Synthesis of Methyl (R)-2-O-Propargylglycerate, a Precursor to Analogues of the 2-O-Alkylglycerate Part of the Moenomycins

Madina Mansourova,^[a] Katja Rohr,^[a] Lothar Hennig,^[a] Matthias Findeisen,^[a] Ramona Oehme,^[a] Sabine Giesa,^[a] and Peter Welzel^{*[a]}

Keywords: Alcohols / Allylation / Alkynes

Conditions allowing optically active methyl glycerate to be converted, without racemization, into the 2-O-propargyl derivative, via the 2-O-allyl derivative, are reported. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)

Introduction

The antibiotic activity of the moenomycin antibiotics [see moenomycin A (1), Scheme 1] and structural analogues has been shown to be critically dependent on the presence of a suitable lipid component attached to the 2-position of the glyceric acid moiety.^[1,2] Synthesis of structural analogues with modified lipid chains has been hampered by the inconvenience of access to 2-*O*-alkyl glycerates.^[3-7]

The only efficient procedure so far reported is the silver oxide-promoted reaction between a suitably protected glycerate 2 and allyl bromide, which gives the 2-*O*-allylated derivative 4 in very high yield (Scheme 2) and without measurable racemization. The 2-allyl derivative could then

be used to prepare an array of new 2-*O*-alkylglycerates by cross metathesis followed by catalytic hydrogenation.^[8]

Here we wish to describe the synthesis of methyl 2-*O*-propargylglycerate (**4b**). This compound should also allow various 2-*O*-substituted glycerates to be prepared by known methods.

Results

Direct treatment of **2** with propargyl bromide failed.^[9] It is known, however, that nucleophilic reagents such as electron-rich aromatic compounds,^[10] β -dicarbonyl compounds,^[11] allylsilanes,^[12] enols^[13] and alcohols react with

Scheme 1

 α -[alkynyl-hexacarbonyldicobalt]carbenium ions to give the corresponding substitution products (Nicholas reaction).^[14] The activating [Co₂(CO)₆] moieties can be efficiently intro-

 [[]a] Universität Leipzig, Fakultät für Chemie und Mineralogie, Johannisallee 29, 04103 Leipzig, Germany

Scheme 2

duced (by treatment of the alkyne with octacarbonyldicobalt) and removed (by treatment with ceriumammonium nitrate).^[15,16] The reaction between **2** and **6** in the presence of several Lewis acids as promoters, at -20 to 0 °C, was unsuccessful.^[17] When, however, the OH group of **5** was activated as a trichloroacetimidate,^[18] the thus formed **6** gave the desired ether **7a** in a BF₃-mediated reaction in yields of 30-40%. Careful optimization of the reaction conditions (i.e., reduction both of the excess of trichloroacetonitrile used in the formation of **6** and of the amount of BF₃-diethyl ether used in the formation of **7a** increased the yield of **6** to 91% and that of **7a** to 78% (Scheme 3). Use of other Lewis acids (see Table 1) gave lower yields. On the pathway to **4b** it turned out to be advantageous first to remove the dimethoxytrityl group and then to release the triple bond with ceriumammonium nitrate. Mosher ester analysis^[19] performed both with **4b** (sample obtained from **7b**) and with **7b** revealed that the Nicholas reaction between **2** and **7** was accompanied by substantial racemization, the ratio of the two stereoisomers being about 1:1.6. The analysis showed that racemization occurred in the coupling step rather than during cleavage of the cobalt complex. Analysis of the Mosher esters **7c** obtained by making use of other Lewis acids in the substitution step revealed somewhat better stereoisomer ratios (¹⁹F NMR).

The results called for a more suitable method for the preparation of stereohomogeneous **4b**. It is known that aldehydes can be converted into terminal alkynes by use of

Scheme 3

Table 1. Reaction between 2 and $7^{[17]}$

Lewis-acid	Yield of 7a	Reaction temperature	Amount of promoter	Ratio of stereoisomers 7c (¹⁹ F NMR)
$\begin{array}{c} BF_{3} \cdot Et_{2}O \\ Sc(OTf)_{3} \ ^{[19]} \\ TfOH \\ TfOSiMe_{3} \\ B(C_{6}F_{5})_{3} \ ^{[20]} \end{array}$	$78\% \\ 35\% \\ 23\% \\ <10\% \\ <10\% \\ <10\%$	-20 °C -10 °C 0 °C -20 °C -20 °C	0.33 equiv. 0.10 equiv. 0.20 equiv. 0.10-0.50 equiv. 0.10-0.50 equiv.	1:1.6 1:2.23 1:1.86 not determined not determined

the Ohira-Bestmann modification^[22,23] of a reaction discovered by Colvin and Hamill.^[24] In the event, treatment of the anion of dimethoxy(diazomethyl)phosphonate with the aldehyde obtained from **3** on treatment with OsO₄/NaIO₄ afforded alkyne **4a** in 84% yield (Scheme 2). 2-*O*-Propargylglycerate **4b** was converted into the corresponding Mosher ester **4c**. NMR revealed that no racemization had occurred under these conditions.

Thus, as well as the allyl ether **3**, the new building block **4a** is now available for the preparation of glycerates with different substituents connected to the 2-position through an ether linkage.

Experimental Section

General Methods: see ref.^[25]

NMR spectra: The protons and carbons of the glyceric acid unit are labelled as $^{\rm H}$ and those of the 2-*O*-substituent as ¹, according to moenomycin nomenclature (see Scheme 1).

Propargyl Trichloroacetimidate Hexacarbonyldicobalt Complex (6): Trichloroacetonitrile (2.7 mL, 26.8 mmol) and DBU (dropwise, 4.47 mmol, 700 μ L) were added at -10 °C to a solution of the hexacarbonyldicobalt complex of propargyl alcohol (5,^[26] 6.10 g, 17.89 mmol) in dry dichloromethane (60 mL). After completion of the reaction (monitoring by TLC) the mixture was quickly filtered through silica gel. Washing with dichloromethane and solvent evaporation furnished crude 6 as a red oil (7.98 g, 91%), which was unstable and was used without further purification. $R_{\rm f} = 0.60$ $(CH_2Cl_2/acetone, 25:1)$. IR (KBr): $\tilde{v} = 1707, 1514, 1230, 824 \text{ cm}^{-1}$. ¹H NMR (300 MHz, CDCl₃): $\delta = 8.45$ (br. s, 1 H, NH), 6.10 (s, 1 H, ≡CH), 5.45 (s, 2 H, CH₂) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 199.1 (br. s, 6 \times C=O), 162.8 (C=NH), 91.3 (CCl_3), 87.3 $(C \equiv CH)$, 72.3 ($\equiv CH$), 70.5 (CH₂) ppm. C₁₁H₄Cl₃Co₂NO₇ (486.38, 484.772), FAB MS: m/z (%) = 429 (65) [8 - 2CO]⁺⁺, 401 (29) [8 $- 3CO]^{+\cdot}$, 325 (84), 317 (35) [8 $- 6CO]^{+\cdot}$, 297 (100), 269 (45), 241 (31).

Methyl (R)-3-O-(4,4'-Dimethoxytrityl)-2-O-propargylglycerate Hexacarbonyldicobalt Complex (7a): Borontrifluoride-diethyl ether (142 mg, 127 μ L, 1 mmol) was slowly added at -20 °C to a solution of 2 (1.267 g, 3 mmol) and 6 (1.703 g, 3.5 mmol) in dry dichloromethane (60 mL). The mixture was stirred at -20 °C for 2 h. With vigorous stirring, the reaction mixture was then added to an ice-cold saturated aqueous solution of NaHCO₃ (100 mL). Aqueous workup (CH₂Cl₂) and FC (toluene/acetone, 30:1) furnished 7a (1.747 g, 78% based on 2) as a dark red oil. $R_{\rm f} = 0.63$ $(CH_2Cl_2/acetone, 25:1)$. IR (KBr): $\tilde{v} = 1749, 1606, 1506, 1250,$ 1178, 1132, 1034, 829 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta =$ 7.45-7.41 (d, 2 H, Ar H), 7.34-7.16 (m, 7 H, Ar H), 6.84-6.79 (d, 4 H, Ar H), 6.09 (s, 1 H, \equiv CH), 4.92 and 4.75 (AB system, $J_{AB} = 13.0 \text{ Hz}, 2 \text{ H}, \text{ OCH}_2$, 4.34–4.28 (m, 1 H, 2-H^{glyc}), 3.84 (s, $6 \text{ H}, 2 \times \text{Ar-OCH}_3$), 3.79 (s, 3 H, OCH₃), 3.53 (m, 2 H, CH₂-3^{glyc}) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 200.0$ (br. s, $6 \times C \equiv O$), 171.1 (-COOCH₃), 158.7 (2 × C-4^{methoxyphenyl}), 144.9 (C-1^{phenyl}), 136.0 (2 × C-1^{methoxyphenyl}), 130.3 (4 × C-2^{methoxyphenyl}), 128.4 (2 × C-2^{phenyl}), 128.1 (2 × C-3^{phenyl}), 127.0 (C^{Ar}-4^{phenyl}), 113.3 (4 × C-3 methoxyphenyl), 90.7 (C_q^{Co complex}), 86.4 [C(Ar)₃], 78.9 (C-2^{glyc}), 71.9 $(\equiv CH^{Co \text{ complex}}), 71.2 (-CH_2-C\equiv), 64.4 (C-3^{glyc}), 55.3 (2 \times$ Aryl-OCH₃), 52.0 (-COOCH₃) ppm. C₃₄H₂₈Co₂O₁₂ (746.46, 746.025), FAB MS: m/z (%) = 662 (20) [7a - 3CO]⁺⁺, 578 (53) [7a $- 6CO]^{+}$, 555 (3) [7a - 3CO - ArOMe]⁺, 471 (20) [7a - 6CO - ArOMe]⁺, 460 (9) [7a - Co₂(CO)₆]⁺, 353 (14) [7a - Co₂(CO)₆ - ArOMe]⁺, 303 (100) [4,4'-dimethoxytrityl]⁺.

Methyl (*R*)-3-*O*-(4,4'-Dimethoxytrityl)-2-*O*-propargyl-glycerate (4a). a) From 7a: Ceriumammonium nitrate (CAN, 660 mg, 1.20 mmol) was added at 0 °C to a solution of 7a (300 mg, 0.40 mmol) in acetone (8 mL). After the mixture had been stirred at 0 °C for 10 min, evolution of CO was no longer observed and TLC (toluene/acetone, 10:1) indicated completion of the reaction. Solvent evaporation, addition of water and usual workup (diethyl ether), followed by FC (CH₂Cl₂/acetone, 20:1) provided 4a (103 mg, 56%) as a pink oil slightly contaminated with DMT-OH. $R_{\rm f} = 0.54$ (CH₂Cl₂/acetone, 25:1). IR (KBr): $\tilde{v} = 1747$, 1608, 1508, 1248, 1176, 1101, 1034, 785, 762 cm⁻¹.

b) From 4a: A catalytic amount of OsO₄ (0.05 mL) in water (1 mL) was added to a solution of 4a (400 mg, 0.85 mmol) in diethyl ether (10 mL). After the reaction mixture had turned black (15 min), NaIO₄ (370 mg, 2 equiv.) in water (5 mL) was added. After 18 h the reaction mixture was diluted with diethyl ether, and the organic layer was separated and washed with water, dried with NaSO₄ and concentrated. TLC showed only one substance. Because of its very low stability the aldehyde was used in the next step without any purification. A solution of dimethoxy(diazomethyl)phosphonate (210 mg, 1.5 equiv.) and the crude aldehyde (350 mg) in dry methanol (5 mL) and THF (3 mL) was added at 0 °C under argon to a suspension of K₂CO₃ (250 mg, 2.2 equiv.) in THF (1 mL). The reaction mixture was stirred at 0 °C for 30 min and at room temperature for 6 h. After addition of aqueous saturated NH₄Cl (5 mL), petroleum ether (10 mL) and diethyl ether (10 mL), the organic layer was separated, dried with Na₂SO₄ and concentrated. The crude product was purified by FC on silica gel, eluted with toluene/ acetone (50:1), to give **4a** (290 mg, 84% after two steps). $R_{\rm f} = 0.45$ (toluene/acetone, 9:1). $[\alpha]_{D}^{25} = +9$ (c = 0.1, CHCl₃). IR (film): $\tilde{v} =$ 1743 cm⁻¹ (CO). ¹H NMR (200 MHz, HH COSY, CDCl₃): δ =7.49-7.16 (m, 9 H, Ar H), 6.89-6.83 (m, 4 H, Ar H), 4.39-4.34 (m, 3 H, OCH₂^I, 2-H^H), 3.81 (s, 6 H, $2 \times Ar - O - CH_3$), 3.71 (s, 3 H, OCH₃), 3.44 (d, $J_{3,2} = 4.4$ Hz, 2 H, 3-CH₂^H), 2.46 (broad s, 1 H, \equiv CH) ppm. ¹³C NMR (50.3 MHz, HETCOR, CDCl₃): $\delta = 170.86$ (COOCH₃), 158.69 (*p*-methoxyphenyl-C), 144.83 (C-1^{phenyl}), 139.68 (C'-1^{methoxyphenyl}), 135.98 (C-1^{methoxyphenyl}), 130.22 (C-3^{methoxyphenyl}), 129.28, 129.15 (2 × C-3^{phenyl}), 128.32, 127.91 (2 \times C-2^{phenyl}), 125.43 (C-4^{phenyl}), 113.35, 113.19 (2 \times C-2^{methoxyphenyl}), 86.33 (CAr₃), 79.10 (C=CH), 77.10 (C-2^H), 75.42 $(C \equiv CH)$, 64.28 (C-3^H), 57.87 (OCH₂), 55.34 (2 × Ar-O-CH₃), 52.09 (COOCH₃) ppm. $C_{28}H_{28}O_6$ (460.52, 460.19), ESI MS: m/z = $[M + Na]^+$ calcd. 483.17781; found 483.17804.

Methyl 2-O-Propargylglycerate (4b)

a) Mixture of Enantiomers Obtained by the Nicholas Route:

aa) A solution of **4a** (80 mg, 0.174 mmol) in aqueous acetic acid (80%, 5 mL) was stirred at 20 °C for 48 h. Azeotropic solvent removal [toluene (5 mL) and pyridine (1 mL)] and subsequent FC (CH₂Cl₂/acetone, 10:1) provided **4b** (15 mg, 55%) as a pink oil.

ab) Compound **7a** (312 mg, 0.703 mmol) was treated with CAN (1.156 g, 2.11 mmol) as described above. Workup and FC ($CH_2Cl_2/$ acetone, 10:1) furnished **4b** (64 mg, 58%) as a pink oil.

b) Compound 4b Obtained by the Ohira-Bestmann Route:

A solution of 4a (35 mg, 0.08 mmol) in acetic acid (80%, 3 mL) was stirred at 20 °C for 4 h. The reaction mixture was then diluted with a pyridine/water mixture and the solvents were evaporated.

Dry pyridine (2 mL) was added and the solvent was removed under reduced pressure. FC (CH₂Cl₂/acetone, 50:1) provided **4b** (10 mg, 84%) as a colourless oil. $R_{\rm f} = 0.25$ (CH₂Cl₂/acetone, 9:1). $[\alpha]_{\rm D}^{25} = +176.5$ (c = 0.1, CHCl₃). IR (film): $\tilde{\nu} = 3380$ (OH), 1743 cm⁻¹ (CO). ¹H NMR (200 MHz, HH COSY, CDCl₃): $\delta = 4.43$ (dd, $J_{1,3} = 2.6, J_{1,1'} = 16.1$ Hz, 1 H, 1-H¹), 4.25 (dd, $J_{1,3} = 2.5, J_{1',1} = 16.1$ Hz, 1 H, 1-H¹), 4.29 (m, 1 H, 2-H^H), 3.92 (dd, $J_{3,2} = 3.6, J_{3,3'} = 11.7$ Hz, 1 H, 3-H^H), 3.82 (dd, $J_{3',2} = 5.5, J_{3',3} = 11.7$ Hz, 1 H, 3-H^H), 3.82 (dd, $J_{3',2} = 5.5, J_{3',3} = 11.7$ Hz, 1 H, 3-H^H), 3.78 (s, 3 H, OCH₃), 2.50 (t, $J_{31,11} = 2.6$ Hz, 1 H, C=CH), 2.30 (s, 1 H, OH) ppm. ¹³C NMR (50.3 MHz, HETCOR, CDCl₃): $\delta = 171.23$ (COOCH₃), 79.33 (C=CH), 78.43 (C-2^H), 76.44 (C=CH), 64.02 (C-3^H), 58.60 (OCH₂), 52.97 (COOCH₃) ppm. C₇H₁₀O₄ (158.15, 158.06), ESI MS: m/z = 159.0 [M + H]⁺, 278.9 [M + Na]⁺.

Methyl 2-O-Propargyl-glycerate Hexacarbonyldicobalt Complex (7b, Mixture of Enantiomers): The dimethoxyltrityl group was removed from 7a (300 mg, 0.402 mmol) as described for 4a. FC (CH₂Cl₂/acetone, 15:1) furnished 7b (107 mg, 60%) as a dark red oil. $R_{\rm f} = 0.31$ (CH₂Cl₂/acetone, 25:1). IR (film): $\tilde{v} = 1525$, 1350, 1093, 1038, 804, 731 cm⁻¹. ¹H NMR (200 MHz, CDCl₃): $\delta = 6.05$ (s, 1 H, \equiv CH), 4.98 (d, $J_{1,1'}$ = 12.8 Hz, 1 H, 1-H^I), 4.64 (d, $J_{1',1}$ = 12.8 Hz, 1 H, 1-H^{'I}), 4.28-4.24 (dd, $J_{2,3} = 3.7$, $J_{2,3'} = 5.1$ Hz, 1 H, 2-H^H), 4.05–3.96 (dt, $J_{3,3'}$ = 11.7, $J_{3,2}$ = 3.7, $J_{3,OH}$ = 6.2 Hz, 1 H, 3-H^H), 3.93–3.84 (dt, $J_{3',3} = 11.7$, $J_{3',2} = 5.1$, $J_{3',OH} = 7.3$ Hz, 1 H, 3-H^{'H}), 3.80 (s, 3 H, COOCH₃), 2.27 (t, $J_{3,OH} = 6.2, J_{3',OH} =$ 7.3 Hz, 1 H, OH) ppm. ¹³C NMR (50 MHz, CDCl₃): $\delta = 200.0$ (br. s, $6 \times C \equiv 0$), 172.8 (COOCH₃), 91.94 (C \equiv CH), 81.2 (C-2^H), 73.1 (\equiv CH), 72.9 (OCH₂), 65.7 (C-3^H), 54.2 (COOCH₃) ppm. $C_{13}H_{10}Co_2O_{10}$ (444.08, 443.894), FAB MS: m/z (%) = 467 (2) [7b + Na]⁺, 416 (6) [7b - CO]^{+,}, 388 (52) [7b - 2CO]^{+,}, 360 (65) [7b $- 3CO]^{+}$, 332 (100) [7b $- 4CO]^{+}$, 325 (46), 304 (8) [7b $- 5CO]^{+}$, 297 (49), 276 (64) [**7b** - 6CO]^{+,}, 269 (18), 241 (14).

Methyl 2-*O*-Propargyl-3-*O*-{[(*R*)-3,3,3-trifluoro-2-methoxy-2-phenyl]propionyl}glycerate (4c)

a) Mixture of Stereoisomers Obtained by the Nicholas Route: DMAP (0.7 mg, 6.3 µmol), triethylamine (18.2 mg, 25 µL, 0.18 mmol) and 3,3,3-trifluoro-2-methoxy-2-phenylpropionyl chloride (63 mg, 47 µL, 0.24 mmol) were added at 20 °C to a solution of 4b (20 mg, 0.12 mmol) in dry dichloromethane (2 mL) and the mixture was stirred at 20 °C overnight. TLC indicated complete consumption of 4b. Solvent evaporation and FC (toluene/acetone, 25:1) furnished 4c (38.4 mg 83%) as a colourless oil. $R_{\rm f} = 0.56$ (toluene/acetone, 10:1). ¹⁹F NMR (282 MHz, C₆D₆): two CF₃ signals, $\Delta \delta = 0.2$ ppm [ratio 1:1.6].

b) Compound 4c Obtained by the Ohira–Bestmann Route: A mixture of 4b (10 mg, 0.06 mmol), 3,3,3-trifluoro-2-methoxy-2-phenyl-propionyl chloride (40 μL, 0.30 mmol, 5 equiv.), triethylamine (40 μL) and a catalytic amount of 4-(dimethylamino)pyridine in CH₂Cl₂ (0.5 mL) was stirred under argon for 15 h. The solvents were evaporated. Purification by FC (petroleum ether/ethyl acetate, 3:1) furnished 4c (18 mg, 85%). ¹H NMR (200 MHz, CDCl₃): $\delta = 7.68-7.63$ (m, 2 H, Ar H), 7.07–6.94 (m, 3 H, Ar H), 4.42 (dd, $J_{3,2} = 3.3, J_{3,3'} = 11.4$ Hz, 1 H, 3-H^H), 4.08 (dd, $J_{3',2} = 5.1$ Hz, 1 H, 2-H^H), 3.96 (t, $J_{1,3} = 2.6$ Hz, 2 H, CH¹₂), 3.42 (q, J = 1.0 Hz, 3 H, OCOCOCH₃), 3.07 (s, 3 H, COOCH₃), 1.86 (t, $J_{3,1,11} = 2.6$ Hz, 1 H, C=CH) ppm. ¹⁹F NMR (188.3 MHz, C₆D₆): $\delta = 4.50$ (CF₃COOH as standard) ppm.

FULL PAPER

Methyl 2-O-Propargyl-3-O-{[(R)-3,3,3-trifluoro-2-methoxy-2phenyl]propionyl}glycerate Hexacarbonyldicobalt Complex (7c, Mixture of Stereoisomers): Complex 7b was converted into 7c as described for 4b. FC (CH2Cl2/acetone, 10:1) furnished 7c (not completely pure, 20 mg, 84%) as a red oil. ¹H NMR (200 MHz, C₆D₆): $\delta = 7.78 - 7.65$ (dd, 2 H, 2-H^{Ar}), 7.16-7.08 (m, 3 H, 3-H^{Ar}, 4-H^{Ar}), 5.40 (s, 1 H, \equiv CH), 4.42, 4.09 (2 × d, ${}^{2}J_{1I,1'I}$ = 12.3 Hz, 2 H, OCH $^{I}_{2}$), 4.51–4.43 (dd, $J_{3,3'}$ = 11.7, $J_{3,2}$ = 3.7 Hz, 1 H, 3-H^H), 4.38-4.29 (dd, $J_{3',3} = 11.7$, $J_{3',2} = 5.1$ Hz, 1 H, 3-H^{'H}), 3.82-3.78(dd, $J_{2,3} = 3.7$, $J_{2,3'} = 5.1$ Hz, 1 H, 2-H^H), 3.47 (br. s, 3 H, C_{quat} -OCH₃), 3.20, 3.18 (2 × s, ratio 1:1.67, 3 H, COOCH₃) ppm. ¹H NMR (200 MHz, CDCl₃): $\delta = 7.65 - 7.41$ (m, 5 H, Ar H), 5.99 (s, 1 H, \equiv CH), 4.87 (d, ${}^{2}J_{1I,1'I} = 12.3$ Hz, 1 H, 1-H^I), 4.69–4.56 (m, 3 H, CH_2^H , 1-H'^I), 4.41 (m, 1 H, 2-H^H), 3.68 (br. s, 3 H, C_{quat} -OCH₃), 3.81, 3.54 (2 × s, ratio 1:1.65, 3 H, COOCH₃) ppm. ¹³C NMR (75 MHz, C₆D₆): $\delta = 199.9$ (br. s, $6 \times C \equiv 0$), 168.9 (COOCH₃), 164.6 (C_{quat}-COO), 132.7, 129.8 (C^{Ar}, the other signals were hidden by the benzene signals), 124.1 (q, ${}^{1}J_{C,F} = 288$ Hz, CF₃), 90.8 ($C \equiv CH$), 76.5 (C-2^H), 71.3 ($\equiv CH$), 70.9 (OCH₂), 65.7 (C-3^H), 55.5, 55.1 (OCH₃), 51.7 (COOCH₃) ppm. ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3): \delta = 199.4 \text{ (br. s, } 6 \times \text{C} \equiv \text{O}), 169.6 \text{ (COOCH}_3),$ 166.4 (C_{quat}-COO), 132.1 (C-1^{Ar}), 130.0, 129.8 (C-4^{Ar}), 128.8, 128.6 (C- 3^{Ar}), 127.5, 127.4 (C- 2^{Ar}), 123.3 (q, ${}^{1}J_{\text{EC}}$ = 289 Hz, CF₃), 90.0 ($C \equiv CH$), 76.5 (C-2^H), 71.4 ($\equiv CH$, OCH₂), 66.0 (C-3^H), 55.8, 55.6 (OCH₃), 52.4 (COOCH₃) ppm. ¹⁹F NMR (282 MHz, C₆D₆): two CF₃ signals $\delta = 4.82$, 4.53 ppm [ratio 1:1.7] (CF₃COOH as standard).

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft, BC Biochemie GmbH and the Fonds der Chemischen Industrie is gratefully acknowledged.

- ^[1] N. El-Abadla, M. Lampilas, L. Hennig, M. Findeisen, P. Welzel, D. Müller, A. Markus, J. van Heijenoort, *Tetrahedron* 1999, 55, 699-722, and references therein.
- A. Anikin, A. Buchynskyy, U. Kempin, K. Stembera, P. Welzel, G. Lantzsch, Angew. Chem. 1999, 111, 3931-3935; Angew. Chem. Int. Ed. 1999, 38, 3703-3707, see also: A. Buchynskyy, S. Kempin, L. Hennig, M. Findeisen, D. Müller, S. Giesa, H. Knoll, P. Welzel, Eur. J. Org. Chem. 2002, 1149-1162; S. Vogel, A. Buchynskyy, K. Stembera, K. Richter, L. Hennig, D. Müller, P. Welzel, Ch. Bonhomme, M. Lampilas, Bioorg. Med. Chem. Lett. 2000, 20, 1963-1965.
- [3] T. Schubert, F. Kunisch, P. Welzel, *Tetrahedron* 1983, 39, 2211–2217.
- [4] U. Peters, W. Bankova, P. Welzel, *Tetrahedron* 1987, 43, 3803-3816.
- ^[5] U. Eichelberger, I. Neundorf, L. Hennig, M. Findeisen, S. Giesa, D. Müller, P. Welzel, *Tetrahedron* 2002, 58, 545-559.
- ^[6] S. Vogel, K. Stembera, L. Hennig, M. Findeisen, S. Giesa, P. Welzel, M. Lampilas, *Tetrahedron* 2001, *57*, 4139–4146.
- [7] S. Vogel, K. Stembera, L. Hennig, M. Findeisen, S. Giesa, P. Welzel, C. Tillier, S. Bonhomme, M. Lampilas, *Tetrahedron* 2001, *57*, 4147–4160.
- ^[8] U. Eichelberger, M. Mansourova, L. Hennig, M. Findeisen, S. Giesa, D. Müller, P. Welzel, *Tetrahedron* 2001, *57*, 9737–9742.
- ^[9] M. Mansourova, Dissertation, University of Leipzig, 2002.
- ^[10] K. M. Nicholas, R. F. Lockwood, *Tetrahedron Lett.* 1977, 48, 4163–4166.
- ^[11] K. M. Nicholas, H. D. Hodes, *Tetrahedron Lett.* 1978, 45, 4349–4352.
- ^[12] K. M. Nicholas, J. E. O'Boyle, *Tetrahedron Lett.* **1980**, *21*, 1595–1598.

FULL PAPER

- ^[13] K. M. Nicholas, M. Mulvaney, M. Bayer, J. Am. Chem. Soc. **1980**, 102, 2508–2510.
- ^[14] B. J. Teobald, *Tetrahedron* **2002**, *58*, 4133–4170.
- ^[15] K. M. Nicholas, H. D. Hodes, *Tetrahedron Lett.* **1978**, 45, 4163–4166.
- ^[16] K. M. Nicholas, R. Pettit, J. Organomet. Chem. 1972, 44, C21-C24, D. D. Díaz, V. S. Martín, Tetrahedron Lett. 2000, 41, 9993-9996.
- ^[17] K. Rohr, Diploma thesis, University of Leipzig, 2002.
- ^[18] See, for example: E. Öhler, S. Kotzinger, *Tetrahedron Lett.* 1992, 33, 4313–4316: D. H. R. Barton, G. Fontana, *Tetrahedron* 1996, 52, 11163–11176.
- ^[19] J. A. Dale, D. L. Dull, H. S. Mosher, J. Org. Chem. **1969**, 34, 2543–2549.
- ^[20] ^[20a] M.-E. Theoclitou, L. A. Robinson, *Tetrahedron Lett.* 2002,

43, 3907-3910. ^[20b] Review: S. Kobayashi, Synlett **1994**, 689-701.

- ^[21] S. Chandrasekhar, C. R. Reddy, B. N. Babu, G. Chandrasekhar, *Tetrahedron Lett.* 2002, 43, 3801–3803.
- ^[22] S. Ohira, Synth. Commun. 1989, 19, 561-564.
- ^[23] S. Müller, B. Liepold, G. J. Roth, H. J. Bestmann, Synlett 1996, 521-522.
- [24] E. W. Colvin, B. J. Hamill, J. Chem. Soc., Perkin Trans. 1 1977, 869–874, see also: J. C. Gilbert, U. Weerasooriya, J. Org. Chem. 1979, 44, 4997–4998.
- ^[25] A. Buchynskyy, K. Stembera, L. Hennig, M. Findeisen, S. Giesa, P. Welzel, *Eur. J. Org. Chem.* 2002, 1163–1174.
- ^[26] H. W. Sternberg, H. Greenfield, R. A. Friedel, J. Wotiz, R. Markby, I. Wender, J. Am. Chem. Soc. 1954, 76, 1457–1458. Received January 29, 2003