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The broad spectrum of biochemical activities of 
various benzofurans has led to many investigations to 
prepare specific target structures from natural sources 
or via synthetic methods. Several arylbenzofurans were 
extracted from the stem bark [17], root bark [18], and 
leaves [19] of various mulberry trees, some of which were 
also prepared via multistep syntheses [20,21]. Notable 
methods for the synthesis of benzofurans include metal-
free cyclization of ortho-hydroxystilbenes mediated by 
hypervalent iodine reagents [22], Ru-catalyzed isomeri-
zation [23] of appropriate precursors [24], cross-coupling 
of alkali-metal salts of silanols with aromatic halides [25], 
Pd-catalyzed addition of potassium aryltrifluoroborates 
to aliphatic nitriles [26], Sonogashira coupling of O-iodo-
anisoles with terminal alkynes followed by electrophilic 
cyclizations [27], and one-pot Pd-catalyzed coupling of 
ortho-bromophenols with enolizable ketones [28].

In the framework of our studies on the synthesis of 
various heterocyclic systems [29-31], and in continuation 
of our program on the use of cyclohexenone derivatives 
1a-c in the synthesis [32-34], we decided to take advantage 
of the reactivity of cyclohexenone derivatives for possible 
coupling with benzoquinone (BQ), as shown in Scheme 1 
for the heteroannulation of 1a with BQ. This work resulted 
in the one-pot synthesis of benzofuran and furanylidene-
benzofuran systems 2-4 in PhMe/AcOH (4:1) medium.

Results and discussion
Confident in the application of [3+2] heteroannulations 
in the preparation of benzofuran structures, we first tar-
geted the synthesis of 2. For this purpose, we reacted 1a 
with BQ in a refluxing PhMe/AcOH mixture, in which 81% 
of 2 was obtained after 24 h (Scheme 1). It is noteworthy 
that the synthesis of 2 was previously reported via a three-
step process taking 6 days and achieving an overall yield 
of about 80% [35], whereas we could access 2 through a 
single step reaction (Scheme 2). Mechanistically, the reac-
tion is probably going through a formal [3+2] process, and 
presumably a cyclic transition state (1a-BQH+) is involved. 
Protonation of BQ in acidic conditions and formation of 
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Abstract: Three different reactions were explored leading 
to the synthesis of various benzofurans. All reactions 
took place under AcOH catalysis in a one-pot manner. As 
a result, benzoquinone derivatives underwent heteroan-
nulation with either itself or cyclohexanones to produce 
furanylidene-benzofuran or benzofuran structures, 
respectively.

Keywords: benzofuran, furanylidene-benzofuran, benzo-
quinone, heteroannulation, one-pot reaction

Introduction
Heterocyclic compounds possessing the benzofuran core 
[1], of either natural or synthetic origin [2], are very impor-
tant due to their exhibition of various biological activities. 
This has led to numerous investigations to design proce-
dures for the synthesis of benzofuran based structures 
[3,4] and to study their biological behavior [5] as anti-
oxidant [6], anticancer [7], antimicrobial [8], antitumor 
[9], and immunomodulatory [10] agents. As a result, the 
extensive physiological properties and the high natural 
occurrence of benzofuran derivatives have resulted in 
their use as versatile biodynamic and useful therapeutic 
agents. Important natural examples include moracins 
[11], cicerfuran [12], and conocarpan [13], while bufuralol 
[14], amiodarone [15], and ailanthoidol [16] are represen-
tative derivatives of biologically active synthetic benzofu-
ran molecules (Fig. 1).
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BQH+ [36] and its participation in hetrocycloadditions 
have precedence [37].

To gain some understanding of the process, we 
replaced 1a with 1b. Treatment of BQ with 1b (Table 1) in 
refluxing PhMe/AcOH solution for 3 days gave a complex 
mixture of products from which m-cresol, hydroquinone 
(HQ), and low yields of product 3 were identified (entry 1). 
The presence of a HQ skeleton in the structure of 3 and the 
formation of m-cresol as a side product suggested that a 
redox process could be involved. Therefore, similar reac-
tions were performed replacing BQ with HQ. When HQ 
and 1b were used, no formation of 3 was detected (entry 2), 
while a repeat of each reaction in the absence of 1b was 
also unsuccessful (entries 3-4). In contrast, a mixture of 
BQ and HQ produced a 70% yield of 3 after an 18 h reflux 
in PhMe/AcOH (entry 5). It is noteworthy that 3 belongs to 
the group of furanylidene-benzofuran heterocycles which 
contain both benzofuran and additional lactone moieties 
and are important for their pigment [38] and biochemical 
[39] properties.

To further understand the process, we repeated 
the reactions in the presence of CD3CO2D, in which the 
same results were obtained (entry 6), proving the lack 
of the participation of acetic acid in the structure of the 
product. Similarly, use of cyclohexa-1,4-diene (CHD), as 
a radical scavenger [40], halted the reaction completely, 
supporting the inclusion of a redox process in the reaction 

(entry 7). Changing the solvent (entries 8-12) or the acid 
reagent (entries 13-16) did not improve the results. The 
use of two other BQ derivatives (2,5-dimethylcyclohexa-
2,5-diene-1,4-dione, 2,5-DMBQ, entry 17 and 2,6-dimethyl-
cyclohexa-2,5-diene-1,4-dione, 2,6-DMBQ, entry 18) gave 
no respective products, as would be expected from their 
more electron rich nature.

To confirm that a hydrogen donor source such as 1b 
or HQ is needed for the reaction to proceed, we replaced 
1b with either 1c or 1d and repeated the reactions in the 
absence of HQ (Scheme 3). Thus, with 2:1 mixtures of BQ 
and 1c (or 1d) no detectable reactions were observed.

Based on the results, a pathway was proposed in 
which BQ is first protonated to BQH+ [36]. This hypotheti-
cal intermediate is stabilized via ring opening to a conju-
gated oxo-bis-enone moiety, which in turn is attacked by 
water to form the hydroxyethylidene-furanone intermedi-
ate. Further oxidation of this intermediate by BQ and its 
coupling with the resulting HQ, followed by the final lac-
tonization, gives 3 (Scheme 4).

The structure of 3 was identified based on its NMR 
spectra. In 1H NMR, the presence of two doublets and one 
doublet of doublets signals at about 6.8-7.2 ppm was in 
accordance with the HQ unit, while two doublet signals at 
8.4 and 7.0 ppm were indicative of the unsaturated lactone 
ring. Similarly, DEPT-135, COSY, HSQC, and APT experi-
ments supported the formation of the suggested structure. 
To confirm, a single crystal of 3 was prepared and subjec-
ted to X-ray crystallographic experiments. Fig. 2 clearly 
supports the assignment.

Based on these results, we decided to design a pathway 
in which a similar combination of BQ structures would 
occur via an elimination reaction as opposed to a redox 
process. For this purpose, we selected 2,6-dichlorobenzo-
quinone (BQCl2), which is more susceptible to protonation 

Figure 1 Important bioactive benzofuran containing structures

 

Scheme 1 One-pot synthesis of 2
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Table 1 Optimization of the synthesis of 3 using 1b

 

Entry 1b (equiv.) BQ (equiv.) HQ (equiv.) Conditions Time (h) Yield (%)a

1 1.0 2.5 0.0 AcOH, PhMe 72 15
2 1.0 0.0 2.5 AcOH, PhMe 72 0
3 0.0 1.0 0.0 AcOH, PhMe 72 0
4 0.0 0.0 1.0 AcOH, PhMe 72 0
5 0.0 2.0 1.0 AcOH, PhMe 18 70
6 0.0 2.0 1.0 CD3CO2D, PhMe 18 70
7 0.0 2.0 1.0 CHD, AcOH, PhMe 72 0
8 0.0 2.0 1.0 AcOH, CHCl3 18 0
9 0.0 2.0 1.0 AcOH, H2O 18 0
10 0.0 2.0 1.0 AcOH, mesitylene 18 55
11 0.0 2.0 1.0 AcOH, xylene 18 53
12 0.0 2.0 1.0 AcOH, benzene 18 33
13 0.0 2.0 1.0 CF3CO2H, PhMe 18 0
14 0.0 2.0 1.0 HCO2H, PhMe 18 67
15 0.0 2.0 1.0 PTSA, PhMe 18 0
16 0.0 2.0 1.0 HCl, PhMe 18 0
17 0.0 2.0b 1.0 AcOH, PhMe 18 0
18 0.0 2.0c 1.0 AcOH, PhMe 18 0

aIsolated yields. bBQ was replaced with 2,5-DMBQ. cBQ was replaced with 2,6-DMBQ.

Scheme 2 Stepwise vs one-pot synthesis of 2
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[41], and has the potential to produce dibenzofurans, 
when reacted with ethyl 2-methyl-4-oxocyclohex-2-ene-
1-carboxylate (Hagmann ester, 1e). This would occur by 
taking advantage of a possible facile HCl elimination to 
couple the two reactants and reach a tricyclic dibenzofu-
ran target structure (Scheme 5). As a result, a facile regio-
selective coupling was observed, giving 4.

The mechanism of the reaction presumably goes 
through the formation of BQCl2H+. This species is formed 
upon treatment of the reactants with AcOH, while 1e is 
also enolized to dienol 1eʹ under the acidic conditions. 
Then, the enol 1eʹ attacks the electron-poor BQCl2H+ to 
form 4ʹ. Rearrangement of the double bond to a more 
stable conjugated position promotes the ring closure and 
the process is followed by HCl elimination and a final 
dehydration/aromatization step to form 4 (Scheme 6). The 
structure of the product was elucidated with NMR spectro-
scopy techniques and was confirmed with X-ray crystallo-
graphic analysis (Fig. 3). 

Conclusion
In summary, we successfully conducted the synthesis of 
benzofuran and furanylidene-benzofuran systems via the 
one-pot coupling of BQ with either itself or cyclohexenone 

under refluxing acidic conditions, using no coupling 
reagent. The benzofuran formation occurs either through 
[3+2] heteroannulation of the starting cyclohexenone 
moiety with BQ derivatives (in the case of 2 and 4) or the 
“dimerization” of BQ (in the case of 3), followed by either 
spontaneous oxidation (aromatization) or elimination 
(dehydration) steps. The procedures are clearly effective in 
producing the target compounds under inexpensive con-
ditions, in shorter time periods and with fewer reaction 
steps when compared to the previous reports for known 
products [35]. Based on these results, we are currently 
developing the procedures to use a broader spectrum of 
reactants, such as phenols and thiophenols. 

Experimental

Melting points are uncorrected. FT-IR spectra were recor-
ded using KBr disks on a Bruker Vector-22 spectrometer. 
NMR spectra were recorded at 400 MHz for 1H NMR and 
101 MHz for 13C NMR on a Bruker Ascend 400 MHz spec-
trometer in DMSO-d6 solutions using TMS as an internal 
standard reference. Chemical shift values (δ) are reported 
in ppm relative to the residual solvent signal in DMSO, 
while coupling constants (J) are given in Hz. Multiplici-
ties are reported as s (singlet), d (doublet), dd (doublet of 
doublets), m (multiplet) and etc. Flash column chromato-
graphy was performed using silica gel 60 (0.035-0.070 mm 
particle size). Elemental analyses were performed using 
a Thermo Finnigan Flash EA 1112 instrument. LCMS ana-
lysis was carried out on a Waters ACQUITY UPLC system 
with a PDA and SQD2 electrospray detector and a Thermo 
Accucore C18 2.6 µm, 2.1 × 50 mm column. TLC experi-
ments were carried out on pre-coated silica gel plates 
using hexanes/EtOAc as the eluent. Chemicals and star-
ting materials were purchased from commercial sources. Scheme 3 Reactions in the presence of 1c-d

Scheme 4 Mechanism of the synthesis of 3
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Product 2 [35] was known and identified by NMR spectra. 
Products 3 and 4 were new and were characterized by 
analysis of their 1H NMR, 13C NMR, IR, mass spectra, and 
X-ray crystallography.

Synthesis of 8-hydroxy-3,4-dihydrodibenzo[b,d]furan-
1(2H)-one (2)

To a solution of PhMe (4.0 mL) and glacial AcOH (1.0 mL) 
was added 1a (100 µL, 1.0 mmol) and benzoquinone 
(216  mg, 2.0 mmol) and the mixture was refluxed for 
24 hours. Saturated aqueous NaHCO3 (excess) was added 

Figure 2 ORTEP representation of 3, thermal ellipsoids set at the 
40% probability level

Scheme 5 Synthesis of 4

Scheme 6 Mechanism of the synthesis of 4
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to the mixture and the organic layer was diluted with 
EtOAc (10.0 mL). The organic layer was dried over Na2SO4 
and after evaporation of the volatiles, the residue was 
purified with flash chromatography over silica gel using 
EtOAc/hexanes (1:5) to obtain 2.

White crystals (81%); 1H NMR (400 MHz, DMSO-d6) 
δ 9.40 (s, 1H), 7.43 (d, J = 9.0 Hz, 1H), 7.26 (d, J = 2.5 Hz, 1H), 
6.75 (dd, J = 2.5, 9.0 Hz, 1H), 3.03-3.00 (m, 2H), 2.49-2.48 
(m,  2H), 2.19-2.12 (m, 2H); 13C NMR (101 MHz, DMSO-d6) 
δ 194.8, 172.5, 155.1, 148.3, 124.6, 115.9, 113.6, 112.2, 106.1, 
33.8, 23.7, 22.4; MS: m/z 202 (M+).

Synthesis of (E)-5-hydroxy-3-(5-oxofuran-2(5H)-ylidene)
benzofuran-2(3H)-one (3)

To a solution of PhMe (4.0 mL) and glacial AcOH (1.0 mL) 
was added benzoquinone (216 mg, 2.0 mmol) and hydro-
quinone (110 mg, 1.0 mmol) and the mixture was refluxed 
for 18 hours. Saturated aqueous NaHCO3 (excess) was 
added to the mixture and the organic layer was diluted 
with EtOAc (10.0 mL). The organic layer was dried over 
Na2SO4 and after evaporation of the volatiles, the residue 
was purified with flash chromatography over silica gel 
using EtOAc/hexanes (1:5) to obtain 3.

Red crystals (70%); 210 °C (decomposes); 1H NMR 
(400 MHz, DMSO-d6) δ 9.65 (s, 1H), 8.43 (d, J = 5.5 Hz, 1H), 
7.18 (d, J = 2.5 Hz, 1H), 7.10 (d, J = 8.5 Hz, 1H), 7.01 (d, J = 5.5 Hz,  
1H), 6.85 (dd, J = 2.5, 8.5 Hz, 1H); 13C NMR (101 MHz, DMSO-
d6) δ 168.0, 166.9, 155.4, 154.5, 146.9, 141.2, 125.2, 122.0, 
119.2, 120.4, 111.1, 106.0; IR (KBr) ν 1064, 1466, 1766, 2922, 
3467  cm-1; MS: m/z 230 (M+). Anal. Calcd for C12H6O5: C, 
62.62; H, 2.63. Found: C, 62.50; H, 2.75.

X-ray data for 3

C12H6O5, M = 230.17 g/mol, triclinic system, space group P-1, 
a = 7.0075(7), b = 9.9741(7), c = 14.5706(12) Å, α=81.108(6), 
β = 79.856(8), γ=70.532(8), V = 940.10(15) Å3, Z = 4,  

Dc = 1.626 g/cm-3, μ(Mo-Kα) = 0.129 mm-1, crystal dimen-
sion of 0.1 × 0.1 × 0.1 mm. The X-ray data collection for 3 
was performed on an Agilent Supernova Diffractometer. 
Data processing was done using CrysAlisPro (Agilent Tech-
nologies). The structure was solved by using SHELXS, and 
structure refinement was carried out with SHELXL [42]. 
The non-hydrogen atoms were refined anisotropically by 
full matrix least-squares on F2 values to final R1 = 0.0822, 
wR2  =  0.2630, and S = 1.009 with 309 parameters using 
4647 independent reflection (θ range = 3.19–29.65°). 
Hydrogen atoms were included on ideal positions using 
riding coordinates. Crystallographic data for 3 have been 
deposited with the Cambridge Crystallographic Data 
Centre. Copies of the data can be obtained, free of charge, 
on application to The Director, CCDC-2046512, Union 
Road, Cambridge CB2 1EZ, UK. Fax: +44 1223 336033 or 
e-mail: deposit@ccdc.cam.ac.uk.

Synthesis of ethyl 6-chloro-8-hydroxy-1-
methyldibenzo[b,d]furan-2-carboxylate (4)

To a solution of PhMe (4.0 mL) and glacial AcOH (1.0 mL) 
was added 1e (160 µL, 1.0 mmol) and BQCl2 (264 mg, 
1.5 mmol) and the mixture was refluxed for 3 hours. Satu-
rated aqueous NaHCO3 (excess) was added to the mixture 
and the organic layer was diluted with EtOAc (10.0 mL). 
The organic layer was dried over Na2SO4 and after evapo-
ration of the volatiles, the residue was purified with flash 
chromatography over silica gel using EtOAc/hexanes (1:5) 
to obtain 4.

White crystals (83%); mp = 183-184 °C; 1H NMR (400 
MHz, DMSO-d6) δ 9.99 (s, 1H), 7.91 (d, J = 9.0, 1H), 7.58 (d, 
J = 9.0 Hz, 1H), 7.45 (d, J = 2.0 Hz,  1H), 7.06 (d, J = 2.0 Hz,  1H),  
4.32 (q, J = 7.0 Hz, 2H), 2.88 (s, 3H), 1.35 (t, J = 7.0 Hz, 3H); 
13CNMR (101 MHz, DMSO-d6) δ 167.3, 157.6, 154.7, 145.6, 
136.8, 130.6, 126.2, 125.9, 123.9, 115.9, 116.0, 109.8, 107.9, 61.2, 
17.3, 14.6 ; IR (KBr) ν 3344, 2853, 1681, 1258, 1073, 779 cm-1; 
MS: m/z = 304 [M]+. Anal. Calcd for C16H13ClO4: C, 63.07; H, 
4.30. Found: C, 63.25; H, 4.52.

X-ray data for 4

C16H13ClO4, M = 304.71 g/mol, monoclinic system, space 
group P21/c, a = 12.0554(3), b = 7.2442(1), c = 15.3414(3) Å, 
β = 95.954(2), V = 1332.56(5) Å3, Z = 4, Dc = 1.519 g/cm-3, 
μ(Cu-Kα) = 2.672 mm-1, crystal dimension of 0.25 × 0.20 × 
0.18 mm. The structure was solved using SHELXS and 
refined with SHELXL [40]. The non-hydrogen atoms were 
refined anisotropically by full matrix least-squares on F2 
values to final R1 = 0.0470, wR2 = 0.1360, and S = 1.025 

Figure 3 ORTEP representation of 4, thermal ellipsoids set at the 
40% probability level
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with 193 parameters using 2792 independent reflection 
(θ range = 3.69–76.56°). Hydrogen atoms were inserted at 
ideal positions. 
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