
LETTER 1467

Convergent Synthesis of Antiparallel Cyclobolaphiles Having Two Diacetyl-
enes: Mimetics of Membrane Components That are Found in Archaea
Convergent Synthesis of Antiparallel Cyclobolaphiles Having Two DiacetylenesKazuhiro Miyawaki, Rie Goto, Toshiyuki Takagi, Motonari Shibakami*
Institute for Materials and Chemical Process, Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, 
Tsukuba, Ibaraki 305-8565, Japan
Fax +81(298)614547; E-mail: moto.shibakami@aist.go.jp
Received 5 July 2002

Synlett 2002, No. 9, Print: 02 09 2002. 
Art Id.1437-2096,E;2002,0,09,1467,1470,ftx,en;U01802ST.pdf. 
© Georg Thieme Verlag Stuttgart · New York
ISSN 0936-5214

Abstract: Chiral 48-membered antiparallel cyclobolaphiles and
their diastereomer having two diacetylenes were convergently syn-
thesized utilizing both cross-coupling method (CuI, pyrrolidine)
and Glaser intramolecular cyclization, starting from commercially
available D- and L-1,2-O-isopropylidene-sn-glycerol as chiral
sources.
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The recent finding that several thermostable archaeal
membranes contain parallel and antiparallel caldarchaeol1

with a molar ratio of ca 1:1 is of considerable interest
(Figure 1).2

Such naturally-occurring membrane system stimulates us
to explore the feasibility of adopting a 1:1 mixture of the
parallel-antiparallel caldarchaeol analogues as an ideal
composition when we turn our attention to the preparation
of thermostable self-assembled lipid nanostructures.3 At
present, to our knowledge, there is only one report on the
synthesis of totally artificial antiparallel analogue that
contains saturated long alkyl chains,4 although several
synthetic schemes of parallel caldarchaeol analogues have
previously been established.5 Moreover, possible factors
contributing to the stability in the bacterial membrane in-
clude stereospecific interactions between caldarchaeols
due to inherent chirality at syn-2 position of their glycerol
moieties. Thus, understanding how stereochemistry has
an effect on molecular packing has theoretical implica-
tions.6 With these backgrounds in mind, we have started a
program for synthesizing three stereoisomers of antiparal-
lel caldarchaeol analogues (2R,27R)-1, (2S,27S)-1 and
(2R,27S)-1 that contain two diacetylene units within a
long alkyl chain and phosphatidylcholine as a polar head
group (Figure 2). We term such analogues antiparallel cy-
clobolaphiles.7 Our construction of the thermostable cy-
clobolaphiles partyl hinges on the use of diacetylene units
besides macrocyclic structure.8 The expected effects of di-
acetylenes were 2-fold: (i) the stiffing effect of diacetyl-
enes on alkyl chains is expected to reduce the mobility of
the macrocycles to raise gel-to-liquid phase transition
temperature compared to lipids having no diacetylenes,
and (ii) diacetylene units have a potential of polymeriza-
tion on UV-irradiation to form polymerized membranes.

Figure 2 Structures of antiparallel cyclobolaphiles (2R,27R)-1, (2S,27S)-1, and (2R,27S)-1
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Figure 1 Backbones of typical parallel and antiparallel caldar-
chaeol
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Here we report the accomplishment of the synthesis of the
diacetylene-containing antiparallel cyclobolaphiles by
firstly adopting cross-coupling method of alkynes with 1-
iodoalkynes for the construction of macrocyclic struc-
ture.9

Chiral building blocks 4, 6, 9 and 11 were synthesized
via the reaction sequence shown in Scheme 1. In brief,
detritylation (p-TsOH) of terminal acetylene 3 that was
prepared according to the method described in the litera-
ture,10–12 afforded the desired alcohol 4 in 90% yield.
Next, iodination (N-iodosuccinimide, AgNO3) of 5, pre-
pared by use of procedures described in the literature,4

provided the desired iodide 6 in 89% yield. Finally, the
synthesis of 9 and 11 followed the same strategy that was
employed for the preparation of 4 and 6, respectively.

(2R,27R)-1, (2S,27S)-1 and (2R,27S)-1 were synthesized
as shown in Scheme 2. Terminal acetylene 4 was coupled
with iodide 11 by Alami procedure employing CuI-pyr-
rolidine,13 to furnish diacetylene 12, [�]D

26 +6.7 (c 0.45,
CHCl3), in 79% yield. By use of the same procedure for
the preparation of 12, coupling of 9 and 4 with 6 provided
diacetylenes 15, [�]D

26 –6.7 (c 0.48, CHCl3), and 18,
[�]D

26 +2.5 (c 0.57, CHCl3), in 64 and 73% yields, respec-
tively. Subsequent alkylation of 12, 15 and 18 with
MsO(CH2)8CCH, followed by intramolecular cyclization
by applying high dilution Glaser protocol,4,14 afforded
macrocyclic compounds 13, [�]D

23 +6.1 (c 3.0, CHCl3),
16, [�]D

26 –6.9 (c 2.0, CHCl3), and 19, [�]D
28 –4.1 (c 1.7,

CHCl3), in 26%, 27% and 27% overall yields for the two
steps, respectively. Detritylation (p-TsOH), followed by
debenzylation (DDQ)15 afforded diols 14, [�]D

25 –9.0 (c

0.61, CHCl3), 17, [�]D
25 +7.8 (c 0.85, CHCl3), and 20,

[�]D
28 0.0 (c 0.50, CHCl3), in 50%, 69% and 55% overall

yields for two steps, respectively. Finally, Phosphoryla-
tion, followed by replacement of bromine with trimethy-
lamine yielded the desired products (2R,27R)-1, (2S,27S)-
1, and (2R,27S)-1 in 67%, 60% and 59% yields for two
steps, respectively.16,17 The structures of the cyclobo-
laphiles were confirmed on the basis of 1H, 13C and 31P
NMR spectra, mass spectra and elemental analyses.18

To examine thermal stability of the cyclobolaphiles, the
thermotropic phase behavior of (2S,27S)-1 was examined
by high-sensitive differential scanning calorimetry (hs-
DSC) (data not shown).19 This compound exhibited a
substantially broadened endotherm at 65 °C with a peak
width of ca. 30 °C (four scans). Such breadth of the endo-
therm is an intrinsic property of cyclobolaphiles, i.e., sym-
metric cyclobolaphile does not allow the lipid to pack
tightly in the curved vesicle membrane, resulting in the
lack of cooperative melting process.20 Thus, comparison
of Tm value for (2S,27S)-1 with ‘untethered’ 1,2-dialkyl-
phosphatidylcholine suggests that both cyclic structure
and two diacetylene units contribute to the raise of ther-
mostability.21

In conclusion, we have developed a convergent synthetic
route for cyclobolaphiles (2R,27R)-1, (2S,27S)-1 and
(2R,27S)-1. This strategy also could be wide applicable to
the stereoselective construction of antiparallel cyclobo-
laphiles containing the same functional group at each end
of a macrocyclic segment. Work is currently in progress
to develop their thermostable self-assembled lipid nano-
structures and will be reported elsewhere.

Scheme 1  Reagents and conditions: (a) (i) KOH, PMBCl, DMSO, r.t., 24 h; (ii) p-TsOH, MeOH, r.t., 36 h, 78–80%; (b) TrCl, DMAP, py-
ridine, 80 °C, 13 h, 80–89%; (c) MsO(CH2)8CCH, NaH, TBAI, DMF, r.t., 19 h, 92–99%; (d) p-TsOH, CHCl3/MeOH (2:1, v/v), r.t., 4 h, 89–
90%; (e) (i) MsO(CH2)8CCH, KOH, DMSO, r.t., 20 h; (ii) p-TsOH, MeOH, r.t., 17 h, 92%; (f) NIS, AgNO3, acetone, 0 °C, 4 h, 89–99%.
PMBCl = p-methoxybenzyl chloride, p-TsOH = p-toluenesulfonic acid, DMAP = 4-(dimethylamino)pyridine, TBAI = tetrabutylammonium
iodide, NIS = N-iodosuccinimide, TrCl = trityl chloride
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