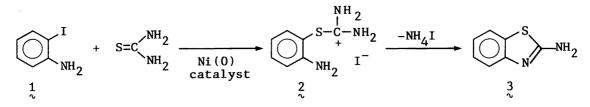
CHEMISTRY LETTERS, pp. 265-266, 1986.


A NOVEL SYNTHESIS OF 2-BENZOTHIAZOLAMINE AND ITS DERIVATIVES BY A NICKEL(0)-CATALYZED REACTION OF 1,2-AMINOIODOARENES WITH THIOUREAS

Kentaro TAKAGI

College of Liberal Arts and Science, Okayama University, Tsushima, Okayama 700

In the presence of a nickel(0) complex, 1,2-aminoiodoarenes underwent the reaction with thioureas to provide a facile, sitespecific, and general synthetic procedure of 2-benzothiazolamine and its derivatives under non-oxidative conditions.

The application of transition organometallic compounds to a synthesis of heterocyclic compounds has been proved to be unequivocally useful.¹⁾ As a constructive material of N-C-N, N-C-S, N-C, S-C, N, or S fragment of heterocycles, a versatility of thiourea (TU) is well established in heterocyclic chemistry: however, its utilization to a metal-promoted heterocyclic synthesis was scarcely undertaken, despite a propensity of TU to ligate to metals.^{2,3)} Therefore, a metal-assisted ring closure between TU and otherwise-inert bifunctional substrates is intrigues, if the latter are activated by metals. Here we will report a reaction of 1,2-aminoiodoarenes with TU or its derivatives (TUS) leading to 2-benzothiazolamine (3) and its derivatives with the aid of a nickel(0) complex.

In the presence of a catalytic amount of nickel(0) complex, generated in situ from bis(triethylphosphine)nickel(II) chloride and sodium cyanoborohydride as a reducing agent, o-iodoaniline (1) was reacted with TU in N,N-dimethylformamide (DMF) at 60 °C for 20 h to afford $\frac{3}{2}$ in a 92% yield. Representative results are summarized in Table 1. It is to be noted that both alkenyl and ketonic groups were left intact under employed conditions.⁴⁾ Since this nickel(0) enables aryl halides to undergo a nucleophilic displacement with TU under cited conditions,⁵⁾ $\frac{3}{3}$ was probably formed via an isothiuronium intermediate (2) in which an intramolecular nucleophilic addition of amino group onto imino group followed by a deamination might take place. The latter condensation step proceeded much faster than the proceeding step, judging from the fact that an interrupted solution contained only 1 and 3. Although steric hindrance decreased the rate of reaction considerably, TUS could be used instead of TU to produce a variety of N-substituted or N,N-disubstituted derivatives of $\frac{3}{2}$ in good yields: symmetric TUS was suitable for the preparation of a N-alkyl or N,N-di-alkyl derivative of $\frac{3}{2}$, whereas asymmetric TUS was suitable for a N-phenyl derivative

Table 1. Synthesis of Benzothiazolamine and its Derivatives								
Run	$R - \bigcup_{NH_2}^{I} R^1 R^2 NC(S) CNR^3 R^4$				Temp/°C	Time/h	Yield/ s yield/ s	
	R	² R ¹	R ²	R ³	R ⁴		R ·	
1	Н	н	Н	н	н	60	20	87 (93)
2	н	Н	Н	н	Н	80	3	(74) ^{c)}
3	Н	Н	Н	Н	Н	100	1	(84)
4	н	Н	Н	Н	Н	120	0.5	(81)
5	5–CH ₃	н	Н	Н	Н	60	90	89
6	5–C1	н	Н	Н	н	60	20	94
7	Н	СНз	Н	Н	Н	60	30	(54) ^{d)}
8	н	CH ₃	Н	СН3	Н	60	40	85
9	н	$n - C_4 \tilde{H}_9$	Н	n-C4H9	Н	60	60	85
10	н	CH3	CH ₃	СНЗ	CH ₃	100	20	81
11	н	с _б й ₅	н	ห้	ห้	60	24	69
12	5–CF ₃	с ₆ н ₅	Н	Н	Н	60	40	93

Synthesis of Benzothiazolamine and its Derivatives^{a)} Tabla 1

Every runs were carried out under nitrogen. Molar ratio of each component (ArI/TUS/ a) NiCl₂(PEt₃)₂/NaBH₃CN) was 1.0/1.5/0.02/0.03 (Runs 1–7) or 1.0/1.5/0.04/0.06 (Runs 8–12). The products were isolated by column chromatography on silica gel. Isolated yields. Yields in parentheses were determined by GLC using internal standards.

ь) The conversion was 91%. c)

d) The conversion was 88%. 3 was also obtained in a yield of 28%.

of 3. N,N-Diphenyl-TUS induced the decomposition of the nickel(0) complex and failed to give the desired product. Thus, the present nickel(0)-catalyzed reaction not only expands the utility of TUS in heterocyclic syntheses but also offers a facile and sitespecific synthetic procedure of $\frac{3}{2}$ and its derivatives,⁶⁾ which are widely used as starting materials for the synthesis of biologically active substances.^{//}

References

- J. L. Davidson and P. N. Preston, Adv. Heterocyclic Chem., 30, 319 (1982). 1)
- T. S. Griffin, T. S. Woods, and D. L. Klayman, Adv. Heterocyclic Chem., 18, 99 2) (1975).
- 3) D. Neibecker and B. Castro, Tetrahedron Lett., 1977, 2351; T. F. Murray, E. G. Samsel, V. Varma, and J. R. Norton, J. Am. Chem. Soc., 103, 7520 (1981).
- After 20 h, 97% of 1,1-diphenylethene or 96% of acetophenone was recovered from 4) the reaction solution.
- K. Takagi, Chem. Lett., 1985, 1307. 5)
- Hitherto, 3 and its derivatives were conveniently prepared by the oxidation of 6) arylthioureas (A), the thiocyanation of p-substituted aniline (B), or the reaction of 2-aminothiophenol with isothiocyanates (c). However, each of these methods suffered such disadvantage as low chemoselectivity (A and B), low regioor siteselectivity (A), lack of generality (B), and low yield (C).
- See for example, R. A. Glennon, J. J. Gaines, and M. E. Rogers, J. Med. Chem., 7) 24, 766 (1981).

(Received January 6, 1986)