 1841(m), 1813(m). ¹H NMR (CDCl₃, in ppm): δ 7.19-7.41 (m, 15H, Ph), 6.67-6.72 (m, 5H, σ-Ph). MS ES (negative ion) for 3: m/z = 1635 (MH). The isotope distribution pattern was consistent with the presence of five iridium atoms. Spectral data for 4: IR $v_{\rm CO}$ (cm⁻¹ in CH₂Cl₂): 2061(s), 2038(vs), 2022(s), 2007(s), 1990(m), 1850(m), 1816(m), 1787(m). ¹H NMR (CDCl₃, in ppm): δ 7.19–7.42 (m, 29H, Ph). MS ES (positive ion) for 4: m/z = 1794 (M⁺), 1831(M + K⁺). The isotope distribution pattern was consistent with the presence of five iridium atoms.

Synthesis of 4 by the Reaction of 2 with $Ir(CO)(PPh_3)_2CI$. A 7.3 mg (0.0094 mmol) sample of $Ir(CO)(PPh_3)_2CI$ was added to 13 mg (0.0090 mmol) of 4 dissolved in 25 mL of benzene. The reaction was heated to reflux for 5 h. The solvent was removed *in vacuo*, and the product was then isolated by TLC by eluting with a 3:1 hexane/ methylene chloride solvent mixture. Yield: 1.78 mg of 4 (11%).

Synthesis of 4 by the Reaction of 3 with PPh₃. A 1.2 mg (0.0046 mmol) amount of PPh₃ was added to 5.6 mg (0.0042 mmol) of 3 dissolved in 20 mL of benzene. The reaction was heated to reflux for 1.5 h. The solvent was then removed *in vacuo*, and the product was isolated by TLC by eluting with a 3:1 hexane/methylene chloride solvent mixture. Yield: 2.66 mg of 4 (43% yield).

Crystallographic Analyses. Single crystals of 1 (yellow), 2 (yellow), and 3 (brown) suitable for X-ray diffraction analyses were obtained by slow evaporation of solvent from hexane/methylene chloride solvent mixtures at -25 °C. Single crystals of compound 4 were grown from a benzene/methylene chloride solvent mixture by slow evaporation of solvent at room temperature. Each data crystal was glued onto the end of a thin glass fiber. X-ray intensity data were measured by using a Bruker SMART APEX CCD-area detection diffractometer by using Mo K α radiation ($\lambda = 0.71073$ Å). The raw data frames were integrated with the SAINT+ program by using a narrow-frame integration algorithm.¹⁷ Corrections for Lorentz and polarization effects were also applied with SAINT+. An empirical absorption correction based on the multiple measurement of equivalent reflections was applied in each analysis by using the program SADABS. All structures were solved by a combination of direct methods and difference Fourier syntheses and refined by full-matrix least-squares on F^2 , using the SHELXTL software package.¹⁸ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed in geometrically idealized positions and included as standard riding atoms during the least-squares refinements. Crystal data, data collection parameters, and results of the analyses are listed in Table 1. Compounds 1, 2, 3, and 4 all crystallized in the monoclinic crystal system. The space group $P2_1/n$ was indicated by the systematic absences in the intensity data for compounds

Figure 1. ORTEP diagram of the molecular structure of the complex anion $[Ir_4(CO)_{11}Ph]^-$ of 1 showing 30% thermal ellipsoid probability. The hydrogen atoms on the phenyl ring are not shown for clarity. Selected interatomic bond distances (Å) and angles (deg) are as follows: Ir1–Ir2 = 2.7494(7), Ir1–Ir3 = 2.7393(7), Ir1–Ir4 = 2.7515(7), Ir2–Ir3 = 2.7015(7), Ir2–Ir4 = 2.7235(7), Ir3–Ir4 = 2.7317(7), Ir1–C44 = 2.125(13); C44–Ir1–Ir2 = 104.4(4), Ir4–Ir1–C44 = 160.0(4).

1 and 4 and was confirmed by the successful solutions and refinements of those structures. There is one symmetry-independent molecule in the asymmetric unit in the crystal structures of 1 and of 4. The systematic absences in the intensity data for compound 2 were consistent with the space groups Cc and C2/c. The centrosymmetric space group C2/c was selected and confirmed by the successful solution and refinement of the structure. There is one symmetry-independent molecule of 2 in the asymmetric crystal unit. The crystal of 2 also contains a half-molecule of hexane from the crystallization solvent that was cocrystallized with the complex. The space group $P2_1/c$ was identified uniquely on the basis of the systematic absences in the intensity data for compound 3. There is one molecule of methylene chloride and a half-molecule of benzene from the crystallization solvent cocrystallized with 4 in the asymmetric crystal unit. The solvent molecules were satisfactorily refined with isotropic thermal parameters.

RESULTS AND DISCUSSION

The new air-stable tetrairidium anion $[Ir_4(CO)_{11}(\sigma-Ph)^-, 1]$, was isolated as the $[Et_4N]^+$ salt in 45% yield from the reaction of $[Et_4N][Ir_4(CO)_{11}Br]$ with SnPh₃OH. $[Et_4N]1$ was characterized by a combination of IR, ¹H NMR, MS, and single-crystal X-ray diffraction analyses. An ORTEP diagram of the tetrairidium anion 1 is shown in Figure 1. The structure of the anion 1 is similar to that of the complex anion $[Ir_4(CO)_{11}Br]^-$ from which it was made.¹⁹ The anion 1 consists of a tetrahedral Ir₄ cluster with 11 carbonyl ligands distributed as shown in the figure. There are three bridging carbonyl ligands. All of the other CO ligands are terminally coordinated. The Ir-Ir bond distances are similar to those found in the anion $[Ir_4(CO)_{11}Br]^{-19}$ The anion 1 contains one σ -phenyl ligand that is terminally coordinated to iridium atom Ir(1). The Ir-C bond distance to the phenyl ligand, Ir(1)-C(44) = 2.125(13) Å, is slightly longer than the Ir-C distances to the σ -phenyl ligands in the previously reported

Figure 2. ORTEP diagram of the molecular structure of the complex anion $[Ir_4(CO)_{10}(PPh_2C_6H_4)]^-$ of **2** showing 30% thermal ellipsoid probability. Hydrogen atoms are not shown for clarity. Selected interatomic bond distances (Å) and angles (deg) are as follow: Ir1-Ir2 = 2.7367(6), Ir1-Ir3 = 2.6633(6), Ir1-Ir4 = 2.7434(7), Ir2-Ir3 = 2.7383(7), Ir2-Ir4 = 2.7183(7), Ir3-Ir4 = 2.7728(7), Ir3-C56 = 2.096(12), Ir1-P1 = 2.286(3); P1-Ir1-Ir2 = 97.57(7), P1-Ir1-Ir3 = 90.32(8), P1-Ir1-Ir4 = 149.50(7), C56-Ir3-Ir1 = 93.3(3).

Ir₃, Ir₄, and Ir₈ complexes: Ir₃(CO)₉(Ph)(μ_3 -PPh)(μ -dppm), 2.084(16) Å,²⁰ Ir₄(CO)₈(σ -Ph)[μ_4 - η^3 -PhPC(H)CPh](μ -PPh₂), 2.09(1) Å,²¹ and Ir₈(CO)₁₆(σ -Ph)(μ -PPh₂)(μ_4 -PPh), 2.06(4) Å²²

Compound 1 was also obtained in 36.4% yield from the reaction of SnPh₄ with $[Et_4N][Ir_4(CO)_{11}Br]$ in methanol solvent over a 16 h period. An analysis of a reaction mixture by ¹¹⁹Sn NMR spectroscopy revealed a resonance at $\delta = -60.48$, which is consistent with the formation of the tin compound SnPh₃Br.¹⁵ This observation confirms that the formation of 1 by the reaction with SnPh₄ occurs by Br for Ph transmetalation, eq 4.

$$[Ir_4(CO)_{11}Br]^- + SnPh_4 \rightarrow [Ir_4(CO)_{11}Ph]^- + SnPh_3Br$$
(4)

Transmetalation reactions between aryltin compounds and metal halide complexes of platinum²³ and palladium²⁴ have been known for some years. Recently, aryltin compounds have been used to transfer aryl groups to gold(I) halides.²⁵ Tin compounds also form the basis for the important transmetalation step in the well-known Stille coupling reactions.¹² Although SnPh₃OH reacts with Ir₄(CO)₁₂ in the presence of base to yield Ir₄Sn complexes, eq 2, we think the reaction with the bromo complex [Ir₄(CO)₁₁Br]⁻ reported to yield 1 here in the absence of base proceeds instead by a transmetalation process.

When compound 1 was allowed to react with PPh₃ in benzene solvent at reflux for 1 h, the new compound $[Et_4N][Ir_4(CO)_{10}-(PPh_2C_6H_4)]$, 2, was obtained and isolated in 60% yield. Compound 2, a salt, was characterized by a combination of IR, ¹H NMR, MS, and single-crystal X-ray diffraction analyses. An ORTEP diagram of the tetrairidium anion of 2 is shown in Figure 2. The anion of 2 consists of a tetrahedral Ir₄ cluster with 10 carbonyl ligands. Three of the CO ligands are bridging ligands about the Ir(1)–Ir(2)–Ir(3) triangle. The other CO ligands are terminally

Figure 3. ORTEP diagram of the molecular structure of $Ir_5(CO)_{12}Ph-(PPh_3)$, **3**, showing 30% thermal ellipsoid probability. Hydrogen atoms are not shown for clarity. Selected interatomic bond distances (Å) and angles (deg) are as follows: Ir1-Ir2 = 2.7303(8), Ir1-Ir3 = 2.8268(8), Ir1-Ir4 = 2.7215(8), Ir2-Ir3 = 2.6848(8), Ir2-Ir4 = 2.7988(8), Ir2-Ir5 = 2.7765(8), Ir3-Ir4 = 2.7021(8), Ir3-Ir5 = 2.7629(8), Ir4-Ir5 = 2.7912(8), Ir5-C4 = 2.116(16), Ir1-P1 = 2.311(4); P1-Ir1-Ir2 = 115.81(9), P1-Ir1-Ir3 = 171.83(9), C4-Ir5-Ir2 = 102.1(4), C4-Ir5-Ir4 = 160.3(4), Ir1-Ir3-Ir5 = 108.93(2).

coordinated. The most interesting ligand is an edge-bridging PPh₂C₆H₄ group derived from the PPh₃ reagent that became ortho-metalated to one of the Ir atoms. The aryl group is σ -bonded to Ir(3). The Ir–C bond, Ir3–C56 = 2.096(12) Å, is similar in length to that of the σ -bonded phenyl group in anion **1**. The shortest Ir–Ir bond in the cluster is the one bridged by the PPh₂C₆H₄ ligand, Ir1–Ir3 = 2.6633(6) Å. The longest Ir–Ir bond is the one trans to the σ -bonded aryl group, Ir3–Ir4 = 2.7728(7) Å. This may be due to a strong trans-structural effect of the σ -bonded aryl group. ²⁶ The fate of the phenyl group that was eliminated from **1** in the reaction and that of the hydrogen atom that was cleaved from the ortho-position of the metalated phenyl ring in **2** has not been established. It is presumed that they have been combined to form benzene.

Interestingly, when anion **2** was treated with HBF₄ under an atmosphere of CO for 1 h, the anion was neutralized by the addition of H⁺. The H⁺ was added to the carbon atom of the metalated phenyl ring. A CO ligand was added to the complex, and the known compound $Ir_4(CO)_{11}(PPh_3)^{16}$ was obtained in 81% yield together with a trace of $Ir_4(CO)_{12}$.

Compounds 2 (37% yield) and $Ir_4(CO)_{11}(PPh_3)$ (8% yield) together with two new pentairidium compounds, $Ir_5(CO)_{12}Ph-(PPh_3)$, 3 (11% yield), and $Ir_5(CO)_{11}(PPh_3)(PPh_2C_6H_4)$, 4 (22% yield), were obtained from the reaction of 1 with $Ir(CO)-(PPh_3)_2Cl$ in a benzene at reflux. The yield of 4 was increased to 40% at the expense of the formation of 3 by increasing the reaction time to 5 h, probably because 3 reacts with PPh_3 to yield 4; see below. Compounds 3 and 4 were both characterized by single-crystal X-ray diffraction analysis. An ORTEP diagram of the molecular structure of 3 is shown in Figure 3. The compound contains a trigonal-bipyramidal cluster of five iridium atoms. The apical iridium atom Ir(1) contains a PPh_3 ligand, and apical

iridum atom Ir(5) contains a terminally coordinated σ -phenyl ligand. The Ir–Ir bond distances span a considerable range, 2.6848(4)–2.8269(8) Å. The two longest Ir–Ir bonds lie trans to the phosphine and σ -phenyl ligands, Ir(1)–Ir(3) = 2.8269(8) Å and Ir(4)–Ir(5) = 2.7912(8) Å, respectively. The Ir–C bond to the σ -phenyl ligand is similar in length to that found in 1,

Figure 4. ORTEP diagram of the molecular structure of $Ir_5(CO)_{11}$ -(PPh₃)(PPh₂C₆H₄), 4, showing 30% thermal ellipsoid probability. Hydrogen atoms are not shown for clarity. Selected interatomic bond distances (Å) and angles (deg) are as follows: Ir1–Ir2 = 2.7555(12), Ir1–Ir3 = 2.7932(12), Ir1–Ir4 = 2.7047(13), Ir2–Ir5 = 2.6891(12), Ir3–Ir5 = 2.6948(12), Ir4–Ir5 = 2.7607(14), Ir2–C70 = 2.14(2), Ir1–P1 = 2.317(6), Ir5–P2 = 2.289(7); P1–Ir1–Ir2 = 109.66(14), P1–Ir1–Ir3 = 170.05(15), P2–Ir5–Ir2 = 93.34(16), P2–Ir5–Ir3 = 104.09(16), P2–Ir5–Ir4 = 154.95(16), Ir1–Ir2–Ir5 = 108.71(4), Ir3–Ir2–C70 = 103.8(6), Ir1–Ir2–C70 = 138.1(5), Ir5–Ir2–C70 = 90.1(5).

Scheme 1

Ir5-C4 = 2.116(16) Å. Compound 3 has four bridging carbonyl ligands with two bridging to each of the apical Ir atoms of the cluster.

An ORTEP diagram of the molecular structure of 4 is shown in Figure 4. This compound also consists of a trigonal-pyramidal cluster of five iridium atoms. As in 3, the apical iridium atom Ir(1) also contains a PPh₃ ligand. There is a bridging PPh₂C₆H₄ ligand similar to that found in 2 with the phosphorus atom coordinated to Ir(5) and the metalated phenyl ring coordinated to the equatorial Ir atom, Ir(2), Ir2–C70 = 2.14(2) Å. The PPh₂C₆H₄-bridged bond Ir(2)–Ir(5) is the shortest in the molecule, 2.6891(8) Å, and the Ir(1)–Ir(3) bond that lies trans to the PPh₃ ligand is the longest in the molecule, 2.8269(8) Å, as found in 3. Anion 2 was found to react with Ir(CO)(PPh₃)₂Cl to give compound 4 in 11% yield, and 3 was transformed into 4 in 43% yield in a CO ligand substitution reaction with PPh₃ that also results in metallation of one of the PPh₃ rings and the elimination of benzene.

A summary of the reactions described in this report is shown in Scheme 1. The new air-stable anionic tetrairidium complex 1 containing a terminally coordinated ligand was obtained via a phenyl for Br exchange (transmetalation) reaction between $[Ir_4(CO)_{11}Br]^-$ and the tin reagents SnPh₃OH and SnPh₄. Anion 1 reacts with PPh₃ to yield the tetrairidium anion 2 by the addition of one PPh3 ligand, loss of one CO ligand, and an ortho-metalation of one of the phenyl rings of the PPh₃ ligand. The original phenyl ligand in 1 and the hydrogen atom that was cleaved from the metalated phenyl ring were eliminated from the complex in this reaction; presumably they were combined to form benzene. When 2 was treated with H⁺ in the presence of CO, the ortho-metalation was reversed presumably via protonation at one of the metal atoms followed by C-H reductive elimination of the metalated phenyl ring and the addition of CO to that site. Treatment of 1 with $Ir(CO)(PPh_3)_2Cl$ also yielded some 2, possibly by a simple competing reaction of 1 with some PPh₃ released from the $Ir(CO)(PPh_3)_2Cl$. In addition the two new pentairidium complexes 3 and 4 were obtained from this reaction. Complex 3 was formed by an addition of one equivalent of $Ir(CO)(PPh_3)_2Cl$ to 1 accompanied by the loss of one PPh₃

ligand and Cl⁻. Compound 4 was formed by an addition of one equivalent of $Ir(CO)(PPh_3)_2Cl$ to 1 accompanied by the loss of one CO ligand and Cl⁻. Interestingly, compound 4 was also obtained by the reaction of 2 with one equivalent of Ir(CO)- $(PPh_3)_2Cl$ that was accompanied by the loss of one PPh_3 ligand and Cl⁻ and also by reaction of 3 with PPh_3 that was accompanied by a loss of CO and the elimination of the σ -phenyl ligand and the hydrogen atom from the metalated phenyl ring.

CONCLUSIONS

Phenyl-substituted tin compounds are active for the synthesis of anionic stable σ -phenyl iridium carbonyl cluster complexes by transmetalation reactions. The anion 1 has sufficient nucleophilicity to react with the chloroiridium complex Ir(CO)(PPh₃)₂Cl by halide displacement to yield uncharged pentairidium complexes. Investigations of reactions of 1 with other metal halide complexes are in progress.

ASSOCIATED CONTENT

Supporting Information. CIF files for the structural analyses are available. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: Adams@mail.chem.sc.edu.

ACKNOWLEDGMENT

This research was supported by the National Science Foundation under grant no. CHE-1111496. We thank the USC Nano-Center for financial support of this work and Mr. Qiang Zhang for assistance with the structural analyses.

REFERENCES

(1) Crabtree, R. H. Top. Organomet. Chem. 2011, 34, 1–10.

(2) (a) Jensen, C. M. Chem. Commun. 1999, 2443–2449. (b) César, V.; Bellemin-Laponnaz, S.; Gade, L. H. Chem. Soc. Rev. 2004, 33, 619–636. (c) Lu, S.-M.; Han, X.-W.; Zhou, Y.-G. Adv. Synth. Catal. 2004, 346, 909–912. (d) Matthias W. Haenel, M. W.; Oevers, S.; Angermund, K.; Kaska, W. C.; Fan, H.-J.; Hall, M. B. Angew. Chem. Int. Ed. 2001, 40, 3596–3600.

(3) Jones, J. H. Platinum Met. Rev. 2000, 44, 94-105.

(4) Sinfelt, J. H. Bimetallic Catalysts: Discoveries, Concepts, and Applications; John Wiley & Sons: New York, 1983.

(5) Gates, B. C. Chem. Rev. 1995, 95, 511-522.

(6) Holt, M. S.; Wilson, W. L.; Nelson, J. H. Chem. Rev. 1989, 89, 11-49.

(7) Adams, R. D.; Captain, B.; Smith, J. L., Jr. Inorg. Chem. 2004, 43, 7576–7578.

(8) Adams, R. D.; Trufan, E. Phil. Trans. R. Soc. 2010, 368, 1473-1493.

(9) Garlaschelli, L.; Greco, F.; Peli, G.; Manassero, M.; Sansoni, M.; della Pergola, R. J. Chem. Soc., Dalton Trans. **2003**, 4700–4703.

(10) Adams, R. D.; Captain, B.; Smith, J. L., Jr.; Hall, M. B.; Beddie, C. L.; Webster, C. E. *Inorg. Chem.* **2004**, *43*, 7576–7578.

(11) Adams, R. D.; Chen, M.; Trufan, E.; Zhang, Q. Organometallics 2011, 30, 661–664.

(12) (a) Espinet, P.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 4704–4734. (b) Yabe, Y.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Tetrahedron 2010, 66, 8654–8660.

(13) Neale, N. R.; Tilley, T. D. J. Am. Chem. Soc. 2005, 127, 14745-14755.

(14) Chini, P.; Ciani, G.; Garlaschelli, L.; Manassero, M.; Martinengo,

S.; Sironi, A.; Canziani, F. J. Organomet. Chem. 1978, 152, C35-C38.

(15) Ahmet, M. T.; Houlton, A.; Frampton, C. S.; Miller, J. R.; Roberts, R. M.; Silver, J.; Yavari, B J. Chem. Soc., Dalton Trans. **1993**, 1, 3085–3092.

(16) Ros, R.; Scrivanti, A.; Albani, V. G.; Braga, D.; Garlaschelli, L. J. Chem. Soc., Dalton Trans. **1986**, 2411–2421.

(17) SAINT+, version 6.2a; Bruker Analytical X-ray Systems, Inc.: Madison, WI, 2001.

(18) Sheldrick, G. M. SHELXTL, version 6.1; Bruker Analytical X-ray Systems, Inc.: Madison, WI, 1997.

(19) Ciani, G.; Garlaschelli, L.; Manassero, M.; Martinengo, S.; Sironi, A.; Canziani, F. J. Organomet. Chem. **1980**, 199, 271–279.

(20) Harding, M. M.; Nicholls, B. S.; Smith, A. K. J. Chem. Soc., Dalton Trans. 1983, 1479-1481.

(21) Pereira, R. M. S.; Fujiwara, F. Y.; Vargas, M. D. Organometallics 1997, 16, 4833–4838.

(22) de Araujo, M. H.; M., D.; Braga, D.; Grepioni, F. Polyhedron 1998, 17, 2865–2875.

(23) (a) Eaborn, C.; Odell, K. J.; Pidcock, A. J. Chem. Soc., Dalton Trans. 1979, 134–138. (b) Eaborn, C.; Odell, K. J.; Pidcock, A. J. Chem. Soc., Dalton Trans. 1979, 758–760. (c) Eaborn, C.; Kundu, K.; Pidcock, A. J. Organomet. Chem. 1979, 170, C18–C20. (d) Eaborn, C.; Odell, K. J.; Pidcock, A. J. Chem. Soc., Dalton Trans. 1978, 1288–1294. (e) Eaborn, C.; Odell, K. J.; Pidcock, A. J. Chem. Soc., Dalton Trans. 1978, 357–368. (f) Eaborn, C.; Odell, K. J.; Pidcock, A. J. Organomet. Chem. 1978, 146, 17–21. (g) Eaborn, C.; Odell, K. J.; Pidcock, A. J. Organomet. Chem. 1975, 96, C38–C40. (h) Weisemann, C.; Schmidtberg, G.; Brune, H. A. J. Organomet. Chem. 1989, 362, 63–76. (i) Weisemann, C.; Schmidtberg, G.; Brune, H. A. J. Organomet. Chem. 1989, 365, 403–412. (j) Brune, H. A.; Schmidtberg, G.; Weisemann, C. J. Organomet. Chem. 1989, 371, 121–127.

(24) (a) Suggs, J. W.; Lee, K. S. J. Organomet. Chem. 1986, 299, 297–309.
 (b) Molter, A.; Mohr, F. Z. Anorg. Allg. Chem. 2009, 635, 134–138.

(25) (a) Meyer, N.; Sivanathan, S.; Mohr, F. J. Organomet. Chem.
2011, 696, 1244–1247. (b) Meyer, N.; Lehmann, C. W.; Lee, T. K. M.; Rust, J.; Yam, V. W. W.; Mohr, F. Organometallics 2009, 28, 2931–2934.
(c) Bojan, R. V.; López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E. J. Organomet. Chem. 2010, 696, 2385–2393.

(26) Shi, L. L.; Zhao, S. S.; Zhao, S. S.; Li, H.; Su, Z. Theor. Chem. Acc. 2009, 124, 29–36.